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Location of surface of tension in argon liquid-vapor interface near the triple point
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The Kirkwood-Buff molecular theory of surface tension is used to determine the location of the surface of tension
for a planar liquid-vapor interface of liquid argon near the triple point. A nonzero interfacial thickness is considered
in this phenomenological study for the cases of a linear and a cubic density profile. It is found that the product of the
surface tension and the location of the surface of tension is independent of the width of the liquid-vapor transition
zone. Both linear and cubic density profiles lead to the same invariance relation. The realistic Barker-Fisher-%'atts
(BF%') potential and the Parson, Siska, and Lee (MSV-III) potential are used for numerical calculation. The
experimental radial-distribution function of Yarnell et al. is used for the bulk liquid and as an approximation for the
transition zone. Results are compared to those previously reported. Curvature dependence of the surface tension for
large-size droplet or cluster is also discussed.

I. INTRODUCTION

Based on the Kirkwood-Buff molecular theory
of surface tension, ' the effect of the transition
zone on the surface energy and surface tension for
liquid argon near the triple point was thoroughly
studied. ' A simultaneous consideration of both the
surface tension and the surface energy has provi-
ded a more comprehensive understanding of the
nature of the liquid-vapor transition zone. Al-
though it is suggested by Qoodisman' that mis-
leading results may be obtained if one- and two-
particle distribution functions not related by the
Born-Bogolivbov -Green-Kirkwood -Yvon4 equa-
tion are used together, the modeling of realistic
density profiles and radial-distribution functions
has been widely adopted in the study of a liquid-
vapor coexisting system. ' ' Recently, Henderson
and Lekner' have shown a numerical consistence
in the surface-thickness determination from va, -
rious modeling calculations.

The planar interface between liquid and vapor
has been predominately investigated because of
its simple nature with well-developed theories. '"
However, considerable study of the spherical
interface" ' is also essential to the understanding
of nucleation phenomena. " Particularly, the cur-
vature dependence of the surface tension (e.g. ,
droplet, bubble, microcluster) is playing an im-
portant role in connection with theories of nuclea-
tion. " Many theoretical approaches on curvature
dependence of the surface tension y(R) have been
limited to the cases of large radius of curvature
B. The approximate relation of y to R is expres-
sed in terms of a planar interface quantity 5, which .

is defined as the relative distance between the
so-called Gibbs surface of tension zo and the
equimoteculardioidingsurface z„(i.e. , 5= z„—zc).'~

Several estimations have confirmed the sign of
5 to be positive, but they differ in magnitude from
one another by using different methods with dif-
ferent input information. Using the Lennard-
Jones potential and Fowler's step-function (zero-
width)" profile, the Kirkwood-Buff theory gave
3.63 A for Ar at 90 K. Hill, however, estimated
2.81 A in his model which led a. smooth density
profile in the surface zone. " The scale-particle
model of Plesner and Platz yielded an estimated

of 2.01 A at 84 K for Ar." The temperature
dependence of 6 was given'by Toxvaerd, whose
estimation, however, yielded a value three times
larger compared with the above average value. "
The most recent work by Rao and Berne, " in-
volving a Monte Carlo simulation of the pressure
tensor, also gives a value of about 3.27 A (0.96
in reduced units) at ll0 K.

It is our desire to pursue another calculation
for 6. Based on the Kirkwood-Buff theory, we
considered a realistic nonzero width of a liquid-
vapor system. A linear and a cubic density pro-
file are assumed for the interfacial region. ' At
85 K, it is justifiable to take argon vapor density
to be effectively zero. It is also argued that using
a bulk-liquid radial-distribution function g, (r) in
the transition zone is an accurate approximation
as long as the liquid density p, is much larger
than the vapor density. ' In the following, we shall
first extend the Kirkwood-Buff formulation to
evaluate the thickness effect on the location of
the surface of tension. In Sec. III, numerical
results from the simple integration of formula-
tions in Sec. II will be given as compared to those
previously reported. In Sec. IV, we shall briefly
discuss the size dependence of the surface ten-
sion from Tolman's theory. " Finally, conclu-
sions are given in Sec. V.
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II. FORMULATION

We start from the Kirkwood-Buff formula to express the location of Gibbs surface of tension zc in teims
of surface tension y, a two-body interaction potential u(r»), and a certain special function 1 „"'; i.e.,""

(z Z &' +2.2 f &2 )dr
1 ' 1 du(r ) )

c 2y y .dy
where

y
' ( 12 (z f &2&+ 2 Z'&2&)dp

du&a.

y dg 12 1 2 12 0 ' l2 0
12 12

and

&0

1'."'(r...z,.) = z,"[p (z, ) p(z. )g(z„z., r,.) -pg, (r,.)]dz,

+
J

z",[P(z, )P(z,)g(z„z„r„) P'„g-„(r„)]dz,.
0

(4)

and therefore a simple relation

-z =-z .et' C C '

It is conventional to specify z =0 to be the equi-
molecular dividing surface in the interfacial re-
gion. This choice leads to the particle-conserva-
tion criterion

f'0 OO

[P& P(z)] dz -= [P(z) P„]dz-
0

where p(z) changes drastically from p, to p„ in the
interfacial zone, a width d of several molecules
in size. For a nonzero thickness, we assume a
smooth profile which is antisymmetric about the
equimolecular dividing surface. To satisfy Eq.
(4), two simple choices for p(z) are used: (i) li-
near density profile

1
p(z) =p, —1-— -b ~zb~,

Here, z is chosen to be the direction perpendi-
cular to the dividing surface; g, (r»), g„(r»), and

g(z„z,', r») stand for the two-body distribution
function in the bulk liquid, bulk vapor, and the
transition zone, respectively. p, and p„are the
bulk-liquid and bulk-vapor density, respectively.
Singlet-density function p(z) is subject to the
boundary conditions

p(z) ='

p v&

and (ii) cubic density profile

'1 3g 1z 3'
p(z)=p ————+—— ' biz c-b'2 4y 4b „

where b is the balf-width of the transition region
(d =2b). Assuming p„—= 0 and g(z„z„r») g, (r»)-=,

one can proceed to evaluate I'„'."(r»,z») analyti-
cally. An explicit expression for 1 „" in this ap-
proximation has been given by Fitts." It is
straightforward to obtain the following.

(i) For linear density profile

r& 2
P2g b21 —'+ z12 (2b&z )6 2b2 12

2 b2 —+ 12 + 12 12
g2

P&g& I(&& 6b 4b, +ab2
—

48b4 I (0 z„-2b)
)

p(2)

l''6b '4b' '8b' '48b4)

(Qa)
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(ii) For cubic density profile

&lg1b' 1o + 2b'

p(2) )
1

2 b2 I 9z12 z12 Sz12 z12 + Sz12 z12
2 3 5 6 8

t gl 10 Vpb 4b2
'
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p(2)

p181b
~ 5b 3b3 (2b z»)

3 11 Z12 6ZI2 Z12 Z12 sZI2 1 1ZI2 1sZ12
l l S] 5 ] pb S5b2 Gb3 ] Gb4 y6pb5 48pb6 2240b7 Bp64b9 12

Z a2 6Z12 Z12 Z12 sZ12 11Z 12 13Z 12 Z I
t l 315 j Pb S5b2 6b3 $6b4 j6Pb5 480b6 224Pb7 8064b9 12

0 (z„&—2b) . (9d)

Next, to evaluate Eq. (1), we shall first use cylindrical coordinates (p», 8», z»), and then transfer p» to
12$ ( 12 P12 12)1

2yjd~ - y'12 dr» (10a)

2y(d) .„
1 d+ (2) 2 2 (2)

-12 @'12& 2 d» (z 2T 2 +&12cos ~1211
0 Jo V &12

(10b)

(10c)2yd .„
We split the regionof integration in Eq. (10c) into four portions according to Eqs. (9a)-(Bd) (see also Fig.
1), and change the order of integration of r» and z». The contribution to 5(d) in each portion is then as
foQOWS

Region A (2b &z»),

p oo f+ OO ] t+ OO

b„(d) —
2 (d)

«» J' «12G —
2 (d)

d2'12 dz12G,
~$2g I g12 I ."2b 2Q

Region 8 (0&z» & 2b),
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t' oo
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2 (d)
' z»

I SI2I
dr, G
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2y(d)

Region D (z» ~ —2b),

oo 0
da„G+ d~„J ds„G),

2b -2b
(13)

J -2b oo Oo

5~(d) =
(„) dz„~l dr„G =

( ) Jl dr„dz„G,
where G is defined in terms of the respective I'„"' in the different regions,

G(r„,z„)=- [2'„i', (r„,z„)+v(r'„-z») I', (r„,z»)].du(r») &2) (2&

I 2

Then we have

(14)

(15)

5(d) =5~(d) +be(d) +5c(d) +5~(d) . (18)

Now we can substitute Eqs. (9a)-(9d) into Eqs. (11)-(15). After a lengthy algebraic manipulation, it is
somewhat surprising to see that both linear and cubic profile cases lead to an identical simple relation

&P~i
5(d)y(d) =+ ' dr r'u'(r) g, (r) . (17)

Equation (17) implies that the product of the location of the surface of tension and the surface tension is
independent of thickness d.

For Fowler's model, d=0, y(0) is

f' oo

y(0) = ' dr r'u'(r) g, (r) .

This shows that 5(0) is in agreement with the expression given by Kirkwood and Buff'

(18)

dr r'u'(r) g, (r)
5(0) =—

15
drr u'(r)g (r)

0

(19)

It is unclear whether this invariant relation Eq. (17) is also valid for more complicated (or realistic) pro-
files. However, it provides certain insight where the Gibbs surface of tension is located within the surface
region for the above simple models. The width-dependent surface tension y(d) for both linear and cubic
density profiles has been reported earlier. They are (i) for linear density profile,

t
2b oo

y(d) =vp', ) dr u'(r) g, (r) 1 b
—,r 4p'+, Jvdru'(r)g, (r)(—,', b4 —'-b'rm+-,'r');

0 2b

and (ii) for cubic density profile

(20)

2b 2 r 4

y(d) =wp4, dru'(r) g, (r) —
4 + 4

—
4 ~r4+vp', J dru'(r) g, (r)(~~74 b4 —~ob'r4+ &r4).

0 2b

(21)
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l2 TABLE II. Dependence of the location of the surface
of tension z& of Ar at 85 K on the zone width d using
MSV-III potential (Ref. 25) (& =-zG).

Linear profile
y(dyn/cm) & (A)

Cubic profile
y(dyn/cm) 6(A)

-2b 0 2b Z2

FIG. 1. Regions of integration for Eq. (10), b ~ 0.

TABLE I. Dependence of the location of the surface of
tension zt-. of Ar at 85 K on the zone width d using BFW
potential (Ref. 24) (~ =-z~).

d
(A)

Linear profile
y(dyn/cm) 6 (A)

Cubic profile
y(dyn/cm) ~(A)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

13.71
13.72
13.74
13.78
13.82
13.84
13.82
13.75
13.59
13.35
13.05
12.72
12.36
12.00
11.64
11.28
10.93
10.60
10.28
9.98
9.69

2.90
2.90
2.89
2.88
2.87
2.87
2.87
2.89
2.92
2.97
3.04
3.12
3.21
3.31
3.41
352
3.63
3.75
3.86
3.98
4.10

13.71
13.71
13.73
13.75
13.78
13.81
13.83
13.82
13.79
13.72
13.61
13.45
13.26
13.04
12.80
12.54
12.28
12.01
11.74
11.47
11.21

2.90
2.90
2.89
2.89
2.88
2.88
2.87
2.87
2.88
2.89
2.92
2.95
3.00
3.05
3.10
3.17
3.23
3.31
3.38
3.46
3.54

HI. RESULTS AND DISCUSSION

We have listed the values of y(d) and 5(d) for
both the Barker-Fisher-Watts (BFW)" and Par-
son, Siska, and Lee (MSV-III)25 potential in Ta-
bles I and II. Only pairwise additive potentials
are considered. The accurate radial-distribution
function g, (r) obtained from the neutron-diffrac-
tion data of Yarnell et a/. "is used in the simple
numerical integration. For liquid Ar at 85 K, the
bulk-liquid density p, is taken to be 0.021 25/A'
(Ref. 27). One can see that 5 varies slowly for
d &10 A. Although the BFW and MSV-III potentials
give slightly different values for the surface ten-
sion, they do show almost no difference in 5 for
d&4. 5 A for their respective density profiles. In
fact 5 is a quite stable value (2.9-3.2 A), cor-

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.00

15.00
15.00
15.00
14.99
14.97
14.93
14.84
14.70
14.47
14.18
13.83
13.45
13.06
12.67
12.27
11.90
ll. 53
11.18

.10.84
10.52
10.21

2.79
2.79
2.79
2.79
2.79
2.80
2.82
2.85
2.89
2.95
3.03
3.11
3.20
3.30
3.41
3.52
3.63
3.74
3.86
3.98
4.10

15.00
15.00
15.00
14.99
14.99
14.98
14.94
14.89
14.80
14.68
14.52
14.31
14.08
13.82
13.55
13.26
12.97
12.68
12.39
12.10
11.81

2.79
2.79
2.79
2.79
2.79
2.79
2.80
2.81
2.83
2.85
2.88
2.92
2.97

, 3.03
3.09
3.16
3.23
3.30
3.38
3.46
3.54

Pg

[p(z) p, ] dz +-
= -~H'g =~r~ ~

[p(z) —p„]dz
gg

(22)

This simple exact relation provides a different
physical interpretation by defining 5 as the ratio

responding to an acceptable thickness range' de-
spite the different density profile or different po-
tential, whichever is used. The Fowler step-
function profile seems not to lead to severe dif-
ferences in the determination of 6 values. Since
there are no direct or indirect experimental va-
lues to test how good those results are, it can
only make this study worthwhile by comparing
the present calculation with other estimations
previously reported in Table III.

A thermodynamic property related to the lo-
cation of surface of tension is so-called excess
surface-mass density Z (or superficial number
density defined in Ref. 1). This quantity Z, origi-
nally introduced in Gibbs's adsorption formula
dy= —Zdp, (p, being the chemical potential), is
said to depend upon the choice of the dividing sur-
face." Following the Kirkwood-Buff theory of
expressing the location of Qibbs surface of ten-
sion z~, the excess surface-mass density Z with
respect to the dividing surface z =~~ can be for-
mula. ted by using Eq. (4), i.e. ,
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TABLE III. Comparison of the present calculation with the result previously reported.

Kirkwood, Buff (1949) (Ref. 1)
Hill (1952) (Ref. 18)

Plesner, Platz (1968) (Ref. 19)
Toxvaerd {1973)(Ref. 20)

Rao, Berne (1979) {Ref.21)
P resent work

90
90
84
84
89.85

101.83
119.80
110

85

3.63
2.81
2.67
2.01
9.28

10.53
13.93
3.27
3.00 (recon~ended)

of excess surface-mass density to bulk-liquid
density (5 =Z/p, ), if Z ca.n be determined from
certain thermodynamic functions. " In the relation
of Eq. (17) for the product of 5(d)y(d), a similar
expression has been given by Lekner and Hen-
derson" in the cases of slow varying-density pro-
files (approaching the critical point or some poly-
mer at ordinary temperature"). At the large-d
limit, the surface tension is approximately equal
to

n —-—,~p,R',
then (24) becomes

y(n) =y„(1—c,n '/'+c, n '/' )

with

25

(3/4v )1/3 t 2 4 1 '

(25)

(26)

(27)

For instance, taking 5 = 3.0 A and p, =0.021 25/A'
in the present work, one finds y(n) at 85 K is

y(d) = ' " dr x'u'(r )g, (x),
0

(23) y(n) =y„(1 —2.68n ' '+5.38n ' ' ). (28)

whereA is a dimensionless parameter depen-
ding on profile shape. Combining Eqs. (17) and
(23) shows that 5 is proportional to the interface
thickness d. This is a highly satisfactory result.
In fact, one can simply plot the linearity relation
at large-d limit to verify the conclusion.

IV. CURVATURE (SIZE) DEPENDENCE OF SURFACE
TENSION

Qne of the important applications in the evalua-
tion of the location of the Qibbs surface of tension
in the transition region is for consideration of the
curvature (or size) dependence of the surface
tension of a droplet or a liquid microcluster. An
approximate relation for spherical surface ten-
sion derived from the Qibbs-Tolman-Koenig-Buff'
expression for a large liquid cluster is

25 35
r(ft) =r 1 ——+-

R R
(24)

where one restricts the treatment to a droplet
with radius R large compared with the thickness
d (equivalent to 5) of the interface layer. y„ is the
surfa. ce tension of planar interface (zero curva-
ture).

Near the tripole point, a liquid droplet may be
further approximated as a homogeneous spherical
saturated cluster. Assuming the number of par-
ticles n is

y(n) =y„(1 —0.67n '/'+ 5.56n '/' ) .
Asymptotic behaviors of Eqs. (28) and (29) are
compared in Table IV. As suggested by Nishioka,
the difficulty in calculating 5 may be one of the
many factors which result in a significant dis-
crepancy of the c, coefficient in Eq. (26). In our
judgment, the thickness effect on the 5-value de-
termination probably gives a c, coefficient with at
most +5% uncertainty.

(29)

TABLE IV. Asymptotic behavior of the size depen-
dence of the surface tension y(n) given in the ratio of
v()h .

y(n)/y„
Eq. (29), 84 K Eq. (28), 85 K

104
1p6
M8
1010

48
224
483

4825

0.981
0.994
0.999
1.000

0.887
0.974
0.994
0.999

Because of initial limitation in deriving Eq. (24),
Eq. (28) cannot be applicable for the cluster-size
range relevant to nucleation conditions (n is 10'
-10'). The stronger dependence of y on n in Eq.
(28) was discussed by Nishioka, "who gave a simi-
lar equation by a least-squares fit of a Monte Car-
lo study of cluster free energy. For example, at
84 K Nishioka obtained
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V. CONCLUSION

Using the extended Kirkwood-Buff formula, the
effect of the transition-zone width on the location
of the surface of tension of argon near the triple
point is formulated. To evaluate those formulas,
we employed two realistic potentials, two simple
single-density profiles, and an experimental ra-
dial-distribution function of the bulk liquid for the
transition zone. Both the BFW and the MSV-III
potentials, and the linear and the cubic density
profiles lead to the mild dependence for the lo-
cation of the surface of tension as a functions of
the zone width. If only pairwise additive potentials

ar. e considered, the Gibbs surface of tension is
located about one molecular size on the bulk-li-
quid side of the equimolecular dividing surface.
This is in good agreement with those results re-
ported previously.
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