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On the basis of the known experimental properties of 1/f noise, some previous models are analyzed. The presence
of 1/f noise in the simplest systems such as beams of charged particles in vacuum, the existence of 1/f noise in

currents limited by the surface recombination rate, bulk recombination rate, or by the finite mobility determined by
interaction with the phonons in solids, suggests a fundamental fluctuation of the corresponding elementary cross
sections. This leads to fluctuations of the kinetic transport coeAicients such as mobility jM, or recombination speed,
observable both in equilibrium and nonequilibrium. In the first case the available Johnson noise power kT,
determined by the Nyquist theorem, is free of this type of 1/f fluctuation. An elementary calculation is presented
which shows that any cross section, or process rate, involving charged particles, exhibits 1/f noise as an infrared
phenomenon. For single-particle processes, the experimental value of Hooge s constant is obtained as an upper limit,

corresponding to very large velocity changes of the current carriers, close to the speed of light. The obtained

sin'(8/2) dependence on the mean scattering angle predicts much lower 1/f noise for (low-angle) impurity

scattering, showing a strong ( —p /p„tg noise increase with temperature at the transition to lattice scattering.
This is in qualitative agreement with measurements on thin films and on heavily doped semiconductors, or on
manganin. The theory is based on the infrared quasidivergence present in all cross sections (and in some
autocorrelation functions) due to interaction of the current carriers with massless infraquanta: photons, electron-
hole pair excitations at metallic Fermi surfaces, generalized spin waves, transverse phonons, hydrodynamic
excitations of other quanta, very 1ow-energy excitations of quasidegenerate states observed, e.g., in disordered
materials, at surfaces, or at lattice imperfections, etc. The observed 1/f noise is the sum of these contributions,
and can be used to detect and study new infraquanta.

I. THE PHENOMENON OF 1/f NOISE

The problem of 1/f noise has captivated the at
tention of workers in the field of electrophysics for
half a century, ever since problems of amplifica-
tion took command of this field. ' The more re-
search was done, the more elusive its causes
proved to be, and the more enigmatic its nature
turned out to be.

If a constant voltage is applied to a semiconduc-
tor sample or device, to a carbon resistor or vac-
uum tube, the current will exhibit fluctuations.
The frequency spectrum, obtained e.g. , by band-
pass filtering the fluctuations and recording the
mean-squared output per unity passband as a func-
tion of the tuning frequency, is in general constant
at high frequencies (white, thermal, or Nyquist
noise), has one or more types of shot-noise com-
ponents proportional to [1+(2wfy)'] ' at interme-
diate frequencies f, and is proportional tof ' and to
the square of the averaged current at low frequencies,
i.e., below some limit of 103-106 Hz. No lower
limit of the 1/f spectrum has ever been found, al-
though measurements down to 5&10 Hz have been
performed. The absence of a lower frequency
limit was the main difficulty on the way to a theory
of 1/f noise.

Another difficulty was the universality of 1/f
noise. Electric 1/f noise is present whenever a
current is carried by a small number of carriers,

or when a bottleneck exists in an electric circuit.
Indeed, 1/f noise is found also in electrolytic cells,
electron beams in vacuum, thin metallic films and
bad contacts, being also known as flicker noise,
excess noise, or contact noise. There are excel-
lent review articles "

and books ' in which the
subject of 1/f noise is treated, and references are
given.

The universality of 1/f noise transcends the lim-
its of electrophysics. Indeed, 1/f noise is present
in the phase and frequency of all known frequency
standards~'0 (clocks), determining in general the
minimal error bars of frequency and time meas-
urements. Furthermore, 1/f noise has been found
in nerve cells as fluctuations of the voltage across
the membrane of the node of Ranvier, below 10
Hz in the angular velocity of the earth's rotation,
below 10 Hz in the relativistic neutron flux in the
terrestrial magnetosphere, and in seasonal tem-
perature fluctuations. If has also been found in the
flow rate of sand in an hourglass, the frequency of
sunspots, the light output of quasars, the flow rate
of the Nile over the last 2000 years, the central
Pacific ocean current velocities at a depth of 3100
meters, the flux of cars on an expressway, and in
the loudness and pitch fluctuations of classical
music. This enumeration is far from being com-
plete. '~

We define the universal phenomenon of 1/f noise
here in general on the basis of three properties:
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(1) The exponent of f in the spectral density dif-
fers by less than 20/0 from 1,-over more than
five units of the decimal logarithmic frequency
scale with no observed indication of a low-frequen-
cy limit.

(2} The process is Gaussian; this means not only
a Gaussian amplitude distribution, but also the re-
lations between higher- order moments charac ter-
istic for a Gaussian process.

(3) The spectral density is proportional to the
squared average value of the fluctuating quantity in
linear systems.

As a consequence of the fir s t defining proper ty,
once a measurement has become 1/f-noise limited,
no further reduction of the error is possible by ex-
tension of the measurement time. The limiting
variance of the result obtained in a measurement
which averages the quantity of interest over a time
T and subtracts the average over the immediately
preceding interval T is 4C ln2, where C is the co-
efficient of 1/f in the spectral density. For shorter
measurement times, i.e., as long as white noise
was the limiting factor, the variance of the result
decreased proportional to T ' . Strictly speaking,
this interesting property is applicable only to f '

spectra. However, the slow increase (-To''} of the
variance for Cf" 2, or the slow decrease (-T 0' )
for Cf 0'8 do not change the nature of the process
significantly from a practical point of view, al-
though the theoretical and gnoseological implica-
tions are important. It is difficult to perform an
accurate subtraction of superposed phenomena,
such as various shot-noise components (proper or
of generation-recombination type) which perturb
the 1/f spectrum; cleaner 1/f spectra seem to be
correlated with measurements over many frequen-
cy decades, while perturbed 1/f spectra are better
represented among those measured over 2-3 de-
cades only, in this author's opinion. This author
also believes that after the subtraction of perturb-
ing components, a subtraction of linear drift should
be done, particularly if the spectrum becomes
steeper than f ' at low frequencies.

The spectral density of 1/f noise also determines
all statistical properties of the process, according
to the second defining property. This has been
verified experimentally, by Stoisiek and Wolf, ' up
to the level of fourth-order, two-time moments,
for band-limited 1/f spectra of various spectral
widths. We shall keep the second and third prop-
erty in the definition of I/f noise until there is any
experimental evidence against them.

The aim of this paper is to show that from basic
quantum mechanics one can derive a certain level
of electric 1/f noise without making any hypothesis.
Furthermore, the properties of 1/f noise can be
derived and new results can be predicted.

In the first two papers we restrict ourselves to
electric 1/f noise at T =0. A third paper in this
series could be viewed in principle as independent
of the problem of 1/f noise and will generalize the
known theory of infrared radiative corrections to
finite temperatures, i.e., to the case in which a
th ermal equilibrium radiation background is pre-
sent (e.g. the cosmic 3K background). A fourth
paper is dedicated to the theory of 1/f noise in the
presence of a thermal background radiation field.
For most of the derivations, the idealized case of
a beam of electrons scattered in vacuum will be
considered, although a generalization to macro-
scopic samples and a summary of the "second-
order" derivation are included in the fifth paper.

In order to gain clarity in the presentation of the
fundamental ideas, after a brief analysis of the ex-
perimental facts and models of 1/f noise, the gen-
eral scheme of the theory will be discussed first in
Sec. III. An elementary derivation of the 1/f spec-
trum will be presented in Secs. IV and V. The es-
sence of the quantum theory of 1/f noise presented
in this series of papers is the interpretation of 1/f
noise as an infrared phenomenon. Specifically, a
new self-interference effect is found, whichcreates
a bridge between the infrared quasidivergence of
the cross sections as a function of the energy loss
parameter (generalized bremsstrahlung) on one
band, and the observed 1/f fluctuation of the cross
section, mobility, resistance, recombination speed
(and often implicitly carrier concentration also) in
the time domain. For the first time, this bridge
translates the I/e spectrum of generalized brem-
strahlung energy losses into a 1/f frequency spec-
trum and into an infrared-divergent response in the
time domain. A slightly different bridge developed
by the author in the framework of the same theory
for closed electric circuits is known as second-
order 1/f noise (see Ref. 43 in Sec. VI). There
may be other bridges in solids, e.g. , due to the depen-
dence of the scattering cross section of the current
carriers on the relative separation and configuration
of two or more scatterers with the time autocorrela-
tion function of spatial correlations corresponding to
an infrared-divergent (1/f) spectrum in the general-
ized spin-lattice prescription. While only one bridge
is presented and only the case of photons is analyzed
in this paper, the case of other infraquanta is sim-
ilar. Finally, Sec. VI brings a discussion of the
results, a summary of results to be derived in
other papers of this series, and a comparison with
experimental properties of 1/f noise.

The theory presented in these papers does not
attempt to explain all spectra of electric current
noise which show a 1/f-like dependence over a-

limited frequency interval. Not accidental 1/f
spectra, but the fundamental 1/f problem is our
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subject. On the other hand, to this author's know-
ledge, there is no other theory in which a 1/f spec-
trum down to f=0 is derived, i.e., in which no
lower frequency limit is present.

((AR)')~ C
(2.1}

where C is a constant. '
In junction diodes and bipolar transistors, Eq.

(2.1}is not applicable and the current spectral
density is observed to be proportional to P in gen-
eral, with lay&2. This is true, e.g. , for the

I/f noise in the basis current of bipolar transis-
tors, which, according to van der Ziel" and Fon-
ger, is caused by fluctuations of the recombination
velocity. The latter may be located either on the
surface, or in the bulk, the 1/f noise is the same. '

The question arises: Why do such different quan-
tities as the resistance of a homogeneous sample
and the recombination speed on the surface, or in
the volume, all fluctuate with the same 1/f spec-
trum? Why should they fluctuate at all? As we
shall see later, the correct answer to this ques-
tion is: They all fluctuate with a 1/f spectrum be-
cause they are process rates, in essence cross
sections, of current carriers with infrared-diver-
gent coupling to photons and other infraquanta pre-
sent in condensed matter (R is a reciprocal pro-
cess rate, in essence a cross section}. All such
process rates and cross sections present this fun-
damental fluctuation, '8 as we shall see, but only
the 1/f noise in the cross sections which in fact
determine the current in the given circuit will de-
termine the current noise.

The fundamental 1/f fluctuation of electromagnet-
ic cross sections is neither a nonequilibrium pro-
cess npr an equilibrium process, but an elemen-
tary process such as, e.g. , scattering, as the au-
thor has pointed out' from the beginning of the

II. EXPERIMENTAL PICTURE AND MODELS OF j./f NOISE

Out of the large amount of experimental data
published on electric 1/f noise, the following most
important facts can be crystalized in addition to the
properties already included in the general defini-
tion.

(1) In general, in homogeneous samples, I/f
noise is due to resistance fluctuations. Indeed, a
constant current J through a homogeneous sample
causes 1/f voltage fluctuations with a spectral
density -I', while a constant voltage V across the
sample causes 1/f current fluctuations -V' with
the same coefficient of proportionality for relative
(fractional) fluctuations. This is also true in elec-
trolytes and liquid metals. We can write the spec-
tral density of relative resistance-fluctuations

quantum theory of 1/f noise. Therefore, it should
be present both in equilibrium and in nonequilibri-
um. In thermal equilibrium, the expectation level
of Nyquist noise in a bandwidth Af is N =4kTBAf
in voltage, ¹ =4kTGAf in current, and N" =kTAf
in available power, where G=—R ' is the conduct-
ance of the sample. At sufficiently low frequen-
cies, the fundamental I/f fluctuation of the scat-
tering cross sections, and of R and G, should
therefore be observable in thermal equilibrium as
a slow modulation of the expectation level of Ny-
quist noise, with a 1/f spectrum in voltage, or in
current, but not in available power:

((AN}') ((AN')') C
(N&' (N'&' 7'

((AN" )'&,
(Nll&2 t

(2.2)

where C is the constant defined by Eq. (2.1). At
higher frequencies above CAf, this effect is cover
ed by the white noise resulting from the s'quaring
of thermal noise in Eq. (2.2). Furthermore, if the
coefficient C is small, everything can be masked
by bolometer effect, which represents resistance
fluctuations generated by the well-known energy
fluctuations (formally equivalent to temperature
fluctuations by division with the small heat capacity
of the sample C„}present in thermal equilibrium:
((AT} ) =kT /C„. These temperature fluctuations
have a spectrum determined by the equation of heat
diffusion. For three-dimensional diffusion, the
spectrum has four regions, proportional to v, ln
co ', (u ', and (d . For two dimensions there
are three regions, proportional to inn ', m ', and
co 3 . Finally, for one-dimensional diffusion,
there are regions proportional tp (d and
At sufficiently low frequencies, below the lowest
relaxation time determined by the heat diffusion
equation, the spectrum will always be white, as in
the three-dimensiona'1 case, no matter what the
geometry of the sample is. In the intermediary re-
gion, the superposition of contributions from vari-
ous time constants will often give a power-law-
like spectrum, e.g. , f ' or f ' over an extended
frequency region, e.g. , three or four frequency
decades, which is easily confused with 1/f noise.
The confusion with the bolometer effect must be
avoided in the study of 1/f noise, although temper-
ature fluctuations are also important in practical
applications, and although true 1/f temperature
fluctuations are likely to be present in nature and
in the laboratory, as we shall see in the study of
nonelectromagnetic 1/f noise, and may, in princi-
ple also induce electric nonelectromagnetic 1/f
noise, i.e., electric 1/f noise of nonelectromagnet-
ic origin.



We have already mentioned 1/f seasonal temper
ature fluctuations, and we have to agree that, be-
yond the predictions of the heat diffusion equation,
the possibility of a low-frequency physical bolome-
ter effect with a true 1/f spectrum, i.e., with no
lower cutoff, has to be treated in the same context
of nonelectromagnetic 1/f noise in a different pa-
per; a simple reduction to t,emperature fluctuations
does not solve the 1jf problem in any case.

Low-frequency fluctuations (with a f '4 of f 3~2

spectrum from 10 2 to 10 Hz) in the level of Ny-
quist noise have been first reported 2' 3 in small
(106 atoms) films of InSb and Nb, and may have to
be associated with the bolometer effect. While the
initial thick strip of InSb exhibited 1/f noise, the
actual sample used for the measurement. was cut
with a diamond knife until a narrow bridge of 106

atoms only remained; in this state the strip seems
to have been dominated by some diffusion mechan-
ism, as the spectral density also indicates. The
following year Hooge reported measurements by
Beck and Spruit, 25 who have verified Eq. (2.2} with
the same C as in dc I/f noise, on a carbon paper
resistor showing exact 1/f noise over six frequen-
cy decades. Note that the C va, lue of dc 1/f noise
would have to be multiplied by a factor of (1 + P&} /
P2T2 to obtain the C value applicable to Nyquist
noise level fluctuations, if 1/f noise would be caused
by temperature fluctuations. Indeed, temperature
fluctuations would affect not only 8, but also the
available power level, or the factor T in N and N'.
Therefore, at least in this instance, 1/f noise is
not due to temperature fluctuations. While Voss
and Clarke have verified that the bolometer effect,s

i.e., resistance modulation noise from tempera-
ture fluctuations, has a spectral density propor-
tional to P —= (R 'dR/dT), Vandamme2~ has verified
on manganin contacts that the spectral density of
1/f noise is independent of P. Furthermore, anal-
yzing temperature fluctuations in metals and semi-
conductors, Kleinpenning" showed that 1/f noise
has to be clearly distinguished from the bolometer
effect which is negligible in semiconductors but
often dominant in metals at frequencies close to the
reciprocal thermal relaxation time. Finally, Eb-
erhard and Horn '28 have overcome the bolometer
effect limitation in metals, showing that the tem-
perature dependence of 1/f noise cannot be explain-
ed by the temperature-fluctuation model. They
also prove that the bolometer effect, which they
call type A noise, has to be distinguished from 1/f
noise (type B in their papers}.

We conclude that, as the experimental evidence
suggests, 1/f noise is caused by fundamental fluc-
tuations in the resistance, or recombination speed,
or in general the kinetic coefficient which limits
the current in the circuit, and that any identifica-

bon of the bolometer effect with 1/f noise is mis-
leading and should be avoided. Although 1/f tem-
perature fluctuations may be present in nature
(e.g. , seasonal) and will cause some nonelectro-
magnetic 1/f noise in thermometric systems (large
P}, this is not the cause of the phenomenon of 1/f
noise.

(2} For homogeneous samples the constant C in
Eq. (2.1) is roughly proportional to the reciprocal
number N of free charge carriers in the sample
and to the squared ratio of mobility p. and mobility
p&«t determined by lattice vibrations only:

C =(&Oj&)(p /piatt) ~ (2.3)

where eo —- 2&&10 is a universal dimensionless
constant. This empirical relation established by
Hooge ' has been tested for many P-type and n-
type semiconductors and for metals, including
mercury. For the case of point contacts30'4 the re-
lation gave excellent results when applied indepen-
dently to thin shells between equipotential surfaces
around the contact, both for metals and high-ohmic
semiconductors. By taking into account the pre-
sence of the oxide film on the surface, the agree-
ment was extended also to low-ohmic semiconduc-
tors. Hooge's' treatment of point contacts is based
on an approximation of the electric field in the vi-
cinity of the contact, which is excellent at low f.
Sometimes Eq. (2.3), or the method of addition of
independent noi.se contribution from various volume
elements, fails if the sample is inhomogeneous,
e.g. , in presence of a carrier-concentration grad-
ient perpendicular to the direction of the current.
In Eq. (2.3) the factor p2/p„«shows that no 1/f
noise is observed in impurity scattering, as ex-
pected in the present theory; see the discussion
after Eq. (5.6).

In electrolytes the constant C is inversely pro-
portional to the volume and independent of the con-
centration of ions, i.e. , no in Eq. (3} is proportion-
al to the concentration, with o.

&

—4 for decimolar
solutions. "'"

(3) The 1/f fluctuations present in the resistance
(or conductance) arise mainly from mobility fluctu-
ations. This has been first, demonstrated for elec-
trolytes"' by comparing diffusion voltage fluctua-
tions and resistance fluctuations in concentration
cells. Later, this property was demonstrated for
the case of semiconductors ' ' by comparing
thermoelectric emf fluctuations with resistance
fluctuations in a thermocell. The experimental re-
sults are often ambiguous; concentration fluctua-
tions cannot be ruled out completely, but mobility
fluctuations seem to prevail.

This fundamental property, combined with the
conclusion reached above under number (1}in this
section, on the limiting kinetic coefficient as a



22 QUANTUM APPROACH TO l/f NOISE

source of the 1/f fluctuations, leads us tothe cross
sections which determine these coefficients, as
cause of the 1/f fluctuations in general: the scat-
tering cross sections e, (by impurities, phonons,
and lattice defects}, the recombination cross sec-
tions o'„(on the surface and in the volume) in junc-
tions and transistors, the hopping cross sections in
some materials, tunneling cross sections in others,
etc. Indeed, the expression p, =et/m leads us to

the collision time —and to the collision frequency
which is proportional to 0,.

(4) In general, 1/f noise has insignificant tem-
perature dependence. Often, e.g. , in semiconduc-
tors, there is a certain dependence due to absorp-
tion or desorption of gases or water vapor on the
surface, or due to changes in the concentration of
carriers. Very low T dependence is also found in

thermally stable carbon resistors. Until recently
the same was considered true for metals. " On

800-A and 1400-A Ag, Cu, Au, and Ni films, how-

ever, a strong, exponential activation type temper-
ature variation over two orders of magnitude has
been observed between 100 and 500 K. A strong
temperature dependence of this type was also ob-
served for surface conductance in the presence of
an inversion layer created by field effect in semi-
conductors. ' I think both" ' arise [See VI (e), (f)]
from a T-dependent scattering angle, due to changes
in scattering mechanism.

(5) In semiconductors and semiconductor de-
vices there is a strong dependence of 1/f noise on

the state of the surface. Adsorbed gases or water
may increase the noise from etched semiconductor
surfaces by more than an order of magnitude. A

thick oxide layer reduces the level of 1/f noise in

general (passivation). In the case of MOST's, i.e. ,
metal-oxide-silicon transistors, I/f noise has been
observed to be proportional to the concentration of
surface states at the Fermi level, over a wide
range of concentrations down to 10 cm . This fact
is usually interpreted in terms of Mc%horter's
model. " According to this model, the low-fre-
quency fluctuations arise from transitions of elec-
trons to and from "slow states" present in the oxide,
layer on the surface. Assuming a uniform distribu-
tion of these states throughout the oxide layer, and

considering tunneling from the bulk, one obtains a
distribution of lifetimes r, proportional to I/7'.
Assuming all carriers in interaction with only one
slow state at a time, a 1/f spectral density is ob-
tained as superposition of independent exponential
relaxation spectra between certain limits:

J o dv 47' 4
T 1+(d T (d

—=—(arctan ev —arctan ev )0 1
1

However, there is 1/f noise even in the absence of
the oxide layer. Therefore, there is fundamental
I/f noise on which accidental 1/f-noise spectra
may be superposed. Note, however, that a certain
dependence on the concentration of surface states
should also be expected on the basis of the funda-
mental fluctuation of surface-recombination and
-scattering cross sections predicted by the quan-
tum theory of 1/f noise for any electrically charged
carriers.

III. ELEMENTARY SCHEME OF THE QUANTUM THEORY
OF 1/f NOISE

The presence of electric 1/f noise in a large
number of systems which contain a small number
of carriers, including the most simple systems
carrying a current, suggests a fundamental, univ-
ersal and simple mechanism. This does not ex-
clude the presence of accidental 1/f spectra super-
posed on the universal phenomenon.

The simplest system which carries a current I
is a beam of free electrons, or other charged par-
ticles, moving uniformly in vacuum, in stationary
conditions. Any beam originates in some process
which can always be described as a form of scat-
tering. Consider, for example, a beam of elec-
trons which emerges from scattering on a fixed
charge Ze, as in Rutherford scattering (Fig. 1).
The beam is defined by the diaphragm D. The elec-
tric current carried by this beam can be measured,
e.g. , by catching the beam with an electrode lead-
ing to an amplifier, or directly to a galvanometer.
%e are tempted to say that in stationary conditions
the current should be given by a constantplus small
shot noise. The purpose of the subsequent analysis
is to prove that, according to basic electrodynam-
ics and quantum mechanics, the current carried
by the beam should present I/f noise in addition to
the shot noise mentioned above.

It is well known that the beam of electrons will
emit bremsstrahlung in the scattering process.
The power spectrum W(f) of the emitted radiation
is independent of frequency (W= const} at low fre-
quencies (low compared to the reciprocal duration
of the scattering process of one particle) and de-
creases to zero at an upper frequency limit f
which is approximated by E/h, where E is the kin-
etic energy of the electrons. This decrease is

Zex rrr
aha ~ e+

I vR

Pj

FIG. 1. Scattering on a fixed point charge &e.
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schematized in Fig. 2 by a step function. Conse-
quently, the rate of photon emission per unit fre-
quency interval is N(f) =W/hf, i.e., proportional to
1/f. Here h is Planck's constant and hf =e is the
energy loss of some electron in the —otherwise
elastic —scattering process. We conclude that the
fraction of electrons scattered with energy loss e

is proportional to I/e, i.e. , the relative squared
matrix element for scattering with energy loss e

's lb. (~) I
-1/'

If the incoming beam of electrons is described
by a wave function exp[(i/K)(p, r E—f)], the scat-
tered beam will contain a large nonbremsstrahlung
part of amplitude a, and an (incoherent) mixture of
waves of amplitude abT(e} with bremsstrahlung en-
ergy loss e ranging from some resolution threshold
6p to an upper limit A ~ E, of the order of the kine-
tic energy E of the electrons

er =eeP[(t/It}(P e- dt)] a(1 ef te(e)e"' "de},
6p

ff
J

& ', T. (3.1)-

Here bT(e) = ~bT(e)
~

e'"d has a random phase y, which
implies incoherence of all bremsstrahlung parts.
This incoherence may be related to the undeter-
mined character of the time of the photon. emis-
sion. The threshold ep is given by the lowest fre-
quency fo measured (eo

—hfo). The subscript T in-
dicates that Eq. (3.1) represents only a sample of
duration T &f 0' of the Schrodinger field of the scat-
tered wave. Since we are dealing with a stationary
process, the Fourier transform bT(e} can be defined

f)=-W

hf

W(t) actual

w(f)

fm f
FIG. 2. Spectral density of bremsstrahlung in power

W and photon emission rate N.

only for a finite duration sample, and ~bT(e}
~

2- T
for large values of T. We shall give a more detail-
ed formulation in a second paper, in terms of
Fourier series rather than integrals.

In Eq. (3.1) the frequency-shifted components
present in the integral interfere with the elastic
term, yielding beats of frequency e/h, i.e., with
the same frequency as the emitted photons which
have caused the slight bremsstrahlung energy loss
e initially. The amplitude of the electric current
oscillations given by these beats at the frequency
f=e/h is linear both in the nonbremsstrahlung amp-
litude a and in abT(e}, and is therefore proportional
to e ' . This means that the power spec trum of
the current fluctuations will be proportional to
~a bT(e) ~, i.e. , to I/e, or 1/f. We conclude that
the electric current carried by the scattered beam
of electrons exhibits fluctuations in time at any
point, and that the power spectral density of these
fluctuations is proportional to 1/f. This derivation
will now be formulated quantitatively.

IV ELEMENTARY DERIVATION OF THE I lf SPECTRUM

(4.1)

The particle density in the scattered Schrodinger field given by Eq, (3.1}is
2I' A h. ~A

lee I' = la I'I I + p
I
&e&a)

I eat(et/}tee )de+ p", (e)pe(e')e'"""""d«t')
6p 6p 6p

The second term in large parentheses describes the particle density beats.
Before we continue the derivation of the fundamental 1/f noise spectrum, we average Eq. (4.1) over time

and let T —:
I' T/2 f'A I'A b+( )b ( e) T/2

&lal ), -=iim —
J letl dt= la] i+JI J( iim " e'"' '" '

t d)de. de
-T/2 6p 6 T -+ l2p

(4.2)

The time integral yields 2vkb(e —e') for T- ~, and
with the relative scattering rate density ~b(e)

~

with
energy loss e defiried by

w'here "relative" refers to the nonbremsstrahlung
scattering rate, we obtain

Iim fbT(e) J'=- Jb(e) ('- I/~, (4.3) & Ipl') =lal'(i+ I I & )l'dt} ape
6p

(4.4)
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With

br (e) = (T/2wh)'/'b(e),

(e""4 "4') =(2''/T)br(e- e'), (4.6)

where 6& becomes a 5 function for T —~, we ob-
tain

lim(b (e)b (e'))= Ib(e) I'5(e-e'). (4.7)

Substitution into Eq. (4.5) yields again Eq. (4.4),
without the subscript. We shall use this ensemble
(phase) average from now on, in order to define
expectation values. The expectation value of the

Note that the random phases y, drop out in the cal-
culation of the time average. The latter coincides
with the expectation value calculated for the statis-
tical ensemble, i.e. , obtained by averaging over
the phases y, present in br(e) —=

I
br(e)

I

e'",
Ch

f h.

&IPI'&= l. l' l+
J

&b'„&k)b„&a)&etc tt -dada)
Sp

(4.5)

current density j = (I/2mi)(4*%4 —@Vbi*), corre-
sponding to Eq. (4.4), is obtained by multiplying
Eqs. (4.2}, (4.4), and (4.5) by p/m:

&i&=(—' IIela() 4jl Ib(a) lt«).
Sp

(4.8)

aside the second set of large parentheses, we dis-
tinguish the nonbremsstrahlung part (1) and the
bremsstrahlung scattering part. The constant Ia I

in front will contain three-factors, proportional to
the incoming current density, to the total (Ruther-
ford) scattering cross section into the direction
considered, and to the inverse of the expression in
the second set of large parentheses, respectively.
The latter factor is required for normation (unit-
arity). We also realize that the total scattering
cross section will contain nonbremsstrahlung and
bremsstrahlung components proportional to the
terms in large parentheses in Eq. (4.8).

We continue the derivation of the 1/f spectrum
now by computing the autocorrelation function for
the probability density from Eq. (4.1),

I &bl,'I bl,
'

& lel'(t+„„=J" &4 (a)bt(a )»P(t(" k&t/X+ta t/X-I+b ( )b ~ ( k) xga(t& sa')tk/4 —ta' /XI&da tda

+ (br(e)br(e')exp[i(E —f)(t+7)jh]+ br(e)bz(e')exp[i(E —E )f/8]) dt ck '

1

+
J (be(k)be(a &4t'(a )be(a )')axe["t(a-a'"+'4" —a" )t/It+a(a"' —a")t/Il]dada'dk"da"').

(4.9}

With the help of Eqs. (4.6) and (4.7} we obtain

( I
+

I

2
I
+ 12.,) =

I
I'

I
1 + 2

Sp

~A pA. pA

lb(c)l I)+cps(aa/lt)lda+J)
J

II'(a)l lb(a )I'(l +a'""""Id'kda'). (4.(O)
Sp Sp

If the particle concentration fluctuation is defined by 5
I

&I'
I

=
I

&I
I

—(I bl
I ), its autocorrelation function will

be, according to Eq. (4.4),

=blois f lb(a)I"»("/x)«+ lel' f f lb&a&l' lb(k')I's'"""'"««'
Sp 0 0

(4.11)

For the autocorrelation function of fluctuations in the particle current density we obtain by multiplication
with P /m'

h. |«A j h. -

(bj (t)bj (t 4 t)& =4 — Ie
I I

b(a) I'cos(aa/ll)da+ Ib(a) I I
b(a ')I cos(a —a ') /Ifdadk ')'a

m Sp sO
"

sO

A

Ia I' Ib(e} I'cos(e7 jff)d~,
m

(4.12)
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where the term in b (c) has been neglected as a
"noise of noise" term which will be shown to be
very small. According to the Wiener-Khintchine
theorem, the autocorrelation function is the Four-
ier transform of the spectral density of the fluctua-
tions. Therefore, Eq. (4.12} shows that the spec-
tral density of the probability current density fluc-
tuations is

S,(f) =2h@/m)' (a ('
~
b(~) ~', e, & ~ =hf & A. (4.13)

Since we know that the squared matrix element
~b(e}

~

is inversely proportional to e, the spectrum
obtained is a 1/f spectrum.

Equation (4.13}also expresses tbe fact that the
fluctuations of the electric current density exhibit
a 1/f spectrum. The 1/f spectrum will be present
also in the total particle current carried by the
scattered beam. This means that in fact the scat
tering cross section fluctuates saith the same 1/f
sPectrum. This 1/f fluctuation is neither a, thermal
equilibrium process nor a nonequilibrium process,
but a fundamental quantum-mechanical one-elec-
tron process such as, e.g. , "scattering, " or "re-
combination. "

Any cross section involving charged
particles will exhibit this fundamental fluctuation,
not only scattering cross sections included in the
definition of the electrical resistance, but also,
e.g. , surface (or bulk) recombination cross sec-
tions for carriers in solids. Although it is a one-
particle effect, the 1/f fluctuation of cross sections
is statistical in character and is similar to the dif-

fraction of matter waves: It takes many particles
to observe the diffraction pattern or the 1/f spec-
trum.

V. BREMSSTRAHLUNG AND 1/f NOISE

(5.2)

where
2(hjf}2

~
&v

3% c
Substitution of Eq. (5.2) or (5.1) into Eq. (4.13)

yields

(5 3)

S&(f) =2Q/m) ~a
~

nA/f, eo/h &f&A/h. (5.4)

The spectral density of the relative fluctuations is,
according to Eq. (4.8),

I

The relative bremsstrahlung rate ~b(e)
~

can be
derived from simple classical considerations. The
power P radiated by an accelerated charge e is P
= (2e'/3c')v . The acceleration v =Avb(t) has a
Fourier transform v&

——~v, where 4v is the veloc-
ity change in the scattering process. Consequent-
ly, the one-sided spectral energy density 4e ~v~ ~ /
3c' can be written so(f) =4e (&v) /3c3, and does not
depend on f. Tbe relative scattering rate density
with energy loss e, ~b(e} j, is obtained by dividing
~(f}by the energy of a photon e =hf:

4 '(A )' e' 2(Ajf)'
3c 2vhf hc 3v f

4e2(hv}' nA
3c Ac

Siol2(f) (~ @~ ) —=Sy(f)(j ) =—S,(f)(o) =2tl +aA ln(A/eo}l oA jf= 2nA jf (5 5)

the same for current density fluctuations, or cross
sections o, as it is for probability density fluctua-
tions. The last form in Eq. (5.5) is a very good ap-
proximation, since nA is small: nA & 8n /3v
= (161) '. This is also why the "noise of noise" is
negligible in Eq. (4.12). If s were tbe transversal
coherence area and S the cross section of the
beam, we would expect tbe relative 1/f noise in
the total current to be N&

—S/s times smaller than
the result obtained in Eq. (5.5), since the variances
of the independent contributions would be additive.
Also, if l is the coherence length and I =N2l a
length along the beam over which we average the
current fluctuations, the total number of carriers
in the sample considered is N =N&N2 I.S/ls, since-
the incoming particles are Poisson distributed once
they were described by a exp[i(p r Et)/5] incom-ing
wave. Averaging over L/l =N, independent con- .

tributions introduces a factor N2 into the denomin-

ator. We obtain this way

S,(f) =2 „-&»'. (5.6)

Notice that for
~
&P ~' = ~4vjc

~
=$ one obtains 2nA

= 2&&10, i.e. , the value of Hooge's constant. In
general, lower values of nA will be obtained. Qne
will have to replace c by the speed of light in the
medium considered if the current is not a beam in
vacuum. This will lead to larger nA values in
metals than in semiconductors. Furthermore, the
average velocity change bjf in the expression of A
will be much larger for lattice (mainly umklapp)
scattering than impurity scattering. 1/f noise in
condensed matter will be treated in a later paper
of this series.

In the derivation of Eqs. (5.1) and (5.2), we have
identified the relative energy-loss spectrum of the
electrons with the photon number spectrum. By in-
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eluding infrared radiative corrections, we shall
see in the next paper that actually the relative en-
ergy loss spectrum ~p, ~2e

' =(e/e0)"" ~b, ~2 is slight-
ly smaller than the photon number spectrum, due
to the possibility of multiple photon emission. Al-
though this difference is negligible for practical
purposes due to the smallness of aA, it provides
for a finite, physically meaningful, integral of the
resulting 1/f noise spectrum. The reason the dif-
ference is small is that the probability of additional
photon emission into the interval df is small and
given by txAf 'df.

In the derivation of the 1/f spectrum, we have
considered the outgoing beam of electrons as our
system, described by the mixture in Eq. (3.1)~ The
electromagnetic field was not included. The sys-
tem thus defined is open, i.e., energy was lost
during the scattering process to the electromag-
netic field by bremsstrahlung. If the electromag-
netic field is included in the system as part of the
final state, the latter becomes again a pure state
rather than a mixture, with the only time depend-
ence expressed by the e" ""factor present in the
incoming wave already. However, in the case of
any real 1/f noise measurement of the beam, the
emitted bremsstrahlung has left the system, or
has been absorbed by the shielding. Therefore, we
have to consider the system open, even if the mea-
surement proceeds during the time in which the
beam is scattered. " This approach was also used
in the previously published form of the theory, '~ in
which creation and annihilation operators were
used. Both formulations are equivalent. Philoso-
phically, the openness of the system, or the inter-
action of the system with the rest of the world, can
thus be considered the cause of 1/f noise. This
view has also been expressed by Gagnepain and
Uebersfeld. ' Furthermore, an evaluation'~ of the
vector potential term in the expression of the cur-
rent density 4*A+, where A is the vector potential
of the emitted photons, shows that this term is
negligible.

The small momentum losses P =e/v of the elec-
trons required by energy conservation in the emis-
sion process have been neglected in the present
elementary derivation, but have been considered
earlier. "'~ They can be taken into account by re-
placing r with 8-=7'-x/v in Eqs. (4.11) and (4.12),
where x is a displacement in space along the scat-
tered beam. This variation in space is slow at the
low frequencies characteristic to I/f noise. At
higher frequencies, all the way to A= X/2 the vari-
ation in space (I/O distribution spectrum} becomes
important' and is just what we expect from scat-
tering cross-section fluctuations. Equations (4.13}
and (5.4}-(5.6) can therefore be viewed also as
wave-vector spectra. The presence of the momen-

turn corrections hp =e/v in our expressions'~ does
not mean that energy conservation holds in the sys-
tem considered, i.e., that the system of the elec-
tron beam is not open. Although the system de-
scribed is open, energy conservation in the global
system was used in order to determine the small
momentum losses present in the subsystem de-
scribed. Note also that the photon absorption part
present in a previous description'~ has to be drop-
ped, as we are going to prove in a subsequent paper
that the presence of a thermal equilibrium radiation
background has no influence on the 1/f noise.

VI. DISCUSSION AND COMPARISON WITH

THE EXPERIMENT

The elementary derivation of I/f noise in an
electron beam is in fact applicable to any beam of
charged particles. Indeed, the spin, or any prop-
erty of the electrons other than their charge, is ir-
relevant. From this point of view 1/f noise is a
semiclassic effect. Its quantum character is de-
termined by the necessity of a description of the
beam in terms of de Broglie waves and by the pre-
sence of the fine-structure constant 0.'.

The following three questions are raised by the
derivation'.

(1) How are the bremsstrahlung spectrum, the
corresponding energy-loss spectrum of the cur-
rent carriers, and the obtained current noise spec-
trum affected by the presence of the thermal radia-
tion background'P

(2} How can the long-range correlations between
the particles, obtained in the present derivation,
survive when the actual case of a beam of parti-
cles, with a finite coherence length, is consider-
ed?

(3} How is the current noise in a closed electric
circuit containing a noisy element (semiconductor,
vacuum tube, etc.) related to the noise present in a
beam in vacuum?

The first question is natural if we think of the
large number N =AT/hf» 1 of photons present in a
field mode frequency f, and of the corresponding
large induced bremsstrahlung and absorption (in-
verse bremsstrahlung) contributions. Indeed, the
average number of photons emitted by an electron
per unit frequency interval is now (aA/f)(1+AT/hf)
= @AN'T/hf =number of photons absorbed. One is
led to expect therefore a 1/f noise proportional
to the radiation temperature T, which may event-
ually be set equal to 3 K at sufficiently low fre-
quencies, independent of laboratory conditions.
This T/f guess is wrong, however, since this
time the energy-loss distribution of the carriers
turns out to be quite different from the photon
number spectrum: The energy-loss distribution is
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constant ' (uniform} for -hT & e & hT rather than
-T/f . To yield this result, the theory of infrared
radiative corrections mas extended to the case in
which a thermal radiation background is present
and will be presented in a subsequent paper. On
the basis of the uniform energy-loss distribution at
T 4 0 one is tempted to expect white noise rather
than 1/f. . However, the exact solution of the infra-
red problem, , in terms of a convolution, proves the
statistical independence of spontaneous and stimu-
lated processes, alloms to factorize the Schroding-
er field of the outgoing particles with respect to
their energy losses, and finally, the same 1/f noise
as for T =0 emerges, ' as will be shown in a sub-
sequent paper. The observed 1/f noise will be the
same as the noise one would expect if the induced
energy gains and losses would compensate each
other exactly for each carrier. The compensation
is real and can be viewed as a consequence of the
fact that the number of induced photon transitions
per scattered particle is large and the relative
number fluctuations are small.

The second question is based on the fact, that any
real beam of particles is described by a mixture of
wave packets of finite length in space and time (co-
herence length and time). If a mixture of wave
packets incident with a Poisson distribution is
scattered, all plane waves which form the packet
will split into a nonbremsstrahlung component and
a small bremsstrahlung part. When ~4

~
and ] are

calculated, the 1/f part factors out, "and the ar-
bitrary phases of the bremsstrahlung parts drop
out, as we have seen in Sec. IV. The Poisson dis-
tribution of the incoming wave packets corresponds
to a constant probability density in space and time
for the centers of incoming wave packets. The fac-
tored 1/f part yields 1/f noise in the same way as
before. The essential fact is the presence of the
same type of component plane waves in all wave
packets, i.e., with the same relative phase shifts
y, of the bremsstrahlung part. In the same time,
the plane waves used in different mave packets are
completely incoherent, even for the same wave
vector, but the phases drop out of the noise calcu-
lation, and are irrelevant. This calculation is
planned to be presented in a subsequent paper, a-
long with a density-matrix formulation of the theo-
ry,

The third question is related to the second. In-
deed, the current through a bad contact, or noisy
sample, can be conceived as a sequence of inco-
herent wave packets. The new elements are the
finite time each wave packet is in stationary trans-
lational motion, and the fact that repeated mea-
surements may be performed on the same quantum
object. The first new element can be treated by
using the concept of coherent waves, ' describing

the average motion of the carriers in the multiple
scattering process. This concept is related to the
definition of the index of refraction. The second
element requires a treatment which takes into ac-
count the evolution of the wave function between
tmo consecutive measurements on the same sys-
tem. This treatment has been given 3 so far only
in the (equivalent} formulation in terms of photon
annihilation and creation operators, but will be
presented in a different form in another paper
(second-order 1/f noise43).

An important experimental characteristic of 1/f
noise, the Gaussian amplitude distribution of 1/f
noise, has recently been derived" without the use
of the creation and annihilation operators present
in an earlier derivation. " I/f noise is similar to
diffraction. The most important experimental
verifications other than spectrum and amplitude
distribution are as follows:

(a) The presence of 1/f noise both in the (sur-
face"- or volume"-) recombination speed and in
the resistance. The theory predicts 1/f noise in both
the recombination and scattering cross sections,
whether located on the surface, or in the volume,
independent of the scattering agent (phonons or im-
purities}. It also predicts 1/f noise in the ionic
scattering cross section in electrolytes. In gener-
al, the 1/f noise will be in the current-determining
cross section, i.e., in the kinetic coefficient limit-
ing the current in the given circuit.

(b} The theory predicts a fundamental fluctuation
of scattering cross sections, i.e., of the collision
time (frequency) and therefore of the mobility. Ex-
perimentally, it is also apparent that the mobility
fluctuations cause the 1/f resistance fluctuations.

(c) The fundamental scattering cross section,
mobility, and resistance 1/f fluctuations are nei
ther an equilibrium process nor a nonequilibrium
process, but a fundamental one —such as, e.g. ,
scattering. They mill be present both if nonequil-
ibrium currents or thermal equilibrium currents
are used to test their existence. Therefore, this
theory predicts 1/f fluctuations of the level of Ny-
quist noise of the same relative magnitude as ob-
served for dc 1/f noise, with no "available power"
level fluctuations. This is also the experimental
fact 5 as was mentioned in Sec. II. This equality
of relative Nyquist level fluctuations and dc 1/f
noise distinguishes 1/f noise from the bolometer
effect always present in small samples, with a
steeper spectrum which flattens out at sufficiently
low frequency. Indeed, in the bolometer effect the
relative Nyquist level fluctuations exceed the rela-
tive dc current noise due to the available power
fluctuations.

(d) On the basis of the quantum theory of 1/f
noise, by simply associating the fluctuations with
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the kinetic coefficient determining entropy genera-
tion in the osci.llant system, we can derive the em-
pirical Q law of Gagnepain and Uebersfeld, 'Dwhich

relates the flicker of frequency of quartz oscilla-
tors to their total quality factor Q. This derivation
will be reported in detail elsewhere. ~

. (e) Owing to the proportionality [Eq. (5.3)] with
an average value of nA = (n/3v}4P2 sin'-,' 8, where 8
is the scattering angle, the theory predicts a very
low I/f noise level for impurity scattering compar-
ed to lattice scattering. Indeed, this resistivity
arises from many small-angle scattering process-
es with large impact parameters in the Coulomb
field of the scattering impurity ions, while phonons
cause large-angle scattering, particularly in um-
klapp processes. Scattering from neutral impurit-
ies or lattice defects should yield intermediate 1/f
noise, closer to the case of lattice scattering. If,
therefore, the fluctuations in the mobility p, &

de-
fined by impurity sca, ttering are neglected in the
approximate relation p,

"' = p. &'+ p, &,'«, one obtains
((5p ) )f = (p/p /gpss) (('6p /gag) )f in accord with recent
experiments. The usual mechanism at room tem-
perature is lattice scattering in metals and semi-
conductors. Finally, the theory is consistent with
large nA, and large I/f noise when hopping is the
conduction mechanism, due to the large velocity
changes 4P.

(f) Although the predicted I/f noise for a given
scattering mechanism does not show substantial
temperature dependence, a strong dependence is
expected in the temperature region in which a
transition to a different type of scattering occurs.
This qualitatively explains the temperature depend-
ence observed in thin films and in inversion lay-
ers; a similar temperature dependence should be
present in manganin, and may help reconcile ap-
parently contradictory measurements.

(g) It is interesting to note that the fundamental
I/f fluctuation of the elementary cross sections
also entails 1/f fluctuation in the concentration of
particles which have been scattered (or recombined,
etc.). This canbe seen in Eqs. (4.11)and (5.5). In
general, the cross-section fluctuations will carry
over inthe kinetic coefficients (mobility, surface and
bulk recombination speed, etc.), while the concen-
tration fluctuations in the scattered waves of all
scattering centers will yield a noticeable resultant
concentration fluctuation only if relatively few,
noise-coherent, scatterers are present and if the
concentration is not subject to fast relaxation
(electrostatic in metals, recombinational in semi-
conductors, etc.}. The fundamental presence of
concentration fluctuations along with the cross-
section fluctuations, as seen in Eqs. (4.11) and
(5.5), allows us to understand the ambiguous re-
sult of some experiments trying to distinquish

mobility fluctuations from number fluctuations.
The quantum approach presented in this paper

reduces fundamental I/f noise to an infrared phe-
nomenon with contributions from all massless
quanta, or excitations, which couple to the current
carriers. If (nA}& are the coupling constants, oA
=Z~(oA), is the total I/f noise coefficient. Thus,
for electron-hole excitations at the Fermi surface
of metals, 8 '3 (oA}, „= ~M ~'No where No is the den-
sity of s-wave states at the Fermi level and M is
the S-wave matrix element of the (screened) Cou-
lomb potential of the entering (exiting) current car-
rier. Physically, every entering or exiting car-
rier will excite an infinite number of arbitrarily
weak electron-hole excitations. We can express
the Anderson exponent in terms of the S-wave
phase shift 5 at the Fermi energy: (oA), „=2&'/v'.
A calculated value for lithium4~ is 5=0.954, which
would yield a 1/f noise almost two orders of mag-
nitude too large. A large reduction of this effect
is to be expected due to the gradual character of
the actual entrance and exit process in which an
image charge is induced before the carrier reaches
the surface. Finally, electron-hole excitations
may be generated mainly from scattering, in which
the sudden change in the Fermi-liquid backflow
field around the carrier excites the electron-hole
pairs, i.e., the infrared-divergent response.

The anisotropy and lack of k-space inversion-
center symmetry present in indirect gap semicon-
ductors generates a nonvanishing coupling of the
carriers to transversal phonons. This coupling,
piezoelectric coupling in general, leads to matrix
elements for scattering with energy loss e to pho-
tons proportional to &

' ', just as photons, and
electron-hole excitation coupling, do. We obtain a
1/f contribution (nA),„in a similar way. In cases
other than the photons (nonelectromagnetic electric
I/f noise) we expect a lower frequency limit of the
I/f behavior at the lowest excitation frequency.
For electron-hole pairs and for phonons this is
higher than 1 Hz. However, for some "hydrody-
namic" modes and for quasidegenerated, or corre-
lated (rearrangement) states54~' lower frequencies
cannot be excluded. Experimentally, one would see
the I/f noise fall to a lower level as one goes down
in frequency, every time the lowest frequency of
a certain group of excitations is left behind. Such
structure is not uncommon in experimental I/f
plots. "

Only the electromagnetic and gravitonie parts are
known to be present in the limitf- 0. Screening is
very inefficient in eliminating the very low frequency
electromagnetic modes, due to the f '~2 dependence
of the skin depth. Only by enclosing the whole ex-
periment in a superconducting cavity would the low
end of the electromagnetic spectrum be affected.
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The essence of the theory presented here is the
interpretation of 1/f noise as an infrared phenome-
non arising form all "environment-forming" quanta
coupled to the current. These are the quanta which
yieM infrared- divergent response in the time do-
main. In the case of photons and gravitons, the
environment is the gauge-invariant field of the
universe (including the metric) and therefore the
lower frequency limit is zero. In the case of pho-
nons, the lattice geometry is at stake. Thus, 1/f
noise appears as the consequence of the long-range
interaction with the rest of the world, i.e., as a
contribution to shaping it. While the infrared di-
vergences are very familiar, the "bridge" to 1/f
noise, i.e. , the self-interference effect (first-or-
der 1/f noise4~) is new, and may transform 1/f
noise into a means to study infraquanta. This same
bridge can be presented in various different forms, .

oy using e.g. , the Kubo-Greenwood formula.

Another, slightly different, bridge is second order
1/f noise, 43

.to be discussed elsewhere .There may
be more bridges leading to electric 1/f noise.

In essence, the infrared divergence is a conse-
quence of the nonlinear coupling of field modes due
to the presence of matter. Various forms of non-
linear coupling, i.e., generalized turbulence, e'

are the more general cause of 1/f noise, e.g.,
in the flow of cars on expressways. "
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