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Multiple sidebands in cooperative resonance fluorescence: Exact semiclassical results
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We report on the semiclassical solution of the Bloch equations for cooperative resonance fluorescence with
collective damping. These equations are shown to be equivalent to the relevant master equation, in the limit
of large cooperation number and time scales faster than the one-atom lifetime (reciprocal Einstein A4
coefficient). The resulting spectrum is derived for a coherent driving field of arbitrary intensity. Additional
spectral peaks, as well as the central triplet, are predicted above threshold. A physical explanation of the

extra peaks is proposed.

1. INTRODUCTION

Since the first theoretical work of Newstein'
and of Mollow" on resonance fluorescence for
a strongly driven two-level atom, and the first
observation of the resulting triplet spectrum,®
a great deal of attention has been given to the
subject of resonance fluorescence.® In particular
it is now well-established that a threshold field
strength exists. Abovethisthreshold, an additional
pair of sidebands occurs in addition to the central
component, in the fluorescent radiation. The ratio
of the height of the central line to the sideband is
3:1, while the linewidth ratio is 1:1.5, in the
strong-field limit.

. In addition, cooperative atomic emission has
become a very interesting subject? since it was
first proposed by Dicke.® The question of the
behavior of a group of two-level atoms driven by
a resonant coherent laser field, with a collective
decay mechanism, has become of interest as it
combines both resonance fluorescence and co-
operative emission. It has become common to
describe this situation using the approximation
of N atoms coupled identically to a single radia-
tion mode. While this description does not include
physical features such as spatial fluctuations and
dipole-dipole interactions, it is nevertheless of
interest, as the simplest model of a group of
atoms with a cooperative decay.

This model of a coherently driven group of atoms
with a cooperative decay was discussed by Senitzky,
who obtained results valid in the case of either a
very low or a very-high-intensity driving field.®
More recently a calculation of the spectrum in the
high-intensity limit was obtained.” This calculation
gave a spectral triplet similar to the Mollow re-
sult, with additional sidebands in the fluorescent
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radiation at spacings equal to the Rabi frequency.
However, the extra sidebands were predicted to
vanish asymptotically in the strong-field limit.

The question of additional sidebands can be
directly related to the dressed-atom picture of
atomic fluorescence.® The number of different
possible transitions between dressed-atom levels
depends on the cooperation number J. Here J is
defined as in super-radiance,™® and is equal to
(N/2) for N atoms initially in the ground state.
For noninteracting atoms, there are (2J+1)
equally spaced energy levels of cooperation num-
ber J. Transitions between states of different J
do not occur within the cooperative decay Ham-
iltonian. Including the interaction with a field
mode splits the energy levels, so that up to (4J
+1) different possible transitions occur. Thus one
would expect a triplet with J=3 and a five-peak
spectrum with J=1.

Whether the extra sidebands would be observable
as distinct peaks depends on the transition matrix
elements, and it has been demonstrated'® that the
matrix elements have selection rules that give
vanishing extra sideband intensities in the intense-
driving-field limit. This prediction agrees with
Senitzky’s work and also with other results of
the dressed-atom picture.!* Thus it is clear that
unlike the case of the first sidebands, the high-
intensity limit is not the optimal limit for obser-
vation of extra sidebands.

The earliest numerical treatment of the model
with (J=1) was given by Agarwal ef al.’® This
work showed the existence of cooperative effects,
but no extra spectral peaks. More recent num-
erical work'? has shown that extra sidebands only
occur when there is a sufficiently large Rabi fre-
quency to resolve the extra sidebands from the
central triplet. This resolution problem is worse
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atlowdJ values. At|larger values of the cooperation
number there is a relatively larger spectral inten-
sity in the extra sidebands, for Rabi frequencies
well above threshold.

For low J values it also becomes theoretically
possible to solve the master equation exactly for
the spectrum. This was achieved by Agarwal
et al.,'® who obtained results for the case of J
=1, In this calculation, it was demonstrated that
the exact result (for J =1 only) does give extra
sidebands, with five spectral peaks at a large
enough, but not infinite, Rabi frequency.

In the case of superfluorescence, where a sim-
ilar master equation is used without the coherent
driving field, progress has been made by using
an atomic coherent-state representation.’* This
alows the superfluorescent master equation to be
transformed into an exact Fokker-Planck equa-
tion.’® In a recent paper,'® cooperative reso-
nance fluorescence was analyzed using a Fokker-
Planck equation method, by including a coherent
driving field in the Fokker-Planck equation treat-
ment that was developed originally for super-
fluorescence. It was demonstrated that a critical-
point transition occurs in the thermodynamic limit
of a large number of atoms (or a large cooperation
number). This is a nonequilibrium transition
which occurs at a threshold field strength. It
was also shown that above the nonequilibrium
critical point, a “dissipative structure” forms
similar to Lotka-Volterra cycles and the cyclic
structures that form in other nonequilibrium tran-
sitions.?

In the present paper, the atomic coherent-state
representation is used to calculate the fluorescent
spectrum in the limit of a large number of atoms.
For simplicity, the calculation is made with a
semiclassical factorization of the quantum op-
erators. This is an approximation which gives a
zero linewidth. It is shown to be valid for a large
number of atoms (large cooperation number) and
on time scales faster than the one-atom lifetime
(reciprocal Einstein A coefficient), which is a
similar physical regime to that in which super-
fluorescence is observed. Thus the semiclassical
result is a transient spectrum.

The spectral calculation is carried out with the
same factorization used previously,’ but is exact
relative to this factorization and holds for an
arbitrary input intensity. The results depend on
the initial state chosen (due to the neglect of quan-
tum fluctuations implicit in the factorization). For
atoms initially in the ground state, a particularly
simple result obtains. An optimal driving field
which maximizes the extra sidebands is cal-
culated, and this is predicted to occur for a finite
intensity relative to the oscillation threshold, not

in the intense-field limit.

II. MASTER EQUATION AND BLOCH EQUATIONS

The equations of motion used to describe the
system can be equally derived from the master
equation approach, or from the Heisenberg equa-
tions of motion. Here we choose to use the master
equation. We suppose there are N two-level atoms
equally coupled to the radiation field. This can be
either a point system (without dipole-dipole cou-
pling) of dimensions less than a wavelength, or an
extended system interacting with a single radia-
tion mode. In the extended system, the equations
are obtained by adiabatically eliminating the
radiation field for times ¢t « T, T, (Ref. 15) giving
a region of validity comparable to that of single-
pulse superfluorescence. (Just as in superfluo-
rescence, modifications would be expected due to
dipole-dipole interactions!® and geometric or
propagation effects.!2!)

The relevant interaction picture master equa-
tion in the dipole and rotating frame approxi-
mations is,'®!® for a coherent input at frequency
Wo»

aA A, A
= ~i4(Q)I*+J7, D)
+3UTPI =TT P-pJT). (1)
Here Q is the Rabi frequency, v is the Einstein
A coefficient, and J* are collective atomic raising
and lowering operators. These are defined as
Teafiraidn, @
J= [Ei ]?] ’
where f,"‘ are the usual atomic operators with com-
mutation relations

(7%, 7) =" ®)

The atomic coherent-state representation'® can
be utilized by defining

2J J 1/2
{J,z)=(1+zz*)"’z: z”[(2 )] |, J =v),

g @)
f)=fdzzP(z,'z*,t)|J,z)(J,z .

As Eq. (1) is invariant with respect to J2,
attention can be focused on states of fixed J when
the initial value of p is diagonal relative to Je.
Hence using standard operator techniques an
equivalent Fokker-Planck equation is derived:

9 9
T3 P(z,z*,t)= {-— —a—[%iﬂ(zz - 1)+y(J+1)z]+c.c.

+ X ——532 2%+ o +c.c
2 \dz 9z9z* o

xP(z,2*,1). (5)
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The diffusion matrix in this equation is non-
positive definite, so that solutions to the present
Fokker-Planck equation would only exist as gen-
eralized functions. However, the equation is
equivalent to a four-dimensional Fokker-Planck
equation with positive-definite diffusion,? and gen-
erates the following Tto stochastic differential
equation:

B fzi\_ (e} - 1)/2+ v(J + 1)z,
ot <z2> —iQz2 = 1)/2+y(J +1)z,

+\/7[zf 1\]L72 51(”\. 6)
1 2/ zz(t)/

Here ¢,, ¢, are delta-correlated Gaussian random
processes, and

CDEN=8,8(t=1), (z)=(e2). (7)

These equations have been analyzed in the limit
J ~ .18 and it is known that the quantum fluctuation
terms are only significant on time scales of order
t=vy™. Hence the approximation of neglecting the
quantum fluctuation terms is reasonable on time
scales less than y™. The threshold Rabi frequency
for oscillations to occur is (Jv); thus many Rabi
oscillations will occur for large J, even on this
time scale.

An alternate procedure would be to make a
semiclassical factorization, with resulting Bloch
equations:

(8/01)") = iQ(T%) + 7 (T)T?,
(8/80)¢7) =(8/a1)(J")*, (8)
(8/88)T%) = ~4i QT =T =y THT).
_These equations are invariant with respect to
(J)?, which allows them to be solved exactly for an
initial value of (J)*=J% For an initial ground
state, J:N/Z. A similar transformation can be
used to that in Eq. (4) to define a semiclassical,
nonfluctuating atomic coherent-state variable z:
G =272()/[1+2(8)z*(t)],
(N =dEN*, 9)
T =d[1 = 2()2*(1) |/ [1+ 2(D)2*(2) ]

The resulting complex differential equation is
(8/08)z=iUz2 = 1)/2+vJz. (10)

This is identical to Eq. (6) apart from terms of
order (1/J) that are relevant on time scales of
order ¥ or greater. Thus the semiclassical
factorization for large J is equivalent to neglecting
the quantum-fluctuation terms in Eq. (6).

The solutions depend on the value of the driving
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field relative to the threshold point ©,=yJ.
Defining the parameters

y=go/9’

x_{l(vz- VY2 (@<, (11)
1=y (2>9)
ri=iy+x,
one obtains the solution
z2(t) = [al)r™ =7 )/[alt) - 1],
a(t)=VC explQxt —i|Qx]|t,) .

Here (C,t,) define the initial state of the atomic
system at (£=0). The above equations are a com-
plete solution to the semiclassical equations for
arbitrary C, ¢, J and arbitrary driving field
Q.'%23 For Q<&, there is a rapid decay to the
global attractor at z=#", giving a (sech?) pulse*®
in the case =0 (for initial inversion). This can
be demonstrated, on noting that {QX is positive
so that a(¢) =~ as t—. Hence in Eq. (12), the
long-time limit is dominated by terms proportional
to a(f). For Q> the solutions behave like a
family of Lotka-Volterra cycles, with frequency
W=8x. The existence of a threshold was also
noted by Senitzky,® who obtained solutions valid
in the limits -0 or Q- o,

(12)

III. SPECTRAL CALCULATIONS

The behavior of the atomic system is very dif-
ferent above and below threshold. Below threshold,
both the semiclassical and quantum treatments
give similar results in the large-J limit, for in-
version, polarization, and spectrum, respectively:

Je )= - (1 - 2/)V2
2 /I)= /R0, (13)
S(w) = 8(w — wy)J* (R/9,)° .

These results are the leading terms in an asymp-
totic expansion in (1/J), and the factorization is
correct to leading order, below threshold.

In physical terms, the system behaves sim-
ilarly to a classical harmonic oscillator, with
all the atoms in phase. It must be recognized
that in an extended atomic system, the fluorescent
radiation would not be all in phase. The reason
for this is that the adiabatic elimination of the
radiation field means that only the high-intensity
“end-fire” mode has been included. Perpendi-
cular, low-intensity fluorescence from an ex-
tended medium would also occur, but is neglected
in the approximations leading to the J°-invariant
master equation.
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Above threshold, the semiclassical equations
have a set of cyclic solutions of the same fre-
quency. An analysis using the cyclic averaging
approach®® shows that for times long compared
to ¥y* the quantum fluctuations cause cycle phase
and amplitude diffusion.’® This results in a
steady -state distribution extending over the entire
complex z plane (which will be included in Sec.
IV). For shorter time scales, the spectrum de-
pends on the initial value of the cycle parameters.

Each cyclic solution is nonsinusoidal, and can
physically be represented in the rotating frame,
as a damped, driven “pendulum” solution. As
the damping is nonlinear in origin, the ¢ycles are
nonsinusoidal. The Fourier transform of the
semiclassical cyclic polarization has components
of all harmonics of the usual sideband frequencies,
giving rise to additional sidebands. As the semi-
classical equations hold asymptotically for J -,

J

Slw+wy)=(2/y?) [6(w) 11— v(Cx(r*=Cr)|? +’; G(w—nW)xz(

The auxiliary function v(C) equals [(1-C)?
+4Cx?]"Y/2 and the upper sign of (¢) is for n>0.

The most interesting case is that for an initial
ground state, where C=1 and the cycle passes
through the poles of the Bloch sphere. In this
case the expression simplifes to give the following
result:

S(w+wo)=(‘;—:> [5(w)(1_x)z
+ 2 6(w-nw)x? (.h’i)‘"‘] . (16)

o 1+x

Several features are of interest in this spec-
trum. Firstly, the central peak shows a decrease
in intensity as -, while the first pair of side-
bands increase to an asymptotic value, as noted
by Senitzky.” The next and succeeding pairs of
sidebands are zero both at threshold and in the
high-intensity limit, reaching a maximum inten-
sity at a finite driving field relative to &, as shown
in Fig. 1. The optimum driving field for the ob-
servation of a five peaked spectrum in the large
J limit is for a driving field above threshold, with
Q= (;_)1/2 2. )

It should be noted that quantum fluctuation cor-
rections of order (1/J) have the effect of causing
finite spectral widths in the peaks. It is possible
for relatively large peak widths to occur at low-J
values. The finite peak width effects are ofgreater
importance in the outer sidebands as these have
a much lower intensity relative to the central

the result is compatible with the dressed atom
picture of increasing numbers of “dressed” tran-
sitions in the large-J limit.

For adriving field 2>8,, above threshold, the
spectrum depends on C, the initial cycle pa-
rameter. To calculate the spectrum, the integra-
tion over ¢ is transformed to an integration over
the cycle path

S(w+wy)=, 6(w-nW)
2Jz {(z —-r"WC

o (L+z2z2¥) (z —7%)

2

X

n

] ar,(e)
(14)

Here (W=Qx) is defined as in Sec. III, and

dT,(2) isthetimedifferentialforthecycle C, where

dt,(z) =xdz /[mi(z — )@ = 77)]. The integrals can

be evaluated using Cauchy’s theorem as in the

Appendix:

[1”(c)(2x2+c-1)]c)"]' (15)

1zv(C)(2Cx*+1=C)

triplet. Infact it is clear from the dressed-
atom picture that for finite J values, there are
at most (4J+ 1) Lorentzian spectral components
of different frequencies. Sidebands of greater
detuning than N do not occur, owing to quantum
fluctuation effects, which are not included in a
semiclassical calculation.

The decrease in intensity of the central peak is
distinctly different from the one-atom spectral
result, in which the central peak is invariant for
Q -, However, this semiclassical result (which
was also obtained in the calculation of Senitzky”)
is essentially a transient result due to the initial

0.25

n=0

0.20

0415

010+

Q.05+

nmo
FIG. 1. Sideband intensity vs driving field in the semi-
classical factorization for an initial ground state (C=1).
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ground state. In the next section, it is shown

that on longer time scales, the inclusion of quan-
tum fluctuations results in a distribution over all
cycle parameters (C), which causes a steady-state
central-peak intensity that is comparable to the
one-atom result (apart from a scaling factor).

IV. ENSEMBLE AVERAGES

In the high-J limit, the steady-state distri-
bution function canbe readily calculated including
quantum fluctuations.'® The result in the atomic
coherert state representation is

=62(z —1’-) (Q<QO)’
PN [|z-7|*+@ -4 |z -7 |?|z =7

+|z=7 "1 (@>Q).

o an

Here y,7* are defined as previously.
The spectral calculation in the steady-state
limit is given by
1 ° LA
S@)= = Re [ ate ' (F* 00y, (18)
0

where!®

S 0) = ff(j*), P(z't|z0)

Sz * 9
X (2—2.—— P(z)d%z d?z' .
1+2z2*

9z
(19)
Here (J*),.=2Jz'/(1+ |2’ |?). In general as P(z)

is known, it is only necessary to evaluate the
propagator. As previously, the propagator is
evaluated without fluctuation terms, and for sim-
plicity the large-® limit is utilized for P(z):

. _1 /1 N 2dzx b
m%l.rr?-wp(z)_ T (1+zz*> (1 +22% E)P(z)
20 +1)z¥
= (W)P(Z) : (20)

Thus the only effect of the differential operator
in z is to change the J-dependent weighting fac-
tor.

As the propagator is evaluated to first order
in an expansion in (1/8), the deterministic result
from Sec. III is utilized. The integration over
P(z) is transformed to an integration over C, the
cycle parameter, where

+| 2
_|z= 1’_ @1)
Z2=-7
The cofresponding distribution is
P L 2 - 2~1-1
70 = (tan_l(y/x) ) (1400 - 4y,
limf(C)=[1+C |2 (22)

Q=

Spectral results in the steady state now cor-
respond to an integration of the spectrum for
each cyle over the relevant distribution function

lim S(w +wo) = i(i):—l) f [G(w) |1 - vOx W -Cr7) [2

T,Qf T~

n#0

2enf 1F0C)@2x2+C-1)Y'] dC
+ 3 6(w-nWh*C <1iv(c)(1-0+2c:c2))] ©@3)

(1+C2 -

Carrying out the integration in the appropriate limit, one obtains

lim S(w+wo)=g—§‘?—llf[a(w)(%}g)zy2+z 8(w _nw)( Ko )'"'] dc

T, Q)T (1+0)? (1+c)?
(O (26 |55, () aim]- (24)
= —r T + s w=3n Q ) 2lnl +1)!

The asymptotic ratio of peak areas (delta-function weights) is

2:1:2(Q,/Q)%: 0.

(25)

This ratio is identical to the usual ratio for the central triplet peak areas. However, there are additional
spectral components corresponding to the appearance of multiple sidebands in the spectrum. These addi-
tional components have a weight of (2,/9)*‘"!"*) for the nth pair of sidebands, and so vanish in the limit

of an intense driving field.
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This calculation gives an approximate stationary result, relative to the time development of Eq. (1). The
result includes the effects of quantum fluctuations on the steady-state atomic coherent-state distribution
function, in the large-J-value case. Thus the spectrum is not transient, in the sense that it does not
depend on the initial state except for the time-invariant value of {(J%. However, the peak widths have been
neglected in the high-intensity limit of > Jy, so that a zero-width approximation is used to calculate the
propagator P(z't' lzt). In this sense the calculation is for the total peak areas rather than the spectral line

shape.

V. SUMMARY

A calculation of the fluorescent spectrum of a
driven, collectively damped atomic system is
given in the semiclassical factorization. The
semiclassical result is shown to be valid on time
scales of order (t<7™) and with a large cooperation
number J. Additional sidebands occur in addition
to those of the central triplet. The Rabi frequency
which maximizes the intensity of the first pair of
additional sidebands is € = (£)*/?J for a coopera-
tion number J.

A simple physical model for the atomic polar-
ization vector is that of a nonuniformly damped
driven pendulum. This causes a nonsinusoidal
oscillation above threshold, so that additional
fluorescent sidebands occur. Similar types of
limit cycle behavior also occur in many other
nonequilibrium phase transitions.

In the high-intensity limit, the nonuniform
damping is small relative to the driving field, and
only a triplet spectrum remains, with intensity
proportional to J2, In this limit, it is shown that
the steady-state triplet peak areas have the same
relative size as in the one-atom case. However
the direct observation of the J%-invariant steady-
state spectrum would be difficult in an atomic
system due to J2-breaking effects that occur on
longer time scales. (In the calculation of Car-
michael and Walls,® J2 breaking is simulated by
an independent-atom approximation.Z®)

The observation of the multiple-peak high-inten-
sity transient spectrum reported here would be
of great interest in demonstrating atomic coop-
erativity in a driven atomic system.
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APPENDIX

The details of the calculation of the spectrum
involve an integral over a cycle path for the po-
larization. This calculation will be studied in
detail to illustrate how the spectral calculation
proceeds. Any observable (including the polar-
ization) involves a function O(z, z*), so that

©), = f 0(z, 2%)dr,(2). (A1)

Although this function is nonanalytic, the cycle
equation can be used to define z* in terms of z
and thus obtain a meromorphic function which can
be integrated by residues. The cycle equation is
simply obtained, for cycles of radius p, center

o:

z*=0*+p*(z - 8)?, (A2)
where
. 1+C
5:1,y +x(.i_—__a> N p2=(66* - 1)-

Hence we write the Volterra cycle integral in
the following form:

O(z, 6% +p?/(z - d))x dz

mi(z = r*)(z =77) (a3)

0, =

This clearly has poles at z2=7* and it is straight-

forward to verify that cycles with ¢ <1 enclose

7, while cycles with ¢ <1 enclose »". In fact it is

only necessary to make the calculation for

0<c<1, as the results for ¢ >1 are obtained using

the symmetry transformation (c ~1/c, z—~ —2z*).
The function O will usually have a pole structure,

which we now determine. In general, the de-

nominator of O has a factor of form

(1+22*%)=[(z - 6)(1 +26*) +2p*]/(z - &)

=6*(z2-€?)/(z = 0). (A4)

Here we define € =5/|58| and utilize the identity
(A2). It is now necessary to determine which if
any of the poles + € are included in the residue
theorem. This is straightforward, as the cycle is
a circle of radius p around the centerpoint 6. Thus
V|ve merely have to determine the distance

+€~0

|[te-5|=|8|F1. (A5)

Noting that |8] = (1+p?)*/2 the following relation
holds:
(Ja] +1)2>p2>(|8| - 1)2. (A6)

It therefore follows that the cycle encloses the
pole at € only. The cycles never enclose the —€
pole.
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The calculation for the polarization is obtained
on using Cauchy’s integral theorem

2z(z — 6)J dz
= (m)f 6*(z2 =€)z =)z =7") (A7)

2z(z-6)
Ve =r)z=-7")"

=2Jx D T

Res

The residue at z =7* is evaluated at first with the
following identities:

O = 8)=-2Cx/(1 =C),
(r*? - €®) =4iCxyr* /6*%(1 -C). (A8)

Hence the residue reduces to the following simple
result:

Res(*)=i/(2xy). (A9)

The residue at z =€ is evaluated in a similar
way with the following identities:

(€-08)= 77 (1= 8]),
(A10)
6% (e —7*)(e ~7")=2iy(1 - 8.
Hence once again there is a simple result
Res(e)=€¢/(2iy),
(a11)

(1-0)+x(1+c)/Gy) )
[T+C2+2067 -y ) -

The pendulum result is the situation where the
inversion goes through both the north and south
poles of the Bloch sphere. In this case we obtain
(e=c=1)

f* =id[9/Q, - (@2/9% - 1)/7]. (A12)

This solution displays a lot of the character ex-
pected above threshold, with a gradually decreasing
polarization as the driving field increases and the
system is close to the poles of the Bloch sphere
for longer times on the average.

The time-average results can be summarized as
follows, for inversion, polarization, and dis-
persion, respectively:

Ty, =0
T o= (Q/)1 -0 (COx2(1+0)],
Sy =00 x(1 =C).

All these results were obtained with a cycle pa-
rameter ¢ <1, However, the results are in-
variant under the transformation (C - 1/C,x = —x)
and therefore hold equally for C>1.

In the limit of &=, it is interesting to note
that for the central cycle (C=1) both the mean po-
larization and dispersion vanish. However, for
the cycles with C# 1, the dispersive term tends

Y= Jx(

(A13)
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to a finite value of (1 -C)/(1+C), whose sign de-
pends on the cycle parameter. This implies the
existence of a central spectral peak for those cy-
cles with C#1 in the limit of a large driving field.

The correlation function above threshold is of
interest as it determines the fluorescent spectrum.
A general expression for the spectrum is

S(w+w,) = lim (2 t)f fdt dt,et*tmd

te o

X(TH () I (2,) .
(A14)

This will be calculated semiclassically to give
a simple expression for the peak areas and fre-
quencies while neglecting quantum noise effects.
The system is cyclic of period 27T, so the spec-
trum will be a sum of delta functions in the semi-
classical decorrelation, where W=T""= Qx:

S(w+wy)= Zé(w nW)( 2T2>

2rT N N
X f f eVt (J (¢ NIt ) dt, dt, .
(o}

(A15)

Here the mean values cannot be steady-state val-
ues, but must be defined relative to a specified
initial state in order to determine a spectrum. In
particular it will be of interest to determine the
spectrum relative to the initial state 2/=N, C=1.
This corresponds to all the atoms initially in

the ground state which is likely to be the simplest
possible experiment. From Eq. (12)

ottt =to) _ ( 2=7" )”
VC(z =79
( ZX+r- \T
h fC—(z*+r’)) ’
Thus the spectrum corresponding to initial values

of ¢, J, t, can be obtained on transforming to
integration over z:

s(wwo):ana(w_nW),}c{ (1iJz (JE(Z -f-))n

22%*) (z =7%)

(A16)

xar @) (A17)

This integral is another Cauchy theorem appli-
cation. The path of integration is a cycle path
in the complex z plane. Therefore on integrating
we have a term corresponding to each pole inside
the path of integration. Define the relevant inte-
gral as follows:
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2Jxz(z — 6)
I, 0*(z% - €?)

I m)= G-

W€ (z —’r'))"‘

dz
TG -7)"

(A18)

Now for C <1the poles inside the path of inte-
gration are at z=€, z=7*. Hence the result de-
pends on the value of w as follows:

(i) m <0. In this case only the pole at z=¢ is to
be included, so one obtains

7€, m)= (Jex ) »((e —r‘)w/ﬁ)"‘.

(€=7*)

(ii) This case reduces to Eq. (Al1) for the polar-
ization:

J(C,0)=(J/y)(1 - €x). (A20)

(iii) » >0. In this integration we take advantage
of a theorem of integral calculus that states that
if a uniform function has a finite number of sin-
gularities then the sum of the residues (including
the one at infinity) is zero. In this case the residue
at infinity is zero, so the result is (minus the
residue at z = —€) because this residue is always
outside the cycle path:

J(c,m)= (J€x> ((E +r')w[C_>m.

iy (€ +7*)

In order to simplify the results, it is useful to
have the following identities:

le+r72=2[170(C)(@x?+C - 1)],
|exr*|2=2[1xv(C)(1 - C+2Cx?)].

(A19)

(a21)

(A22)

Hence we obtain

m<0

(szZC'")/ 1+0(C)(2+C = 1)
v J\A=w0)T-Cc+2c+))

(59) (e i) >

y
(A23)

|J(C’ m) |2=

In summary the spectrum is as follows, for C<1:

S (w+wp)= (‘—;;—) [G(w) [1-v@x@* -Cr)|?

+ Z 5(w —mwW)x%C™

m#0

17v(C)@2x%+c-1) \"
x<1iv(C)(1_C+zcxz)> ], (A24)

where the uppermost sign of (+) refers to m>0.
To clarify the steady-state calculations, we now

calculate the asymptotic form of the spectrum

for large €/Jy. In this case

v0- ig 1+ o)

[1=0@xr =Cr) |2~ |iy

c 15 0(Q)@2x2+C-1) (( yzc2 >“,

1200 -C+2Ccxd)|~

S (w+wy) =~ é(w)(%—fg)zyz

+§_5(w-nﬂ)(ayT2Cg)—2>l"l.

The above spectrum is the asymptotic one (for
Q- or y - 0) which is utilized in the steady-
state calculation, Eq. (24).

The spectrum for C>1 is related to the one for
<1 by the symmetry relation referred to pre-
viously; that is, the spectrum for C'=1/C is ob-

tained as follows:

S (w+wp) =S, (=w+w,). , (A26)

Both spectra are geometric progressions, with
one the mirror image of the other when reflected
about the central peak at w, In general it is also
clear that the fluorescence is asymmetric given

a value of C#1. This is essentially a transient
feature due to the particular initial value chosen.
In the true (quantum) steady state, there is a dis-
tribution over the cycle parameter which produces
a spectrum with both wings.

Of greatest interest is the semiclassical result
for C=1, which corresponds to an initial ground
state. In this case the following completely sym-
metric result is obtained:

Sy(w+wg) = (g—) [a(w)u —x)?

+Ea(w nW)x? (1 x)m'].

(A27)

The total power radiated is proportional to the
sum of the geometric series

Py (%/92)(1 - x)

o (JR/Q)¥1 - (A28)

In the strong-field limit, the spectrum to order
(1/92) is of form

n/l:lrr:}» Sy (w+wy) =J"’[6(w) (-Q—°> ’
DI -nQ)(-é) ]

n#0
(A29)

- (/)71

This agrees with the asymptotic result for
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n=+1,+2 obtained by Senitzky” noting that our
C=1 corresponds to his x=1.

The interesting feature of this limit is the
vanishing central peak and vanishing sidebands
for |n|>1. In reality the vanishing central peak
is due to neglect of quantum fluctuations: Even for
an initial ground state, the distribution in C will

HASSAN 22
broaden on a time scale of ¥™ due to spontaneous
emission,’® resulting in a final steady state with

a nonVanishing central peak in the strong-field
limit. In fact, the above result corresponds to a
classical sinusoidal oscillator in the rotating
frame, with frequency 2, in the strong-field
limit.
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