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Double-quantum NMR is a useful way to obtain spectra of quadrupolar nuclei ('D, "N, ...) in solids. This
allows measurements of the chemical shifts for these nuclear spins. The theory of Hartmann-Hahn cross
polarization between I = 1/2 and such S = 1 spins is discussed. Particular attention is drawn to the cross
polarization of the double-quantum transition. The thermodynamics and the dynamics of the process are
evoked in detail using a fictitious spin-1/2 formalism. The spin S = 1 Hamiltonian can always be factored
into two commuting parts (independent thermodynamic reservoirs), one of which behaves as a fictitious spin
1/2 which is cross polarized with the I = 1/2 spins. Modified Hartmann-Hahn conditions emerge from the
theory, and the dependence of cross-polarization times Trs on rf intensity and frequency for spin locking and
adiabatic demagnetization in the rotating-frame experiments are calculated. Measurements on the 'H-'D
double resonance in dilute solid benzene-d, are reported, verifying the predictions and indicating that cross
polarization provides a sensitive means of detecting the 'D double-quantum transition, Values are reported
for the thermodynamic parameters and cross-polarization times as a consequence. Three possible versions of
double-resonance detection of double-quantum spectra are possible —direct detection of the cross-polarized
double-quantum decay, indirect detection of the frequency spectrum following Hartmann and Hahn, and
indirect detection of the free-induction decay following Mansfield and Grannell.

I. INTRODUCTION

Recently it was demonstrated that it is possible
to obtain chemical shift spectra of deuterium nu-
clei in solids from novel NMR techniques. ' ' In
these experiments the coherence of the "forbid-
den" (dM= 2) double-quantum transitions of these
spins (1= 1) was excited and its time-dependent
behavior was monitored. ' The spectral lines of
the double-quantum transitions, which are obtained
by Fourier transformation of the measured time
dependence of the double-quantum coherence, are
not shifted by the quadrupole interaction. This is
unlike the spectral lines of the allowed (nM = l)
transitions, which are split (and in powders there-
fore broadenend) due to this interaction. The
small deuterium shifts, due to the chemical shield-
ing in single crystals and powder samples, were
obtained for the first time and compared with pro-
ton chemical shift data. ' ' This technique makes it
attractive to replace hydrogen atoms in solids par-
tially by deuterium and to perform high-resolution
NMR spectroscopy on the double-quantum transi-
tions of the deuterium spins. ' ' The spectral line-
widths, due to dipole-dipole interactions between
deuterium nuclei, can be made very narrow by
sufficient dilution of the deuterium spins together
with proton spin decoupling.

This rather simple approach forms a comple-
mentary method to the multiple-pulse techniques
for the observation of high-resolution proton NMR
in solids. " However, because of the very low
abundance of the deuterium atoms in the solid, the

measured signal intensities are very small and we
would like to be able to apply cross-polarization
techniques for signal enhancement. " " In these
experiments nuclear polarization is transferred
between the abundant spin system and the rare nu-
clei in the sample. The polarization of the transi-
tions of the rare spins can result in an enhance-
ment of their NMR signal intensities. Alternative-
ly, the free-induction decay of the 8 spins is mon-
itored by observing the I spins using cross polar-
ization. These methods are well understood and
widely used for abundant spins (protons) and rare
spins (like "C, "N, and "Si) where both spin sys-
tems have a spin value I = 2. In our ease it would
be most attractive to cross polarize or detect the
double-quantum coherence of the deuterium spins
with $= 1 directly from the abundant protons.
This would provide high-sensitivity double-quan-
tum spectra directly. In this paper we discuss
such NMR cross-polarization experiments between
abundant nuclei with spin I =—,

' and rare nuclei with
S= 1. %'e show experimentally and theoretically
that it is indeed possible to polarize the double-
quantum transition of deuterium from protons in a
solid.

In Sec. II we review briefly the spin thermody-
namics of cross-polarization experiments for two
spin I = ,' systems (e.g. , "—C-'H), in order to form
a basis for the new material in this paper. In Sec.
III the theory of spin thermodynamics is extended
to a spin S= 1, I = ~ system. The fictitious spin-
2 operators'" "used to describe single- and
double-quantum coherences in the S-spin system
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compactly, are introduced and used for the de-
scription of the thermodynamics of this spin sys-
tem. The Hartmann-Hahn conditions for different
cross-polarization experiments are derived. In
Sec. IV the spin dynamics of the cross-polariza-
tion process is discussed. The theory of spin dy-
namics for spin S=p, I=—,

' systems" ' "is ex-
tended to systems with I =-,' and S= 1. The relax-
ation phenomena during cross polarization of the
single- and double-quantum transitions of the S-
spin systems are described. In Sec. V experimen-
tal results are presented. These results are com-
pared with the theoretical derivations in Secs. III
and IV. The modified Hartmann-Hahn conditions
for the single- and double-quantum double-reso-
nance experiments are verified. The cross-po-
larization time in deuterated benzene in the solid
state is measured and the ratio of the heat capaci-
ties of the I spins and the S spins in the solid is
obtained from the experiments and compared with
the theoretical value.

II. SPIN THERMODYNAMICS WITH I-
2 AND

g 1

In this section we review briefly the spin ther-
modynamics of the cross-polarization process be-
tween high-abundance spins I = ~ and low-abun-
dance spins S= —,

' in the solid. " The presentation
of the theory of cross polarization in this section
serves as a reminder of notation and equations re-
quired for the remainder of this paper. The Ham-
iltonian in the laboratory frame of the spin system
under consideration, in an external magnetic field
Ho and w ith appl ied rf irrad iation fields at the Lar-
mor frequencies, can be represented by

Hrs=gau(l, lq —3I (I,)),

a,, = y', kr, ,'I', (cos8„) (2.3)

are the secular parts of the magnetic dipole-dipole
interactions with respect to the Zeeman interaction
between the high-abundant I spins and the secular
part of the dipole-dipole interaction between the I
spins and the low-abundant S spins, respectively.
The interaction between the S spins themselves is
ignored because of their low abundance. The total
spin system can be described by the spin density
matrix p and in thermal equilibrium

p„=Z ' exp [-p~(-(u„I, —(u„s,)], (2.4)

U, = exp[-it(~„I, + ~,~S,)J,
the density matrix becomes

p = Uo pU()

and the Hamiltonian

H* = -wj ~I„—w, sS„+Hqq+ H~s

Hi~+ Hs + Has

with

(2.5)

(2.6)

(2."t)

(2.8)

where we use the high-temperature approxima-
tion

Z= Tr(ex p[-p~(-+, ~I, —~O~S,)])=Tr(1),
and where P~= 1lkT~, with T~ the laboratory tem-
perature.

In the rotating frame defined by the transforma-
tion operator

H= -(0 I —(d sS — Qp I„cos~ g

2~j s Sg cos Os g+ H~~+ H~s

with

s
S,=QS...

(2.1). The ~ signs for the notation of operators in the ro-
tating frame are dropped from now on, because
all following equations and discussions apply to
this frame.

With the spin temperature hypothesis the gen-
eral form of the density matrix in the rotating
frame is

N

I~=glq, , P=x, y, &. p= Z '(1 —P~H~ —P~ H~), (2.9)

Hss = 2 Sj.I.js
bq = 2yqy~kr( P2(cos8) )-

(2.2)

Os=ysHO d ~os =ysHO are the Larmor fre-
quencies of the I and S spins, respectively. yz
and ys are the magnetogyric ratios of the I and S
spins and 2~» and 2~» are the rf irradiation field
intensities in frequency units.

where P, and P, are the spin tem. perature coeffi-
cients of the I-spin system and the S-spin sys-
tem, respectively. According to Hartmann and
Hahn, for an initial condition pzw p~ the two spin
temperature coefficients will evolve to a common
value pz, due to the influence of H» on H~ and H~.
The rate of equilibration is strongly dependent on
the rf irradiation field intensities. With the proper
experimental conditions, this cross-polarization
process can be used to enhance the NMR signals
of the S spins. The intensities of these signals are
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proportional to Ps and we therefore wish to in-
crease this coefficient as much as possible by
cooling the S-spin system.

A schematic representation of the cross-polar-
ization process is given in Fig. 1. The enhance-
ment of the S-spectral line intensities is per-
formed by cooling the I spins first P, » P~, and
then cross polarizing the two spin systems in or-
der to increase Ps. Two types of experiments for
the preparation of the I spin and the cross-polar-
ization process are discussed here. In the first
experiment the J spins are cooled by spin locking
(SL) and during the cross-polarization period the
Hartmann-Hahn condition

(2.10)

is fulfulled. The cooling of the I spins in the sec-
ond experiment is performed by adiabatic demag-
netization in the rotating frame (ADRF). In this
case the cross-polarization process occurs with
no applied rf irradiation field on the I spins. A

schematic representatio~ of these two experiments
is given in Fig. 2. In both cases after the prepara-
tion of the I spins we have (using II II to denote
magnitude)

IIP,H, II » II P,H, II

I

polarization the density matrix becomes

p„„,= Z ' [1—P (H, + H ) j . (2.12)

During the evolution period of p, energy is con-
served and the initial energy Einjtjag of the total
spin system is equal to the final energy Efi ].

with

initial final &
(2.13)

st&a = (ps &ts i H) = Z "PzTr(H )

E
g y

Tl (pgg gH)

Z'P-q[Tr(H~)+ Tr(H~)] .
(2.14)

Spin Lock
Y

DIRECT DETECTION

I
I
I

decoupling
1
I

INDIRECT DETECTION

» order to obtain explicit expressions for Pz from
Eq. (2.13) we must distinguish between the SL ex-
periment and the ADRF experiment. We therefore
evaluate p& and the enhancement of the S-spin in-
tensities for the two techniques separately.

and the density matrix can be written as

PrHr) (2.11)

90

V

900

where we neglected the Ks term. After cross

Hr~—

ADRF
x

I

90

decoupling

90'

I Spins:

H(+ H)(
~S Spans

HS

ROTATING FRAME

I SPINS S SP}NS

FIG. 1. Schematic representation of the cross-polari-
zation process between two spin systems with spin val-
ues I=S= &. The spin systems have Hamiltonians Hq+ Hrr
and Hs, respectively. The two systems are connected
by the magnetic dipolar interaction Hrs. This interaction
causes an energy flow from the S spins to the I spins, if
the applied rf irradiation field intensities err and &rs
have the right values (&& = -~rrI„-~rs S~)- In a spin-
lock experiment these intensities must be taken accord-
ing to the Hartmann-Hahn condition in Eq. (2.10) rs
= ~rr.

FIG. 2. Representation of four cross-polarization ex-
periments on a spin system, consisting of high-abundant
I spins and rare S spins. The two experiments at the top
of the figure are spin-lock experiments. Here the I
spins are prepared by a 90' pulse followed by a 90'
phase shift of the rf irradaiation field. After this pre-
paration the cross-polarization process takes place
during the application of an additional rf field on the S
spins. The intensity of this rf field must be chosen ac-
cording to the Hartmann-Hahn condition. At the end of
the cross polarization we can detect the increase of the
S signal intensity directly (left) or monitor the polariza-
tion of the S spins indirectly by the detection of the de-
crease of the I signal intensity (right) . At the bottom of
the figure two ADRF experiments are represented. In
these cases after the preparation of the I spins as in the
spin-lock case, the rf irradiation fieM is decreased to
zero. The cross polarization occurs again by the appli-
cation of an rf field on the S spins. The direct detection
of the S signal after the cross-polarization period is the
same as for the spin-lock case. For the indirect de-
tection we must apply an additional 45' pulse on the I
spins in order to recover the I signal.
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A. Spin locking experiment

In the spin-locg experiment the I spins are
cooled by a 90 rf pulse folio~ed by an immediate
90' phase change of the irradiation field in order
to lock the I spins to this field. After this prepa-
ration we apply simultaneously an rf irradiation
field on the I spins and the S spins according to
the Hartmann-Hahn condition (2.10). The Hamil-
tonian in Etl. (2.7) with II td»I, II » IIH» II becomes

and

Z '=(2I+1) 1(2S+ 1) s

Tr(I,') = »
~ Q I,',

~

(

= a (2S+ 1) s(2I + 1)

Tr(S', ) Tr( =S,*,
~

(2.25)

(2.26)

H= Hr+ Hs ——-ai~rI„—('d~sS„,

where we neglec Hrr and Hrs

-$(&/2)I& es(r/2)I&
Pfni t ig.1 ~eg

(2.16)

(2.16)

=-,'(2I+ 1)"1(2S+1)«s ',
they become

1 Nr
I 2 2I+1 jr 4 r

(2.27)

(2.28)

= Z (1 —PLOIolI„-PLtt)oss ) .
For convenience we transform the spin system by
the unitary operator

U« = exp [ i,' ti(I-„+-S,)],

I Ns
Cs 2 2S+y zs 4 s 1s' (2.29)

Realizing that Ns Nr and ~is =(d&r~ the ratio q

between the heat capacities is very small

in order to obtain the Hamiltonian in terms of op-
erators in the z direction

H = USL HUSL=HI+HS = OI, II, —(t)-,SSa, a (2.17)

The initial density matrix is now written accord-
ing to Eqs. (2.11) and (2.16) as

cinitial SL Ptatttal SL { Pl I }t

with

s Ns 1s
Cr N

and to a good approximation we can write

PI= P,(1+ e) '=P,(1 —q)

= p,(~.,/~„)(1 —~) .

8. ADRF experiment

(2.30)

(2.31)

Pl Pl Ol/ 11 ) (2.19}

(2.20}pr't..t = Z '[1 —pr(HI + Hs}]

With Eqs. (2.13) and (2.14) it is now possible to
calculate Pr with

which gives indeed pl» pL. After this preparation
the I- and S-spin systems will evolve to a state
given by

The cooling of the I spins in the case of an
adiabatic demagnetization in a rotating frame
(ADRF} experiment is performed by first spin
locking these spins to an rf field and then reduc-
ing this field to zero adabatically. The spins are
then locked to their local fields due to their neigh-
boring I spins. The initial condition of the spin
system is here given by

i tti i Pl il { } PI I

E„„,= Z-'p, [Tr(I.')+ Tr(S.')]
= p,(c,+ c,),

(2.21)

&t ttt t=Z { PrH»}

with

Pl PL OI I )

{2.32)

(2.33)

(2.22)
C +Cs ( Cr~

The heat capacities Cr and Cs of the I and S spins,
respectively, introduced in Etl. (2.21}are defined
as

C,= 6E/6P, = -Z-' Tr(H', )'= Z-'~;, Tr{l'.), (2.23)

Cs = 5E/5PS = -Z ' Tr(Hsr)'= Z 'tt),'s Tr(S,'),

where {dr represents the local field intensity de-
fined by

Tr(H'„)
»(I') ' (2.34)

H Hr+Hs=Hrr ex S (2.35)

After the preparation of the I spins an rf field is
applied to the S spins and the cross-polarization
process will start. During the cross polarization
we have

and with
(2.24) and in order to represent H in terms of S, we

again perform a transformation of the spin sys-
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tern, but now defined by the operator

U~ortp exp( tg tiS )
I

The Hamiltonian becomes

T 1 TH = UADRF HUADRF HII +1s z

and the final density matrix

T U 1
~final ADRF] final ADRF

= Z '[1 —Pr(II„—(u, ~S,}].

(2.36)

(2.37)

(2.38)

Energy conservation leads to a similar result as
in Eq. (2.22) for P&

is yr/y~, which equals 4.2 for I spins 'H and S
spins "C.

In addition to the direct detection of the NMR

signals of the S spins it is also possible to moni-
tor the cross-polarization process by an indirect
detection method. " In that case we monitor the
decrease in the signal intensities of the I spins
due to cross polarization. This can be done as a
function of time by repolarizing after evolution of
the S spins to monitor the high-resolution S free-
induction decrease (see Fig. 15 of Ref. 13). In
the SL experiment this signal intensity just after
spin locking equals

PrCr
'~ C,+C,

with Cz as in Eq. (2.24) and

C,= Z-' Tr(II'„) .
Here again because of C,» Cs we have

Pr = P,(1 —~).

(2.39)

(2.40)

I (pi iti 1I }

= Z tdtrpr Tr(I ) = 4Nr(dtrpr

and after cross polarization

M, = Tr(p,',.„I,)
=Z '&tr, ip&Tr(lg) =z'NrtdtrPr

(2.46)

(2.47)

C. Signal intensities

The results for Pr from the SL and the ADRF
experiments can now be used to evaluate the in-
crease in intensity of the S-spin signals after cross
polarization. This signal intensity Ms must be
compared with the S-signal intensity Ms after a
single 90' pulse on the S spins; The signal inten-
sity M~ is proportional to Pr and can be repre-
sented by

M~ = Tr(pri „,S,) = Z 'td„pr Tr(S,')

The relative decrease in the I signal intensity is
therefore [using P& from (2.22)]

Mr -Mr Pr -Pr
p,

(2.48)

This is modified to &[2-$(t)], where S(t} is the
S free-induction decay, for the experiment of
Ref. 12.

The small change in M, due to the cross-polar-
ization process gives a measure for the ratio of
the heat capacities of the S spins and the I spins.
For ADRF a similar result is obtained for the
relative ratio in Eq. (2.48).

1
4~f +$1S ' (2.41)

The signal intensi. ty Ms is easily calculated and
equals

Mg = Tr(p ~Sg) = Z tdo~Pr, Tr(S ) = r, prNg itious

(2.42)

and the ratio between these two signals becomes

Ms 1sPy
Ms &Os P~

.(2.43)

For the SL case and using Eq. (2.31) this ratio be-
comes

~or &ts (1 } yr (1
Ms os co1I ys

(2.44)

@PI= (AS ~ (2.45}

From (2.44) we see that for an SL or an ADRF ex-
periment the enhancement of the S-signal intensity

where we used the Hartmann-Hahn condition in
Eq. (2.10). For the ADRF case we obtain the same
result if we assume that

III. SPIN THERMODYNAMICS WITH I= 2, S = l

A. Introduction

%e describe here the thermodynamics of cross
polarization for the case of abundant spins I = —,

'
and rare spins S= 1. Because the S-spin system
is a three-nuclear-spin-energy-level system, the
theory of cross polarization for this system is
somewhat richer than the I = —,', S=—,

' case. How-

ever, we realize that under appropriate conditions
in an NMR experiment the cross-polarization pro-
cess occurs only between the I spins and one of
the transitions of the S spins. Both the two al-
lowed transitions (6M = 1) and the forbidden doub-
le-quantum transition (bM = 2) can cross polarize
separately with the I spins, depending on the ex-
perimental conditions. The cross-polar izing tran-
sition of the S spins can be treated as a fictitious
spin=,' transition and the part of the S-spin system
corresponding to this transition, together with the
I spins, forms a spin system similar to the one
discussed in Sec. II. Therefore we can use the
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B. Spin system with S = 1

Fictitious spin- 2 operator formalism

It was shown that for the description of NMR ex-
periments on multilevel spin systems, it is con-
venient to express the Hamiltonian and the spin
density matrix in terms of fictitious spin=, op-
erators. 'a"s" For spins S= 1 the matrix elements
of these operators are defined in the basis set

I»= I+».
where I+ 1), IO), and I-1) are the eigenstates of

S, of the S spins. The operators are defined by
their nonzero matrix elements using the notation

(3.1)

SPIN I=1

m=-)

formalism of Sec. II to describe the cross-polar-
ization process for the I= —,', 8=1 case, and this
simplifies the theoretical derivations of the spin
thermodynamics.

In this section we discuss the spin thermodynam-
ics of cross polarization for each individual tran-
sition of the S spins separately. For each case
the corresponding Hartmann-Hahn condition is
derived, spin temperatures are calculated, and
the signal intensities from direct and indirect de-
tection measurements are obtained. To simplify
the actual calculations we first introduce the fic-
titious spin=,' operator formalism for the S-spin
system. Then the general theory of cross polar-
ization is given and finally explicit expressions
are derived.

of Vega":

&3 Is„' ' Iq&= &q Is„' '
I

3&=-, ,

&3 Is'-'
/q& -&q I-s *-&

I
3&=-, 3,

&3 Is' 'I-t&= -&q Is'-'Iq&=-

(3.2)

S,= v 2(s' '+S' ')

s,= as'-'= 2(s'-'+ s'-'),
(3.3)

and with [S~ &, S' &] =3S'„' ' where p, q, r =x,y, s or
cyclic perrnutations we have

U3 (-8)S,' U' (8)=S,' ~cos8+S„' sln8,

where

U3' '(8) = exp(38' ~) .
Additional commutation relations between the S~» ~

operators are given elsewhere. ""
I

Iramiltonian

The Hamiltonian of the S spins in a solid in an
external magnetic field H, = &o,s/ys and with an rf
irradiation field at frequency ar and intensity u&, s,
becomes in the rotating frame

H= -d &os, +-3'~c[s,' S(S+1)]—&o»s„

with the quadrupole frequency

(oc—- —,
' e'qQ[3(3 cos'8 —1)+ i& sin'8cosap]

and the off-resonance frequency

4(d= Q)0 —QP ~

(3.4)

and we see immediately that the operators S~
'

and S~
' with p=x, y, z form the single-quantum op-

erators, while S~
' are the double-quantum oper-

ators. With these definitions we obtain

s„=v a(s'„-'+ s„'-'),

m=O

QJO- QJQ

tLIO+ QJQ

"O

cd

- 12&

LABORATORY

FRAME ag~sl 3+ 3 ~ (Sl 2 S2 3)

—v 2&v, s(S,' +S„' ) (3.5)

In terms of the fictitious spin=,' operators, H be-
comes

ZEE MAN

gl

QUADRUPOLE

and the general form of the density matrix is

p=a, 1++ Q at' S,'~, (3.6)

ROTAT ING

FRAME

)t& ~ (g&

FIG. 3. Energy level diagrams of a spin 8= 1 in a sol-
id in an external magnetic field. The Zeeman and quad-
rupolar frequency shifts are shown in the laboratory
frame and in the rotating frame. The eigenstates of 8~
are ll&, l2&, and ls& with m=1, 0, and -1, respectively.

with

g' s = Tr(~ » ') .
A schematic representation of p is given in Fig. 4.
In this representation we assign to each transition
a coordinate system with axes x' ~, y' ~, and z' ~

and we define p by one vector in each of these
systems. The three vectors are not totally inde-
pendent because the S,' ~ operators are not indepen-
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Zl 2

Yl-2

U', -'(-,'w) = exp(t-,'ws', -2)

and we get

H,'= V', -2(--,'w)H, U', '(-.'w)

= -5(uS'„'+ W2(u„S', '-(-', (so+ 5u))(S', '+ S,' ') .
(3.9)

This Hamiltonian can be written in terms of two
commuting parts:

Z23
yl-3

T T THs+ Hs, + Hs2,

with

Hs~ ——V 2(o~sS', ' —5aS'„',

Hsr, = -(-', (so+ 5(u)($', '+ $,' '),

(3.10)

(3.11)

IHS1 5 HS 2l (3.12)

The commutation relation can be verified using the
general rule

p2 3 [S,'-~, $.'-"+S~-'j =0, p=x, y, z. (3.13)

FIG. 4. A vector representation of the density matrix
p of a spin S=1. In terms of the fictitious spin-~ angu-
lar momentum operators we can write p=ao 1+~; &

~3
xQ& „„,a& ~I& J. For each possible combination ij-
we define a coordinate system which contains a vector
(a„' ~, a„' ~, ag ~). In our case three systems with three
vectors describe the density matrix p. Notice the de-
pendence of the components of these vectors a,'- +a, -
-a'-'= 0g ~

dent:

From this form of Hs we see that the Hamiltonian
looks like a spin--, Hamiltonian H» and a remain-
der H», which is orthogonal to it thermodynam-
ically. In this particular case the 1-2 transition
forms the fictitious spin=,' system. The Hamil-
tonian H» in this coordinate system consists of
an rf irradiation term with an effective field
strength v 2v, z and an off-resonance term with
off-resonance frequency 5~. In this case the z' '
vector of p behaves like a fictitious spin=,' mag-
netization vector under off resonance 5+ and ir-
radiation strength W2a, z in the 1-2 coordinate
system.

gf-j gg-k+ gk-j
Z, 8 Z (3.7)

The behavior in time of p can be represented by
the motion of these vectors due to the effective
field each of them feels.

Irradiation near allo~ed transition (hw —~ )0

For an rf irradiation field at a frequency close to
one of the satellites of the 8 spectrum 4(d= co~

+ 5~ the Hamiltonian becomes

H, =-2((so+5~)($', '+S,' ')

+-'~ (S' ' $' ') W2&u (S' '+S' ')

Irradiation near other allo~ed transition (Au —-w )

Hs = -5urS,' '-v 2&@,sS„' '

+(-', (un+ 5&v)($'. '+S', ') (3.14)

and with an additional transformation it becomes

H,'= U'-'(=,'w)Hfj'-'(-, 'w)

= -5+8'„'+ W2+, zS,

In the case hen= -e+ 5~ the Hamiltonian of Eq.
(3.5) is of the form

and with Eii. (3.T) and ~,s, 5&v«&uz

Hs —- -5&oS', ' —v 2~,sS'„'
(4 4) + 5(o)($~ +$~ s) (3 3)

In order to change the irradiation term in Hs to a
Zeeman-like term, we transform Hs with the
unitary operator

+(-', (so+ 5(o)($', '+S', '),
with

U„' '(-,'w) = exp(i ,'wS'„'), -
which again can be written as

H =Ha, +IIs, ,T= T T (3.15)
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but now

Hg~ = -5&dS + W2MggSg

H,',=(-'~o+ &~)($', '+S,' ').
(3.16)

From these equations we see that the 2-3 transi-
tion forms the fictitious spin,' transition and this
is exactly the irradiated transition according to
the definitions in Eq. (3.1).

lrradhrtion neur center (d ~ 0)

Weak rf irradiation ~» « ~~ near the center of the spectrum of the S spins can introduce double-quan-
tum coherence between the levels ~1) and ~3). In this case we would like to be able to write the Hamilton-
ian also in the form of Eqs. (3.10) and (3.14). In order to obtain this form it is necessary to transform Hz
with the unitary operator

U„' '(-,'m) = exp(i-,'~ S'„'),

which results in

(3.1'I)

(3.18)

The actual evaluation of this transformation and a discussion about the fact that the (1-3) transition after
this transformation still corresponds to the double-quantum transition, is given elsewhere. An additional
transformation of H~ with the unitary operator

U„' '(8) = exp(-i8$,' '),
tan8 = 2~,/ec,

will result in,
H = U' '(-8)U' '(=2m)H U' '(—'v)U' (8)

= -25~ cos-,' 8$'„' —25&v sin 8$' ' —(~' + 4&v' )'~ 'S' '+ —' &u (S'- '+ S'- ')

With the assumptions 6~, v» « ~, and 8 «1 this tilted Hamiltonian becomes

25~$& 3 ((g& /(g )$&-~+ 2(g ($&-&+ $2-3)

(3.19)

(3.20)

(3.21)

This equation can be written again as

H =H +HT= T T

with

(3.22)

C. Cross polarization

The Hamiltonian of the I=&, S=1 spin system
during cross polarization can be defined by

Hg~ = -25(dS„—(co~~/(ale)$ (3.23) H =Hi+Hs +Hs. +H»T r r T (3.24)

Now the (1-3) double-quantum transition forms
the fictitious spin=,' system.

In all three cases we succeeded in representing
the Hamiltonian in terms of two commuting parts,
one part representing a fictitious spin=,' Hamil-
tonian. We can now apply the theory of Sec. II to
describe the cross-polarization process between
the I spins and the fictitious spin=, transition of
S. In the following subsection we give a general
description of the cross polarization of all three
cases and for each case we derive explicit equa-
tions for the various interesting parameters sep-
arately.

p =Z'(1- PH, -P +,-PH). (3.25)

The temperature coefficients of p~, and p» may
have different values, because their two corre-
sponding terms in p~ form two constants of the

where Hz is defined in Eq. (2.8) and the explicit
forms of H~, and H» are dependent on the experi-
mental conditions, i.e. , which transition of the S
spins is irradiated and monitored. H» is the di-
pole-dipole interaction between the I and S spins
and the actual form of H~~~ in terms of the S&

~ op-
erators is given later for each transition separate-
ly. If we consider again the spin temperature ap-
proximation in the rotating frame, the spin den-
sity matrix has the form
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motion and therefore behave independently from
the thermodynamic point of view. Cross polariza-
tion occurs only between the I spins and the part
of the S spins corresponding to H». If the spin
system is prepared in a state with PIbb P», the
density matrix will evolve, during proper applied
irradiation fields, towards

P„„,= Z '[1 —PI(as, + HI) —Ps+s, ], (3.26)

where the final temperature coefficient is calcu-
lated in the same way as in Sec. II'-

U,'L'= exp[i-,'1I(s', '+I,)]
and results in

HIS (~SIb } IS SL

(3.29)

=(U'*) '(2+bi (,,S „.'+„S'„'+S',, '()U'„*
js

= 2 b jsI+~Sxs + ~ asIx~ Szs + zs

tained by tilting HIs (Eq. 2.2) with the unitary op-
erator

PslCsl+ PICI
Cs~+ C~

(3.2V)

is

T T
Hzs~+ Hzs2

js

(3.30)

The heat capacity Cz of the I spins is defined in
Eq. (2.28) and the heat capacity C» of the H» part
of the S spins equals

C„= [Tr(prasr, )] .
S1

(3.28)

In a cross-polarization experiment the value of

PI in the initial density matrix is prepared in the
same way as described in Sec. II. Again two tech-
niques are considered, spin locking (SL) and adia-
batic demagnetization in the rotating frame
(ADRF}. In the thermal mixing period the rf irra-
diation fields on the I and the S spins must be
chosen properly in order to minimize the cross-
polarization time. The efficiency of cross polar-
ization as a function of the irradiation field inten-
sities is discussed now for the different transitions
of S. In the SL case for each transition the Hart-
mann-Hahn condition is derived and the Pz and P&

values are evaluated. Direct and indirect detec-
tion methods are discussed as well.

[a,'„,a'„,] = o

and for 5+=0

[HIS1b~S~2] =

[a,'„,a,', ] = o.

(3.31)

(3.32)

From these commutation relations it is clear, that
for experiments on the (1-2) transition, only the
term H», in the dipole-dipole interaction is active
during the cross-polarization process.

To evaluate the spin temperature coefficients of
our spin system after an SL experiment, we per-

We used Eqs. (3.3), (3.7), and (3.9) for the deriva-
tion of Eq. (3.30). Us„' is the operator which tilts
simultaneously, Hz and Hs to Hz and Hs, respec-
tively. In Fig. 5 we show a schematic representa-
tion of the single-quantum cross-polarization pro-
cess. From Eq. (3.30) we see that HrIs can be
divided into two commuting parts

D. Single-quantum (hN = 1) polarization

Spin temperature and the Hartmann-Hahn condition

Enhancement of one of the NMR spectral lines
of rare S spins in a solid can be achieved by cross
polarization between the corresponding allowed
single-quantum transition of the S spins and the
abundant I spins. %ith the general description of
cross polarization in the spin system with I= —,

and S= 1 given in the former paragraph, we can
derive easily explicit expressions for the spin
temperature coefficients in our case.

We consider an SL experiment on the (1-2) tran-
sition of S and derive the modified Hartmann-Hahn
condition. The total Hamiltonian of our spin sys-
tem, during the thermal mixing time is given in
Eq. (3.24)

H =Hz+Hsx+Hs2+HzsT T T T T

with HIr given in Eq. (2.1V} and H„and Hs, in Eq.
(3.11). The dipole-dipole interaction HIs is ob-

I Spins: His( ~ Hs(

Hrsz Hs~

Flo. 5. Schematic representation of the cross-polari-
1zation process between a spin I= & system and an al-

lowed transition of a spin S= 1 system. The spin sys-
tems have Hamiltonians Hz+ Hzz and Hs= Hsg+ Hs2
spectively tEqs. (2.15), (2.35), and (3.8)]. The part of
the S-spin system, which corresponds to the allowed
transition, is given by the Hamiltonian Hs& tEq. (3.11)].
The dipolar interaction Hzs ——Hzs&+ Hzs2 between the I and
the Sspins is given in Eq. (3.30) . Hzs& is the Hamiltonian of
the intera, ction between the I spins and the allowed trans-
ition of the S spins. The Hamiltonians involved in the
cross-polarization process are Hz+Hzz, Hsz and Hzsf
only. Cross polarization occurs if we apply the right rf
irradiation field intensities ~zz and azs on the I and the
S spin systems, respectively; (H f (JDzzI„-~zsS„
+u~S~). ln the case of a spin-lock experiment this means
that the Hartmann-Hahn condition in Eq. (3.34) must hold
~12 Mzs G)zz.
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form a similar calculation as in Sec. II. After the
preparation of the I spins, the density matrix
p„«„, is given again by Eg. (2.18), and thermal
mixing will occur when the Hartmann-Hahn condi-
tion is fulfilled. In our case cross polarization
takes place between the terms of p~ with

Hsr, = -5&oS'„'+ v 2&v, sS,' ' and Hr~= -&o,~I„

with the initial value of P, for the SL case (Eg.
2.19) we obtain

Pq= P,(1+Cs,/C, ) '= P~((o„/oo„)(1 —gs), (3.36)

where the heat capacity C, is given in Eq. (2.28)
and the heat capacity Cs, equals

C = -S 'Tr(H, )

(3.33)

and the corresponding Hartmann-Hahn condition
becomes for 5u&-0 (see Fig. 6)

Z 1(6(g2+ 2~2 ) Tr(gl s)2

= -Ns(5&d + 2(d~s}. (3.3V)

~2~is = ~is

and in general

(3.34)
he ra io etwee Csx a d s s

Csz 2 Ns 5(d + 2(opss=
C~ 3 N~

(3.38}

+ 2~as = cuir ~
2 2 (3.35)

With the expression for Pz in Eq. (3.2V) together
Insertion of Pz in the final expression for the den-
sity matrix yields

p~r„„=Z-'[1 p~(&u„/(o„)(l. —gs)(-6(uS', '.+ &2(u,S', '- &u„I,)+ p~( ,'(oo 6&v)-(S', '+ S,' ')] . (3.39)

Uanap exp(f p 7TS ) (3.40)

SINGLE- QUANTUM CROSS POLARIZATION

I»;I~&

/
/

/
/
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auQ
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24UQ

ii 1[

X2(ut

Similar results are obtained for SI cross-polar-
ization experiments on the (2-3) transition of the
S spins.

For ADRF experiments the I-spin system is not
irradiated during the thermal mixing and in order
to obtain Pz from Eq. (3.2V} we have to use H,
=H» (Eq. 2.3). The tilted frame in the ADRF case
is obtained by the transformation operator

which does not affect H~. By replacing , ~ by +&

[Eq. (2.34)) and taking C, from (2.40) in (3.2V) we
obtain the expression for P~ after the ADRF ex-
periment.

From the expressions for Pz and pr«„, it is pos-
sible to evaluate the S-spin single-quantum signal
intensities. The results of these calculations must
be compared with the S-spin signal intensity after
a single 90' pulse in order to obtain the enhance-
ment factor of the cross-polarization experiment.
The destruction of the I-spin signal intensity after
cross polarization can also be calculated. The
measurement of this destruction forms an excel-
lent method for the detection of the efficiency of
cross polarization as function of irradiation
strengths, off-resonance frequencies, and time
evolution of the S spins.

S SPINS
AQJ = QJQ

~)s 0
EICOS "- QJQ

Qp)s 8 0

I SPINS

Signal intensities

FIG. 6. Energy-level diagram of a spin S=1 system
and. a spin I= & system in the rotating frame. In addition
to the external magnetic field and the internal quadru-
polar interaction Hg= 3 ~g tS»- S(S+1)], rf irradiation
fields are applied with II,~= -~~s8„-&u&S~ and H, q

$= —u)~&I„. For b~= co~ the H& Hamiltonian corresponds
to an irradiation Geld at the frequency of one of the al-
lowed transitions of the S-spin system. The energy lev-
els of the S spins are the eigenstates of the Hamiltonian
IIo+N~ with k&v=0 and ~zs=0, n&u= &oo and ~rs=0, and
b(d =u@ and ~&s & 0. The energy levels of the I-spin
system correspond also to the diagonalized Hamiltonian

In a spin-lock cross-polarization experiment the
rate of the energy flow between the I and the S spins is
maximum, when the S-energy difference v 2~&s is equal
to the I-energy difference +q~. This is just the Hart-.
m~~~-Hahn condition in Eq. (3.34).

The NMR signal intensity of the S spins after an
SL experiment on the (1-2) transition can be cal-
culated with p«„,. This signal intensity of the
(1-2) transition in the ~ direction is

= -Z 'P~ "(1—ss)v 2(o,s Tr(S', ')'
(d~ ~

W2 (ups—Ns corps. (1 —ss) s6 CO~ ~

where the W2 factor in (3.41) is derived from the
definitions of the S~'& operators in Eg. (3.3). In a
similar way we can show that the other contribu-
tions to the S-spin signal intensities are all zero:
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Mg W2Tr(pgg gS )

W2T1(pgg gS& ) 0

)s~ e ~~ft'~ 2)
Peo —e V~

[1 —pi, ~osS —ps~orl ]
=Z'[1-v 2P &o (S'„'+S„' ) —P &o I,] (3.44)

Tr[p,'...(S,' '+-S'„')J-=0, (3.42) with p„ from Eq. (2.4).
Comparison between Eqs. (3.41) and (3.43) gives

an enhancement factor

The Fourier-transform S spectrum after an gL
experiment consists therefore only of the spectral
line which is irradiated during the mixing time.
In Fig. 7 we show a result of an SL experiment on
solid deuterated benzene. We clearly see that only
the signal of the cross-polarized transition ap-
pears. Jn the figure this signal is compared with a
signal obtained after a single 90 pulse on the S
spins.

To derive the enhancement of the (1-2) transi-
tion after cross polarization, with respect to the
normal free-induction-decay signal after a 90'
pulse, we calculate the intensity of this last sig-
nal. The intensity of the signal of the (1-2) transi-
tion after a strong 90' pulse on the S spins is

M~„2 0= v 2Tr(p„S', ')

= Z &2P~4log Tr(S„)
= -'~2&spa&os.6

The 90' pulse was taken in the y direction

(3.43)

I I I I I I I I I I I . I I I I I I'

Cross Polarization

I i I i I i I i I i I i I I I

40 50 20 IO 0 - IO -20 -50 -40
~(kHz)

FIG. 7. Deuterium powder spectrum of solid ben-
zene-d~. The upper spectrum is the Fourier transform
of a proton decoupled deuterium free-induction-decay
signal obtained after a single strong rf pulse. This
powder spectrum can be considered as if it consists only
of two spectral lines at vq-— +35.2 kaz. The lower spec-
trum is obtained from the deuterium free-induction-de-
cay 1', FID) signal af'ter a spin-lock cross-polarization ex-
periment on the v@

——35.2kHz transition. From this
spectrum we see that the nonpolarized transition does
not give any signal intensity, as was predicted in Eq.
(3.42).

IMg„ I (Dog v 2(dgg I
&s~Mrs- 2, o

~ +os

W2(al8 (1 — )
ys

(3.45)

Mr -MI 2 &s 2~is+
MI 3 Nl (0~1

(3.46)

The same relative destruction is obtained for an
SL experiment on the (2-3) transition of the S
spins.

For an ADRF experiment the destruction of the
I-spin signal is the same again as for the SL case,
except that an efficiency factor g must be added to
Eq. (3.46). This factor is dependent on the experi-
mental method for the recovery of an I signal from
the cooled dipole-dipole interaction reservoir of
the I spins. In this article we consider the ap-
plication of a 45' pulse on the I spins in order to
monitor the spin temperature coefficient Pz of

T
I final'

We now turn to the interesting case where the
double-quantum. transition of the S spins is po-
larized. The cross polarization between the I
spins and this double-quantum transition can be
used to create enhanced double-quantum coher-
ence. Because the double-quantum coherence is
independent of the quadrupolar interaction, its
time behavior after cross polarization is strongly
dependent on chemical shifts. Measurements of
this time dependence form an alternative method
for the detection of high-resolution spectra in
solids.

With the Hartmann-Hahn condition and Geo= 0, the
enhancement of the signal intensity Ms„' is again
equal to the ratio of the magnetogyric ratios of the
I and S spins. This is not surprising, because the
cross polarization occurs between the I= —,

' spins
and the single-quantum fictitious spin=,' (1-2)
transition of the S spins. Exactly the same results
are obtained for the (2-3) transition. For an ADRF
experiment on the single-quantum transitions of
the S spins we obtain the same expression for
M~„' as in Eq. (3.41), except that we replace &u, ~

y ~
The destruction of the I-spin signal intensity

after an SL experiment on the (1-2}transition of
the S spins can also be obtained easily. Similar
to the derivation in Sec. II we get as in Eq. (2.48}
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E. Double-quantum (hill = 2) polarization

Spin temperature and the Hartmann-Hahn condition

Cross polarization between the I spins and the
double-quantum transition of the S spins can also
be described with the general theory for cross
polarization in the I=—,', S= 1 system given be-
fore. The Hamiltonian for this case is given again
in Eg. (3.24) with Hz~for the SL experiment given
in (2.17). The terms H» and H» in the Hamil-
tonian are given in Eci. (3.23). A representation
of this cross-polarization experiment is given in
Fig. 8. In this case the dipole-dipole interaction
term H s is obtained by the transformation oper-
ator

thermal mixing of

H~» = -25&oS'„' —(~,'/~z)S', ',
with

p, = p,(1+ e„/C, ) "=P,(1 e,). (3.50)

The heat capacity of the double-quantum transi-
tion is

C„=--—Tr(p" Hr~) = -Z 'Tr(H~r, )'
epsom

= —N~((d~~/QPq+ 46K ) (3.51)

can be calculated in the same way as we did before

USL'= exp[i-,'v(S'„'+ I„)]exp(i8S2 '),
HT (II1-3)-lH Uj.-3

= 2+5,, cos-,' 8S'„'I„
gs

+ 2g b,, sin-,' 8S'„'I„,
fs

(3.47)

(3.48)

Cgy 2 Ng Mys/Q)g+ 46(d

C 3 N
(3.52)

The Hartmann-Hahn condition for this case be-
comes with 6~= 0 (see Fig. 9)

and the ratio &D between C» and the heat capacity
of the I spins equals

where 8 is given in Eq. (3.19). For a, weak irra-
diation field with vys «Mq we have 8 «1 and H, ~
becomes

2
/ CO =QP

and in general

(3.53)

H,', = 2+V,,S'„-'I,.
gs

The final temperature coefficient Pz, after the

(0~~/(oc + 4 6Ã = (og g . (3.54)

The density matrix after the SL cross-polariza-
tion experiment is

(3.55)p~r„„=Z '(1 —P~(|d„/&u„)(l —q~) [-26(oS'„' —((u',/(uc)S,' ' —(u„l,] ——,'P~(uq(S,' '- S,' ')).
For the description of ADRF experiments on the double-quantum transition we can use exactly the same
arguments as were represented for the single-quantum case.

DOUBLE-QUANTUM CROSS POLARIZATION Detection of the double-quantum coherence

I Spins

Hl + H IS
S1

HS2

FIG. 8. Schematic representation of the cross-polari-
zation process between a spin &= & system and the dou-
ble-quantum transition of a spin S=1 system. The spin
systems have Hamiltonians Hr+ Ha and Hs =Hs&+ Hs2.
respectively fEqs. (2.15), (2.35), and (3.23)]. The part
of the S-spin system corresponding to the double-quan-
tum transition is given by the Hamiltonian Hs& Pq.
(3.23)] . The whole dipolar interaction Hgs Rq. (3.49)j
is active durirg cross polarization. Cross polarization
occurs if we apply the right rf irradiation field intensi-
ties u& and ~&s on the I- and S-spin systems, respec-
tively (H~ ——(d&qI„- ~&sS„). In the case of a spin-lock
experiment this means that the Hartmann-Hahn condi-
tion in Eq, (3.53) must hold m&s/u)~= cuff.

COT . Z1P Ol(1 ~ } IS1 3

lg Q

(3.56)

In Appendix A the effect of this pulse on pD@ ls
calculated for the ideal case that the irradiation
intensity is much stronger than the quadrupolar
interaction. In the rotating frame the result is

The double-quantum coherence, created at. the
end of a cross-polarization experiment, cannot
be measured directly. In order to transform this
double-quantum coherence to single-quantum co-
herence, it is necessary to apply an additional 90
pulse on the S spins. To transfer the total double-
quantum coherence to single-quantum coherence,
this 90 pulse must be 45' out of phase with the g
direction.

For the SL case on the (1-3) transition the doub-
le-quantum coherence is
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DOU8LE-QUANTUM CROSS POLARIZATtON

Jl

(dQ

lf

D~ =0
~is =O

~GJ ~QGJo
2

QQJ=O
Ql)s 8 0

S SPINS I SPINS

FIG. 9. Energy-level diagram of a spin S=1 system
and a spin I= ~ system in the rotating frame. In addition
to the external magnetic field and the internal quadru-
polar interaction {Ho= 3')p[S S(S—+ 1}])rf irradiation
fields are applied with H, = —&u&s S„and H~ = —~gI„.
For ~&q much smaller than the quadrupole frequency ~~,
H,z results in an effective irradiation of the double-quan-
tum transition of S. The energy levels of the S-spin sys-
tem are the eigenstates of the Hamiltonian &g+ H& with

&&q
——0 and ~&& & 0. The energy levels of the I-spin sys-

tem are the eigenstates of the Hamiltonian 0&. In a
spin-lock cross-polarization experiment the rate of the
energy Qow between the I spins and the S spins is maxi-
mum when the S-energy difference co&z/~~ is equal to
the I-energy difference co~. This is just the Hartmann-
Hahn condition in Eq. (3.53).

field intensity of the single-quantum case to the
intensity for the double-quantum case and putting

eo instead of &s in Eq. (3.46) we obtain

M~ —M~ 2 Ns &u~s/(do+ 46(o

Mr
(3.6l)

IV. DYNAMICS OF CROSS POLARIZATION

A. Introduction

Again, this can be used to monitor the $ high-res-
olution double-quantum free-induction decay
[So(t}] by the method of Ref. 12. In this case
(M~-M~)/M~= go[2 —So(t)] for one contact.

In this section we showed that it is possible to
obtain enhanced NMH signals from single- and
double-quantum transitions by cross -polarization
experiments. Direct and indirect detection meth-
ods can be used to follow the cross-polarization
processes. Several experimental results of deu-
terium-proton cross polarization in a powder sam-
ple of benzene-d, will be demonstrated later. How-
ever, before w'e compare these experimental re-
sults with theory, we shall discuss some of the
dynamical properties of cross polarization.

40~ r . cog

+$1 2 $2 3) (3.5'I )

These single~uantum terms of the density matrix
can be measured and give a signal intensity of

2

M, =Z-'P, "(l-e,)
(dj.r ('d

Q

(3.58)

This signal must be compared with the intensity
of the signal after a single strong 90' pulse on the
S splns

(3.59)Ms = Tr(P„S,) = Z 'P~~, s .
The ratio between the signals in Eqs. (3.58) and
(3.59} becomes

2[Ms ~ &cg ~vs (I )
'Ys ~as (I )

Ms I %os (o~rp ys

(3.60)

From these results it is clear that the double-
quantum coherence can be monitored with higher
sensitivity than normal single-quantum coher-
ence s.

To follow the cross-polarization process with
the double-quantum transition, we can detect again
the destruction of the I-spin signal intensity after
the thermal mixing period. The results for the
relative destruction of the I signals are exactly
the same as for the single-quantum cross-polar-
ization case. Changing the effective irradiation

The most important parameter concerning the
dynamics of cross polarization is the rate of spin
thermal mixing Tr~ between the I and S spins. If
we know the dependence of T,~ on the experimental
parameters &», ~», and &(d, then we can design
and perform efficient cross polarization and signal
enhancement experiments. In order for the spin
system to reach thermal equilibrium, the length
of the mixing time of a contact must be of the or-

rs Fo mixing times shorter than Trs
the spin system does not reach equilibrium and
the sPin temPeratures P, and Ps of the I and S
spins in a crystal do not become equal. In this
case the values of Pz and Ps can be calculated from
the rate equation, which describes the spin energy
Qow between the I- and S-spin systems.

In this section we calculate T,~ as a function of
the experimental and lattice parameters for a spin
system with spins I= —,

' and S=1. McArthur et
al. ' and Demco et al."derived expressions for
T,~ for the I=S=-,' case, and we extend their the-
ory to obtain Tr~ for the I=2, S=1 case. To
form a theoretical basis for our extention, we
first give a brief review of the I= S=-,' case. Then
the equations for the I= S=—,

' case are used in or-
der to obtain explicit expressions for T,~ for the
spin system with I=-,' and $=1.

B. Cross relaxation between I= ~ and S =
& spins1 —1 - ~

During a cross-polarization experiment on abun-
dant I spins and rare S spins in a solid, energy
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Qows from a "cold" I-spin system to a "hot" S-
spin system. The rate of the energy transport is
dependent on the experimental parameters and the
dipolar interactions between the spins. The di-
polar interaction Hrs between the I and S spins
forms the main mechanism for this energy
transfer. Due to the mutual spin flips among
the I spins, this interaction H« is fluctuated.
These fluctuations cause spin flips among the I
and the $ spins. The efficiency of the energy flow,
created by this mechanism, is strongly dependent
on the external applied rf fields. In the rotating
frame, the I and S spins must be prepared in such
a state that these mutual Qips conserve energy.
For example in the case of a spin-lock experiment
this is accomplished by the Hartmann-Hahn condi-
tion.

It is clear from these arguments that the rate of
cross relaxation Trs is dependent on the strength
of the H» interaction and on the correlation func-
tion of the fluctuations of HI s, caused by the dipole-
dipole interaction H» between the I spins. The
expression for T,s in terms of these interactions
was given by McArthur et al. ' For a spin system
with I =

& and S=—,
' they obtained for the cross-re-

laxation rate

Hs= -~~sS, -A~S

Hrs —2+b, l„,S, ,

(4.2b)

(4.2c)

Hr~r~oi = s Zair(I Ir 3
U

(4.3)

Before insertion of Eqs. (4.2) into (4.1) we per-
form an additional tilt on the Hamiltonian HT in
order to simplify the actual calculations:

Hrr= ga, r(l, lr —3I„,I r) . (4.2d)
fj

In Eq. (4.2b) an off-resonance term is added in or-
der to compare its effect on T» in the I =—,S
= —,

' case with the effect of off-resonance terms in.

cases with I= 2, S= 1. The summation in Eq.
(4.2c) is reduced to the I spins only, because the
S spins are very low in abundance and they can be
considered as single isolated spins.

If the irradiation field intensity ~» is much
larger than the strength of the H» dipolar inter-
action in the H Hamiltonian, this dipolar inter-
action must be truncated. Only the part of H~»

which commutes with -&o»I, (the secular part) re
mains and it equals

&( [H H ]ei(Hs+Hr&i) (4 1)

Hrr= U(-8)H U(8),

with

U(8)=exp( I8S„)
and

(4.4)

From this equation we see that the rate of cross
polarization is equal to the time integral of the
auto correlation function of that part of H» which
does not comm t th Hs. This part of Hrs
causes the Quctuations in the S-spin system and
therefore governs the value Trs. Equation (4.1)
was derived with the assumption that at any time
during cross polarization, the I and S spins have
a well defined spin temperature. The spin Ham-
iltonian H=III+HsHrs for the I=S=—,

' case is given
in Sec. II and its terms must be inserted in Eq.
(4.1). Because the explicit forms of these terms
are dependent on the type of cross-polarization
experiment, we calculate the cross-relaxation
rates Trs for SL and ADRF measurements sep-
arately.

SL experiments

tan8=b, &u/id, s .
This tilt results in the following:

HTT HTI I &

Hs = -(0 s$TT

(4.5a)

(4.5b)

Hrrsr = 2cos8+b, I„,S„+2 sin8. +.b, I„S,, (4.5c)

and

HT T (0) HT (0)
II II (4.5d)

2 2 2
40 s=kco +(d&s.

With these equations a straightforward calculation
of Trs in (4.1) yields

(4.6)

In a spin-lock experiment the spin Hamiltonian
in the rotating frame of the spin system with I= S
= —,

' is given in Eq. (2.'I). Because the traces in
Eq. (4.1) are independent of the representation of

H, the terms of the tilted Hamiltonian H [Eq.
(2.].V)] can also be inserted into the expression for
Trs. The terms of the tilted Hamiltonian are

where the second'moment M, equals

Ms Tr [Hrs t Ss]
Tr [S,]'

and the spectral density J,(~) is defined by

J,= dt coscogC, t,
0

(4.V)

(4.8)

T= T
HI = ~iIIz+ H (4.2a) with the autocorrelation function
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2~ -1

C,(t) = Tr gb,.I„Tr gb,.l„. e '"rr ' +baal„e'"rs
[ i 1

(4.9)

M2 is the second moment of the S-spin spectral line, broadened only by the dipolar interaction between
the S and I spine. The auto correlation function C,(y) represents the fluctuations of the dipolar interac-
tioncaused by the effective partof the HII interaction. The spectral density', (&u) gives the density of these
fluctuations at frequency ~. Because the spectral density is maximum at ~= 0, the T» is high when the
experimental parameters +yg +~, and ~,I are chosen according to the Hartmann-Hahn condition

(d = CO~I.

From Eq. (4.6) we see that T~'e can be calculated, if we know the experimental parameters &u, e, nv, and
(4

y I, and if we evaluate M, from the pos itions of the I and S nuclei in the sample. The func tional forms of
the spectral densities for SL and ADRF experiments were derived before and their values together with
the other parameters govern the actual values -of T,~.

ADFR experiments

The cross-relaxation rate Tz'e for the ADRF experiments must be calculated again from Eq. (4.1).
this case, however, the terms of the tilted Hamiltonian H are given in Eq. (2.37). With the addition of an
off-resonance term in He and with the introduction of the tilt, defined in Eq. (4.4), the Hamiltonian is again
given by the expressions in Eq. (4.2) except that &u»=0. In this case Hr should not be truncated. Insertion
of Eq. (4.2) in (4.1) gives for the ADRF case

T,e = cos'eMe J„2(~,},
where the spectral density is now given by

(4.10)

Z„(~)= dt cos&utC„(y), (4.11)

with the auto correlation function

X 2 1 -'H
T"

C„(v)= Tr pb, l„. Tr (gb, I„e'"rr'. g. b,I„e'"rl'.
a

(4.12)

Differences between the T,~ values for the SL and

ADHF cases are discussed at length elsewhere. "
The behavior of the I and S spins during cross

polarization can be described by the rate equation
for the energy flow between the two spin systems
in terms of their spin temperatures

Ps pI—P =--
et

e(Pz Ps)-—P =—
Bt I TIs

(4.13)

q is the ratio between the heat capacities of the
S and I spine [Eq. (2.30)]. In these rate equations
we neglected all spin-lattice relaxation terms.
The solutions of these coupled equations give the
time behavior of P~ and Pe during the thermal mix-
ing of a CP experiment. These results can then
be used to calculate the enhancements of the S-
spin signal intensities and the decrease in inten-
sity of the I-spins signals [Eqs. (2.42) and (2.48)].

After this brief description of TI~ for I = S= &,
we will now discuss the case of I =-,' and S= 1.
The dynamics of the cross polarization of the sin-

gle- and double-quantum transitions of the S spins
are discussed separately.

C. Single-quantum cross relaxation between I=
& and

S= 1 spins

%e discuss here the dynamics of cross polariza-
tion between I = —,

' spins and the (1-2) single-quan-
tum (nM=1) transition of the S=1 spins. With the
concepts of fictitious spin=, transitions for spins
with S= 1, described in Sec. IIIB, it is easy to
calculate the cross-relaxation rate of this process.
As was shown in Sec. III the single-quantum tran-
sition of S can be treated as a fictitious single
spin=~ tra. nsition. The Hamiltonian He, [Eq.
(3.11)), corresponding to this transition, can be
considered independently from the remainder of
the spin system, if we assume that ~yg «&. The
dipolar interaction H» can also be divided into
two commutating terms, Hze, [Eq. (3.30)] repre-
senting the interaction between the I spins and the
single-quantum transition and HI» the interaction
with the rest of the S system. Thus the expression
for T,'e in Eq. (4.1) can be used for the single-
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H = HI + Hsl+ HIs»T T T T

with

H~r, =&2(u, ~S', ' —ba)S1 ',

H~81= 2+b)I„(S„ (4.14)

and Hz~ and Hz~z as defined in Eq. (4.2). For con-
venience we perform an additional tilt on HT with

Hr'= U( 8'-')HrII(8'-2),

quantum transition, if we consider only those
terms in the Hamiltonian which correspond to this
transition. The effective Hamiltonian for this case
is given in Eqs. (3.11) and (3.30) and in the tilted
frame of Eq. (3.29} we get

tained for cross-polarization experiments on the
(2-3) transition of the S spins.

D. Double-quantum cross relaxation between I= ~ and
S= 1 spins

Cross polarization between the i = —,
' spins and the

double-quantum transition of the S = 1 spins can be
treated in exactly the same way as in the single-
quantum case. We use again the fictitious spin-&
character of the double-quantum transition and in-
sert the terms of its fictitious spin=, Hamiltonian
in the Eg. (4.1) for T~1~.

It was shown in Sec. IIIE that for weak irradia-
tion fields ~,s» ~ near the Larmor frequency of
the S spins, the tilted Hamiltonian corresponding
to the double-quantum transition is given by

U= exp(i8 'S', '),
tan8' '= 6u&/v 2&@,z,

which results in

(4.15} H = HI + Hsl+ HIsl

H~1 = (&d1g/(do)Sg —26(OS„ (4.20)

HTT l 2Sl 2
sl g g

H,~ = 2cos8' 'gb, l„,S'„'.
i

—2sin8' 'gb, I„S'-'

HTT H T H TT(0 ) HT (0)
I & II II

(4.16)

and Hz~ and H~zz are defined in Eg. (4.2).
For small v» values the S-spin Hamiltonian Hs

is again divided into two commuting parts Hsl and

Hs2 and the dipolar interaction HITsl equa HIs.
As we did in the single-quantum case we apply an
additional tilt on H and obtain

,
Hrr- II( 8 3)H&U(81 ~)

(cog ) = 2(a11g + 6(0

For the SL and ADRF experiments we can use Eqs.
(4.16) and insert them in Eq. (4.2). The results
for T,1~ have the same form as in Eqs. (4.6) and
(4.10). For the SL case we obtain

(4.17)

where

II(8) = exp(i8S', -'},
tan8 = 6M(d&/(d&& .

I

We find

HS1 = -~e

(4.21)

and for the ADRF case

Z
& = cos28& 2M8Qg (M ) (4.18)

H~~, =4cos8' 'gb, I„,S„' '

-4 sin8'-3+b, .l„,S',-3,

(4.22)

Tr[H,'„,S', ']'
2 Tr(Sl- 2)2 (4.19)

M 2~@ is the second moment of the (1-2) transi-
tion of the S spins due to the interaction between
the S and I spins. The results of Eqs. (4.17) and
(4.18) are the same as for the I=S= ,' case. This-
is not surprising, because the irradiated (1-2)
transition, behaves exactly as a spin- —, transition
as long as the applied rf irradiation field is not
strong enough to excite the (2-3) transition also.
It is clear that the same results for TIs are ob-

The spectral densities J„and J, are given in Eqs.
(4.8) and (4.11) and are exactly the same as for
the g=S=2 case. The second moment in Eqs.
(4.17) and (4.18) is

and for the ADRF case

T ' =cos'8' 'MDeg (~' ') (4.24}

The spectral density functions J„and 4, are again
the same as in Eqs. (4.8) and (4.11). MD2~ is given
by

„Tr[H»,S. ]
Tr(S1- 3)2

where

(&o,
' '}'=~,z/~~+ 46~'.

insertion of (4.22) into (4.1) results for the SL
case in

(4.23)
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(~'3 21 3 DQIs Dq cos 8 M, (4.25)(T-') cos'O' 'M', o '

The ratio between the second moments can easily
be calculated

Vr(4+S' f„,, S' )'

T (2Kb,.S'-'f, , S'-')'

From this ratio it follows that the width of the
double-quantum spectral lines, broadened by H»,
are twice as large as the width of the single-quan-
tum lines.

To examine the theory of this section and Sec.
III we performed some proton-deuterium cross-
polarization experiments on solid benzene-d, .
The experimental results are shown in Sec. V and
are compared with the results of this section and
Sec. III. The Hartmann-Hahn condition is checked
by single- and double-quantum cross-polarization
experiments as a function of rf irradiation field
strengths and off-resonance frequencies. The ef-
ficiency of cross polarization is studied for SL
and ADRF measurements, and the cross-relaxa-
tion time T» is evaluated.

(4.26)

V. EXPERIMENTS

and is equal to the second moment of the Fourier-
transform double-quantum spectrum of the S
spins, broadened by the heteronuclear dipolar
interaction Hls.

The ratio between the cross-relaxation rates of
the single-quantum and the double-quantum transi-
tion equals

stream.
Cross polarization in solid benzene-d, occurs

between the protons (I=—,') and the deuterons (S
= 1). The efficiency of the cross-polarization ex-
periments as a function of rf irradiation field in-
tensities and of off-resonance frequencies was
measured through the detection of the relative de-
struction of the proton-signal intensities after the
thermal mixing. This indirect detection method is
very sensitive and makes it possible to check the
Hartmann-Hahn conditions experimentally. Direct
detection of the deuterium signals is used to ex-
amine the signal enhancements which are caused
by cross polarization, and to measure the cross-
relaxation rate Tls.

B. Indirect detection

In this subsection we show some experimental
results of the destruction of the proton line inten-
sity as a function of the rf irradiation field inten-
sities v» ——v»/2w and v, ~= e, ~/2w, and the off-
resonance frequencies ~v= 5v/2v.

The dependence on rfintensities

The relative destruction of the proton-spectrum
intensity after a cross-polarization experiment
can be calculated from the maximum possible de-
struction, given in Eqs. (3.46) and(3. 61), and the
cross-relaxation time T». For a spin-lock ex-
periment on the (1-2) single-quantum (~) transi-
tion of the deuterium atom, the relative destruc-
tion as function of the experimental mixing time g

can be represented by

A. Introduction

The experiments were performed on a powder
sample of monodeutero-benzene. The spin-lattice
relaxation time of this material is relatively short
(-0.5 sec) and it is convenient to use this sample
for the accumulation of free-induction-decay sig-
nals after cross-polarization experiments. The
deuterium quadrupole interaction frequency of
benzene-d, equals 2v—- 70.4 kHz and the maxima
in its powder spectrum are at v= +35.2 kHz. In
this paper, it is sufficient to consider only the two
peaks at +35.2 kHz for the interpretation of our
experimental results, and to ignore the rest of the
powder spectrum. If, however, the deuterium en-
hanced proton-NMR-signal intensities were used
to obtain information on the chemical shifts of.the
deuterium atom, the whole spectrum should be
taken into account.

All measurements were done on a home built
spectrometer with a static magnetic field of 25 ko.
The sample was kept at a constant temperature of
-35'C by a temperature-regulated nitrogen gas

M'

I
=e (1 —e ~tres) (5 1)

where T» is given in Eq. (4.17). For f values
much smaller than T,z, we can take exp(-f/T )
=1—f/T„and we get [with 8' 'from Eq. (4.]5))

SQ(V1St V)

s~~IS

2tcos 8 M2 j (v '—v )
2Ns &v +2vis i
3 NI v,'I
1N 2 2

3 NI vier
(5.2)

For a spin-lock experiment on the double-quantum.
transition we get in the same way [with Tz'z from
Eq. (4.23) and 8' ' from Eq. (4.21)]

4

I v~avi'I

With &v= 0 and the Hartmann-Hahn conditions
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~2v, z = v, z for the singlequantum and v,'z/vo- v, z
for the double-quantum case, the ratio between

do~ and d, e equals
0

Spin Lock
I

~ ~ ~ ~
~ ~

dDq M, 4
d M

(5.4)
Single Quantum

2N
&s

(5.5)

This shows that the destruction of the I (proton)
spins for the double-quantum case is larger than
for the single-quantum case. Furthermore the
maximum destruction is obtained when the Hart-
mann-Hahn condition is fulfilled and Z„(0}= 1.
Comparison between the widths of dD~ and d,z as
functions of p» predicts that dD@ is broader than
d @. This can be understood best if we take for
J„(v)"a Gaussian function e " ~ "c.

The destruction spectra d @ and dD+ for the
ADRF experiments can also be derived from Eq.
(5.2} with Tzz from Eqs. (4.18) and (4.24). The
results for t «T» are

—0'y

C

0
o 6—

0

0
I

io
I I

20 50
Deuterium v, (kHz}

40

and

dDu(vga, v) -3 2 tMg jg(v ) .
Ng p p2

(5.6)

Here it is difficult to predict for what value of
py g the maximum destruction is obtained. If w e
take for the spectral density function J,(p}"an
exponential function e "~"~, it is clear that the
width of dD~ as a function of p» is larger than the
width of d z and that the maximum in dn@ is larger
than the maximum in d e.

In Fig. 10 we show the relative destruction as a
function of p» of the proton line intensity after a
spin-lock experiment on the single- and double-
quantum transitions of deuterium in benzene-d, .
The mixing time in these experiments was t=15
msec, which is much smaller than the T» value
for this compound. The applied proton rf irradia-
tion intensity was equal to p»= 10 kHz. Maximum
destruction for the single-quantum case is ob-
tained when p» =7 kHz. This should be equal to
2 ' 'p»=7. 1 kHz, according to the Hartmann-Hahn
condition [Eq. 3.34)]. Thus agreement is good.
In the double-quantum case the maximum destruc-
tion occurs at p» = 19 kHz and this must be com-
pared with (vv»)'~'= 19.2 kHz [Eq. (3.53)]. Again,
these experimental results are in excellent agree-
ment with the theory. The results of Fig. 10 show
that the maximum single-quantum destruction is
smaller than for the double-quantum destruction
and that the destruction spectrum for the double-
quantum case is wider than for the single-quan-
tum case. This is in agreement with the discus-
sions given above.

The proton destruction spectra for ADRF ex-

FIG. 10. The relative destructions of the proton sig-
nal intensity (1-M&/Mz) (1.00$,) of solid benzene-d~
after spin-lock cross-polarization exper iments (Fig. 2)
between the protons and the deuterium nuclei in this
sample. The destruction is measured as a function of
the rf irradiation field strength v&q on the S spins. The
rf field strength v(I= 10 kHz on the protons is kept con-
stant. The mixing time of these experiments was t= 15
msec. The upper graph is obtained by the irradiation of
the allowed transition of the deuterium nuclei at v
=35.2 kHz; The lower graph is obtained by irradiation of
the deuterium nuclei at their Larmor frequency. A dis-
cussion of these results is given in the main text.

periments on the single- and the double-quantum
deuterium transitions are shown in Fig. 11. In
these experiments we took for the mixing time t
= 50 msec. This value is of the order of T» and
therefore we measure a larger destruction than in
Fig. 10. In the ADRF case we see again that the
d @(v,z) spectrum is narrower than dDu(v»).

Jn Fig. 12 SL experiments on the double-quantum
transition are demonstrated for two different val-
ues of the proton rf irradiation strength. The
agreement of these results with the double-quan-
tum theoretical Hartmann-Hahn condition, indi-
cated by arrows, is excellent.

The dependence on off-resonance frequencies

%e now present experimental results for the
proton destruction spectra as a function of the off-
resonarice frequency values 4p. In Fig. 13
dn@(d p) is measured for different values of v, z
and p» in a spin-lock experiment. The results
for the maxima in the destruction are in full agree-
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FIG. 13. Relative destructions of the proton signal in-
tensity (1-M&/Mz) (100%) of solid benzene-d& after
spin-lock cross-polarization experiments (Fig. 2) be-
tween the protons and the deuterium nuclei in this sam-
ple. The destructions are measured as function of the
off-resonance frequency» of the deuterium irradiation
field. The rf field intensities v~q and v&1 on the $- and
the I-spin systems, respectively, were kept constant.
hv was measured from the deuterium Larmor frequency.
According to the Hartmann-Hahn condition v&~/v++ 44v
= v&1 the expected maxima in the destruction spectra are
«r vgs= 8 kHz and vgl=10 kHz at »=4.9 kHz and for
vf $6.7 kHz and v ~ I= 7.5 kHz at Qv = 3.7 kHz. For the
values v&q

——20 kHz and v&1= 10 kHz the Hartmann-Hahn
condition can not be fulfuBed and the maximum destruc-
tion is expected at &v=0. The agreement between ex-
periment and theory is excellent.

40—

I I I

IO I 5 20
Deuterium Power(kHz)

50—
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FIG. 11. The relative destructions of the proton sig-
nal intensity 0-Mz/Mz) (100%) of solid benzene-d&
after ADBF cross-polarization experiments (Fig. 2) be-
tween the protons and the deuterium nuclei in this sam-
ple. The destruction is measured as function of the rf
irradiation field strength v&q on the S spins. The mixing
time of these experiments was t =50 msec. The upper
graph is obtained by the irradiation of the allowed trans-
ition of the deuterium nuclei at v@ ——35.2 kHz. The lower
graph is obtained by irradiation at the deuterium Lar-
mor frequency. A discussion of these results is given
in the main text.

and 15. However, in these figures dD~(6 p) is
measured for positive and negative values of 4p.
The experimental results show a marked asym-
metry in dD@(b p) for opposite signs of d q. 20 The
experimental parameters for the spin-lock case
in Fig. 14 are pyg = 8 kHz and p»= 11 kHz and the
maximum destruction is obtained at 4p —-+5 kHz.
This value for d p gives together with p» the ef-
fective frequency (in kHz)

ment with the Hartmann-Hahn condition of Eq.
(3.54). The numerical calculations are given in
the figure caption.

The destruction spectrum dnz(b p) for an SL and
an ADRF experiment are again shown in Figs. 14

SPIN LOCK

v~ = [4~v + vga/vq]
Ca
CP

hr 5—
D

SPIN LOCK

I I I I I I Ic0 '

0
Q.

D
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0
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I
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D
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~O0

FIG. 12. Relative destructions of the proton signals of
solid benzene-d& after cross-polarization spin-lock ex-
periments on the deuterium double~uantum tr ansition.
The destructions were measured as function of the deu-
terium irradiation field strength v&q for two constant
values of the proton irradiation field intensity. Accord-
ing to the Hartmann-Hahn condition &&~/v~= v&1 the max-2

imum destruction is expected for v&1=6.2 kHz at viz
=14.8 kHz and for v&1=10.5 kHz at v&g=19.2 kHz. This
is in excellent agreement with the experimental results.

-I 0 0 I 0 20
I

-20I5

Deuterium Frequency Offset (kHz)

FIG. 14. The experiment in Fig. 13 with v~~
—-8 kHz

and v~1
——10 kHz is repeated here for positive and nega-

tive values of 4v. The asymmetry in the destruction
spectrum is discussed in the main text.
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ADRF

I I I

positive or negative polarization (temperature)
dependency on whether we are above or below
resonance. The initial value for Ps, is thus dif-
ferent from zero and equals

O IO-
O

) 5—
0)

45(@coos
Ps 1 ((gl 2)2 Pl ' (5.12)

20—
O

, 25—
&o

I I I I I I I

—
I 2 -8 -4 0 4 8 I 2

Deuterium Frequency Offset ( k Hz)

FIG. 15. Relative destructions of the proton signal in-
tensity of solid benzene-d& after ADRF cross-polariza-
tion experiments. The destructions are measured as
function of the off-resonance frequency» of the deuter-
ium irradiation field. The asymmetry of the destruction
spectrum for positive and negative» values is dis-
cussed in the main text.

= gsII I(1 / fs).

Insertion of Eq. (5.12) in Eq. (5.14) results in

(5.14)

(5.15)

The final spin temperature coefficient Pf in Eq.
(3.50) must be modified and becomes

Pl I Ps 1 s1
Pf =

& &
= Pf( &s)+ PS1&D.I+ Sj.

Now the relative destruction dD+ must be calcu-
lated from Eq. (2.48} and gets the form

(Qv) 1 f (I s t/ T-ls)P P-
Q P

p s =Z (1+PgRpsS )

= Z '(1+ 2P~a)psS', ') (5.7)

and the effective irradiation Hamiltonian on the
double-quantum transition [Eq. (3.23)] is

Hs1 —(1d1s/&do)S (5.6)

According to the spin temperature approximation
in the rotating frame, the initial S-spin density
matrix is then equal to

which is equal to pal.
The asymmetry in dD@(b v) can be explained, "if

we take into account the initial condition of the
deuterium-spin density matrix, before cross po-
larization occurs. In all cases of Sec. III, we as-
sumed that the initial S-spin temperature coeffi-
cient Ps, is zero. This assumption is justified if
the direction of effective rf irradiation field in the
rotating frame on the S spins is perpendicular to
the direction of the Zeeman field, 6v = 0. Then,
at the moment the irradiation field is applied, the
S spins are in a state defined by

where we used the expression for P, from Eq.
(2.19) and in general v= &u/27/. With the Hartmann-
Hahn condition p pal we obtain

dD@(hv}= qD~ 1+, , ~(l e «rfs).
yl/

(5.16)

The ratio between the values of dD+ for positive
and negative 4p's is

dDe(&v) yrve '+4ys&v
dD@(-&v) yf v', ' —4ys&v

(5.17)

This ratio equals 1.6 for the experimental param-
eters of Fig. 14. The experimental result for this
ratio is 1.5.

For the ADRF case in Fig. 15 we obtain the
same asymmetry in do@(b v) as for the Si case.
The rf irradiation intensity on the deuterons in
this experiment is p, ~ =14.7 kHz and the experi-
mental values for the maximum destruction are
b v= +3 kHz. Insertion of these values in Eq. (5.1V)
results in a value of 1.5 for the ratio between the
maxima. The experimental value equal is 1.4.

p1 11 1 Z (1 Ps Hs ) Z (5.9) C. Cross-polarization dynamics

Hs = (Pd1s/(oo)S„—25(dS

the initial S-spin density matrix becomes

(5.10)

(5.11)P«111= 'I. +( ' '} psPz, s] s

where p/,
' ' is defined in Eq. (4.22). Physically,

this means that the S spin begins with a slight

However, if the irradiation field is not perpendicu-
lar to the Zeeman field and

Until now we assumed that for all our experi-
ments the spin-lattice relaxation times of the pro-
ton and the deuterium spins were much longer than
the experimental mixing time t. In these cases it
is sufficient to describe the spin temperature coef-
ficients of these I and S spins by the rate equations
given in Eq. (4.13). However, if we monitor the
behavior of the spin system during cross polariza-
tion for long mixing times, these equations must
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be extended. In this subsection we consider an
ADRF experiment on the double-quantum transi-
tion. We show that from the deuterium signal in-
tensity, as a function of the mixing time, it is
possible to obtain the value of Tl~. These experi-
ments also measure the value of the ratio qD be-
tween the spin heat capacities of the double-quan-
tum deuterium transition and the protons.

The spin-lattice relaxation time for the deuteri-
um (S= 1) during an ADRF experiment is T„.
This is the relaxation time of the deuterons during
a spin-lock experiment on their double-quantum
transition. ' The relaxation time of the protons
T» equals the relaxation time of the protons (I
= —,) after an adiabatic demagnetization in the ro-
tating frame of these nuclei. Taking into account
the relaxation times, the rate equation for the spin
temperature coefficients PI and Ps are given by"

-ED(PI Psl) (PI PL)
st TIs T1~

(Ps1 PI) (Ps1 PL)
st PS1= T„T (5.18)

The solution of these coupled equations is calcu-
lated in Appendix B and with the initial conditions
for the spin temperature coefficients PI(0) 0 0 and

Ps, (0) = 0 it becomes

P„(t)= P,(o)g(t) = (~.,/~I)8, g(t),
with g(t) given in Appendix B. The corresponding
density matrix of the S spins can be represented
by Eq. (3.56)

(5.19)

Pnq(t) = Z '[1 —Ps, (t)as, ]

= z '[1+Ps1(t}(~,'s/(oq)s'„']

= z ' [1+8 (u„((u,'s/ar q)/~Is„' 'g (t)] (5.20}

The time behavior of P»(t} can be monitored by
measuring the S-spin signal intensity after cross
polarization as a function of t. Before we present
the experimental result of the deuterium signal
intensity in the ADRF experiment we show how the
Tj p and T» re laxation time s w ere m easured.

T& experiment

The T„relaxation time of the deuterium spins
can be measured by a double-quantum spin-lock
experiment. ' In such an experiment the spins are
locked at the effective rf irradiation field of the
double-quantum transition by a 45' phase shift on
this rf field. In our case we obtained the same
result by a cross polarization of the deuterium
double-quantum transition with the protons. In
Fig. 16 the experimental scheme for this measure-
ment is represented. The deuterium spins are
polarized by an ADRF experiment and after the

ADRF 45o DECOUPLING

H: I SPINS

D:S SPINS
F ID

"
h.

gU"

Tl& measurement

The relative deuterium signal intensity as a func-

0

-0.5

-1.5
0

I

10
I I

20 50
r(msec)

I

40 50

FIG. 17. Experimental result of the T& measurement
described in Fig. 16. Each point in this figure was ob-
tained by an accumulation of many individual measure-
ments of the deuterium signal. The obtained value of
Tgp is 43 msec,

FIG. 16. The pulse cycle used for the measurement
of the rotating-frame spin-lattice relaxation time T«
of the deuterium (S=1) double-quantum transition. This
cycle starts with the polarization of the deuterium dou-
ble-quantum transition by an ADRF cross-polarization
experiment (Fig. 2). At the end of the cross-polarization
period the proton dipolar order is destroyed by a 45'
pulse and the decay of the enhanced and spin-locked deu-
terium double~uantum coherence is monitored as a
function of the rf irradiation time &. The double-quan-
tum coherence is measured by applying an additional 90
out of phase rf pulse on the deuterium spins and by de-
tecting the intensity of the proton decoupled deuterium
fr ee-induction-decay signal.

mixing time the proton dipolar order is destroyed
by a 45' pulse. After this pulse the double-quan-
tum coherence of the deuterons is spin locked and
will decay with a time Trp to zero. This decay can
be monitored by measuring the deuterium signal
after 7 sec with an additional detection pulse. The
result of this experiment is shown in Fig. 17 and
the value of T&p obtained, is T„=43 msec.

T&D experiment

The proton T» relaxation time is measured by
an ADRF experiment without applying an rf field
on the deuterium nuclei. The recovery of the di-
polar order of the protons is measured with a 45'
pulse. The proton signal intensity after this pulse
is monitored as a function of the delay time be-
tween this pulse and the ADRF pulse. The experi-
mental result is given in Fig. 18 and Tyg 300
msec.
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0
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FIG. 18. The measurement of the proton local field
spin-lattice relaxation time T&~ of solid benzene-d&.
The points in this graph are the relative proton signal
intensities MI/~1 as function of the time & between the
creation of proton dipolar order by an ADRF pulse se-
quence (Fig. 2) and the transformation of this order to
a measurable signal by a 45' pulse. From these mea-
surements we get TED=300 msec.

I

200
-0.8

0

tion of the mixing time in a cross-polarization
ADRF experiment is represented in Fig. 19. The
experimental parameter was equal to p» = 17.2
kHz and the irradiation field was applied at reso-
nance. This corresponds to the maximum de-
struction in Fig. 12. The intensities are measured
after the application of an additional rf pulse with

p» = 1V.2 kHz. In the experiment this pulse was
90 out of phase with the mixing pulse; the maxi-
mum signal intensity which can be obtained in this
case is proportional to half of the double-quantum
coherence (see Appendix A). The relative inten-
sity is therefore given in analogy with Eq. (3.60} by

Ms 1 Tr[poo(t)g '] 1 ~ol +1s
(t) (5 21)

Ms 2 Tr(p„S) '"(os (o,a)q ~

The experimental result of Fig. 19 together with

Ch 2

GRos
N

50
I I I

IOO I 50 200
Mixing Time (msec)

250

FIG. 19. The relative deuterium signal intensities I
~q/~q of solid benzene-d~ as function of the mixing time
of an ADHF cross-polarization experiment (Fig. .2) on the
protons and the deuterons in this sample. The points in
this figure are the experimental results and the solid
line is the best-fit curve according to Eg. (5.21) through
these points. The adjusted parameters in the best-fit
procedure were Tzz and &D. The results for these
parameters are Tlz = 77.6 msec and e &= 0. 85 +0.05.

the values of T» and T„must be compared with
Eq. (5.21). A computer program was written to
minimize the deviation between the experimental
and theoretical result by changing the parameters

D and ~vs. The results of this calculation with g
= 0.95 are qD= 0.85+0.05 and T,~ = V'7. 6 msec. In-
sertion of these values in Eq. (5.22} results in the
solid line in Fig. 19. To compare the obtained
value of &~ with its theoretical value, we calcu-
lated &~ from Eq. (3.52) with Ns/NI= 0.2 and re-
placed ~» by ~,. The local field strength ~, in
frequency units of the protons was calculated
from the linewidth 6~ of the proton spectrum of
benzene-d, . Assuming a Gaussian shape for this
line, the ~1 value was taken as &o, = 5~/1. 18= 2.75
kHz and pa= 1.18. This is in reasonable agree-
ment with the experimental value 0.85.

VI. SUMMARY

The motivation of this paper has been to provide
a theoretical framework and experimental results
for various cross-polarization experiments be-
tween abundant I= —,

' and rare S=1 spins. In par-
ticular, cross polarization between the I=-,-' and

the S double-quantum transition has been treated.
The double-quantum transition has previously
been shown to be extremely useful for high-reso-
lution 'D and '~N NMR in solids and the results of
the present experiments indicate that such spec-
troscopy can also be done with very good sensi-
tivity. The theory for cross-polarization thermo-
dynamics and dynamics between I =-,' and S= 1 was
developed for both spin locking and adiabatic de-
magnatization in the rotating frame. This is a
generalization of the familiar I= S=-,' case. When

Qpy ~~ Rq a modif ied Hartmann-Hahn condition for
the simplest case of double-quantum cross po-
larization ~,'s/&oo ——~,z emerges. Experiments
were performed, showing the validity of the ap-
proach both for the thermodynamics and dynamics
of the cross-polarization process for double-quan-
tum transitions. By an indirect detection the
double-quantum free-induction decay of S= 1 can
be mapped point by point. Such further experi-
ments on 'D and '. N and other nuclei are under

way. "
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APPENDIX A

To transfer the total double-quantum coherence
after cross polarization



1 3 1 3
PDQ= a, S, (A1) T -1 1-3 1 3

pDQ z pDQUz x S&

to single-quantum coherence, we apply a strong
90 pulse ~»» ~,~ on the S spins, 45 out of phase
with the mixing pulse. In this Appendix we calcu-
late the effect of this pulse on pDQ and we evaluate
the signal intensity measured after this pulse.

The Hamiltonian of the rf pulse in the rotating
frame with +1' +~(4)g is

e, = -(1/v 2)(u, 3(s„+s,). (A2)

The effect of a T3 second pulse with &u, 3T3= m/2 on

p Q is calculated by

aTT, = -- s„= (w/v 2)(s„'-'+s„'-'). (AS)

(2) Perform an additional transformation with

U', '= exp(-i-,'ms', ')

and use Eq. (2.9) in Ref. 1t:
TT= T

PDQ PDQ 0 (A9)

ffTT (Ul-3)-lffT Ul-3 ~sl-2 (A10)

(3) In this new representation calculate Eq. (AS):

PDQ PDQ

with

8 i&g Tp e-if'/ 2 2(S~+Sy)

(AS)

(A4)

pT T
(90) (PT T)

1pT TPT T g1 3$2 3 (A 11)

(4) The transformation of pDT@T back to the rotating
frame yields

U, = exp(-i-4'2$, ) = exp(-i-211$,' ')

and obtain

(A5)

In the actual calculation we make use of the com-
mutation relations in Eq. (2.6) of Ref. 1'7. The ex-
pression for pDQ is obtained as follows:

(1) Transfer p @
and H&T3 with

pT (90) — (1/~g)~1- 3($2- 3 $1- 2) (A12)

90 1 1 3/r2 3 r2 3 cl 2 rl 2)pDQ- -2a. S. +S, -S. -S (A13)

This result is used in Eq. (3.57).
The density matrix after the pulse will evolve,

due to the quadrupolar interaction, as

p"~(t) = exp[- —',&uo($',
' —S,' ')t]p~'~ exp[—', (uo(S', ' —S', ')t]

= - (1/W2) a'„'[S'„'cos((rot+ —4'3) -S', 2 sin(~qt+ -4'2) + S„' ' cos((oct+ -,'3) —S„' ' sin(&cot+ -,'w) ] . (A14)

The signal intensity corresponding to this density
matrix equals

M„(t) = Tr[p"@(t)$,) = W2Tr[p99@(t)($'„2+ S„' ')]

p g(45)=(P ) p'P
1 1 3' 2 1 1 3/ oi 3 o2 3=2a S +2a gN +S

and transforming back

(A18)

= -a„' 'cos((rot+-,'3) (A15)

and the full double-quantum coherence a'„' is
transferred to the single-quantum signal intensity.

A 45' pulse at a phase angle of 90' with respect
to the mixing pulse transfers only half of the doub-
le-quantum coherence to single-quantum coher-
ence. In this case we must calculate

pDQ-

with (A16)

P = exp(-i-,'11$„)= exp [ i(n/2&2-)($'„'+ S„' ') ] .
Transformation of pD4'~ and P with U', ' in Eq. (AB)
results in

p43
' PTpT (45)(PT) 1

= (1/2~2)g (S 2+ $3)
1-3($1-3+ $2 3) (A19)

APPENDIX 8

The signal intensity just after this pulse equals

M„=Tr(pn43~$„) = 0 2Tr[pD43@(s„+S„)]
1 1 3 (A 20)

This result was used in Sec. VC to evaluate the
signal intensities after a double-quantum cross-
polarization experiment.

and

pD@= (U2 ') 'pD@U', '
1 3$1-3 lgl 3[$1 2~ ($1 3 $2 3)]

PT = exp(-i-2' ll S'„').

(A17)

The rate equations for the spin temperature co-
efficients Pz and P3 can be written in matrix
form"

d—P= -I'P+ n,
dt

With these equations we obtain with



22 DOUBLE-QUANTUM CROSS-POLARIZATION NMR IN SOLIDS 661

p, 't

p= Q=
~ pe .''

qRls + R~~

RiD
pg i R~p

-&Rls

-RIs Rls+ R~p

and in general R, =. 7,'.
To solve Eq. (Bl) we diagonalize I' and get

A= D I'D,

with
0

, 0 x.

with the values for A., and 8:

X, =-,' [(1+«)R,e+R„+R,~]
~-.' ([(& —l)R„+R„-R„]'+4e'R'„)'~',

sin28= -R»([(e —l)R»+ R» —R„]'
+ 4e2R4 )-1/2

The general solution of Eq. (Bl) becomes

p= g)e 'D 'p(p)+D(]. -e r')D 'Dp '~ 'n (]39)

and with the .initial condition

and

cos8 g sln8
D= .-sin8 cos8 .'

p(o)= p,

we obtain

Pe(t}= P~g(t}= P» . , (sin8cos8 ' (e ' ' —e "-)+(q sin'8R„—sin8cos8R»)i cos'8+ csin'8 g I 1p 1D

] e-x t)
+ (cos'8R„+ sin8 cos8R»)

) (SlO)

This expression was used in the computer program to fit the dynamics and the value of &~ in the cross-
polarization experiments.
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