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Theorem on coherent transients
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A fundamental theorem in nuclear magnetic resonance and quantum optics is derived for an atomic system subject
to inhomogeneous broadening and coherent preparation by a pulsed electromagnetic field of arbitrary shape. We
show that the coherent emission, free induction decay or echo, which follows is confined to an interval which

precisely equals the duration of the applied pulse sequence. The theorem applies to two-level or multilevel

transitions for which the inhomogeneous linewidth is infinitely broad and the sample is optically thin.

It is well known in nuclear magnetic resonance
(NMR)" and quantum optics" that a two-level
quantum system can emit coherent radiation after
it is prepared by a pulsed resonant electromagnet-
ic field. This effect, known as free induction de-
cay (FID), has been analyzed over the years
through solutions" of the Maxwell and Schrodinger
wave equations and exhibits different properties
for transitions which are dominated either by ho-
mogeneous or inhomogeneous line broadening.
For the case of strong inhomogeneous broadening,
as in the optical regime, particular analytic solu-
tions which are nonlinear in the field amplitude
have been found recently' for the thin-sample
regime when the inhomogeneous linewidth is in-
finitely broad, and reveal a striking and funda-
mental characteristic which appears to have gone
unnoticed in the previous NMR and optics litera-
ture. Earlier studies ' indicate that yah. egg g pulse
offinite duration T (interval 0~ t & T) PrePares
a sample, the coherent emission which follows
lasts only for an additional period T (interval
T ~ t ~ST). An example of a calculation7 which
illustrates this behavior is shown in Fig. 1 where
the emission for t &2T is zero. The oscillatory
behavior, which appears for large pulse areas,
is also unusual and is discussed elsewhere. '
These calculations as well as supporting NMR'
and infrared' experiments suggest that the above
statement is actually a theorem. We now prove
on very general grounds that this is the case with-
out recourse to particular solutions. The theorem.
holds for arbitrary population (T,) and dipole (T,)
decay times, and arbitrary pulse shapes of finite
duration T, and can be generalized to multilevel
transitions as well. Since the pulse shape is ar-
bitrary, the theorem is equally valid for two-
or multiple-pulse echo sequences.

We assume that an electromagnetic pulse of
arbitrary shape

E,(t)cos(Qt —hz), 0 & t & T

0, t 0, t T

and of duration T coherently prepares an atomic
sample. For a two-level quantum system, the
atomic density-matrix equations of motion take
the familiar form

~ ~d . 1——s&+—p = ~sXN)
haft T

(2a)

dw . (w —7U )
dt

= - ix(P., —t)„)—--
i

(2b)

where the upper and lower states are ~2) and ~1),
the population difference ~~=—p» —p», the rapidly
oscillating terms in the Schrodinger equation are
removed with the substitution p»-—p»e""' "', and
the nonresonant high-frequency terms are ne-
glected. Furthermore, the Rabi frequency x(t)
—= g»E (ot) h/and the tuning parameter t = = 0+ (U»
+ kv„where p,„is the transition matrix element,
(l02] is the 1 —2 leve l splitting, and k v, is a Dop-
pler shift. For an optically thin sample, Max-
well's wave equation yields an emission signal
field E(t) which is essentially given by

F(t) -(P(t)) =XTr (I p(t)),

where p(t) is the atomic polarization. The bracket
denotes an average over the inhomogeneous line-
shape, which for an atomic gaseous system is

g(t), ) = exp[-(a/(7)']/v 77o, (4)

the Doppler width being 0.
By formally integrating (2a) and performing the

Doppler average, we obtain the general expression

(t)„(t))= I t(&)p„(0)e" ' *"t&

t
+ ~ dZ g(~)w(~ tt)X(t()e(tt;1/ T2)(t t')dti-
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the domain t &P'&0 defined by the integration lim-
its in (5). This difficulty vanishes, however, when
allowance is made for the finite pulse, Eq. (1),
which changes the upper limit of the time integral
from t- T so that (5) becomes

OQ T

(p (f)) dg tt/(g f &)y(f t) e(i 5-1 / T2 ) (t t')dt-
2~vo

FIG. 1. A computer plot is shown of the free induction
decay {upper curve) following a preparative field pulse
gower curve) of amplitude E, duration p, and pulse area
XT =2m. This calculation, which is described in detail
in Ref. 7, follows from a solution of the Bloch equations
and a numerical integration over an inhomogeneous line
shape of finite width cr.

The first term of (5) can be eliminated with the
assumption that coherent preparation does not pre-
cede the pulse; i.e. , p»(0)=0.

We now restrict the discussion to physical sys-
tems with very large inhomogeneous broadening
and will therefore evaluate Eq. (5) in the limit
o -~, keeping Ng(0) constant. Under the assump-
tion that the order of integration can be inter-
changed, we first perform the integration over the
detuning parameter b, by closing the path of inte-
gration in the upper half-plane and find

to(t)(, f) = PA t exp(z tt) + const,

where the quantities z& are the roots of the char-
acteristic equation

(g+ 1/T, )(g+ 1/T, )2+ () '(g+ 1/T, )

+ )(' (z+ 1/T, ) = 0 .
In the asymptotic limit ~4

~

—~ the roots assume
the values

~1 Tl
lime&=

1/T2% $4 I

causing the integrand on the circular contour to
vanish exponentially when the following relation
is satisfied:

t &2t'. (9)

Notice that (9) appears to be incompatible with

(() ft)ett (t t')dg-
(Uhp )

where the sum is taken over the residues B in the
upper half-plane. The contribution to the integral
from the half-circle contour can be evaluated
easily in the limit of infinite radius

~
b,

~

- ~ when
we recall that the solution of the Bloch equations
has the formal structure"

The restricted domain T &t'&0 of (10) is now con-
sistent with (9) when we assume that

t &2T» 2t'.

Equation (10) is a very compact general expression
as it includes the preparation or transient nutation
effect for the period 0& t & T and FID for the in-
terval t &T.

We now evaluate (6). Since the density-matrix
equations (2) are a set of first-order differential
equations which depend linearly on the parameter
&, the solutions according to a theorem of Poin-
car4" are entire functions and therefore will be
analytic in 4 and will contain no poles in the fi-
nite complex plane. Consequently, the integral
(6) vanishes and we conclude that the emission
signal (10) is identically zero for f &2T,

((()»(t))-=0, t & 2T .
Since the pulse shape according to (1) is arbitrary,
this theorem applies equally well to an entire
pulse train. For example, in a two-pulse echo
experiment where T is the sum of the two-pulse
widths and the delay time, the echo signal ter-
minates precisely at t=2T.

The above discussion assumes an infinite in-
homogeneous linewidth o.—~. The effect of finite
o can be seen analytically if we replace the Gaus-
sian lineshape (4) by the Lorentzian g(&) = (o/)t)/
(b,'+ o') and assume a pulse where in (1), ~EO(t)

~

& Eo. %'e find an upper bound for the polarization
(5) by contour integration in the uhp about the
pole 6= jo, and upon integration over time, we
obtain

(12)

where we have used the formal properties' of the
Bloch equations giving the upper limit

~
to(io, t )

~

«f(o)e", where f(o) is analytic. Hence, a large
finite inhomogeneous linewidth o produces a rap-
id decay for t &2T, in a time T,*=—2/o, and thus
the theorem stands as an excellent approximation
for this case as well.

All of these arguments can be extended to echoes
or FlD within a multilevel quantum system where
the energy spacing, the number of applied fields,
and their frequencies are arbitrary. The density-
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matrix Eqs. (2) assume an obvious form given
elsewhere. " For any one-photon transition i -j,
the FID signal is

~ p co t
+ — ' d6 gh p,.

'I(moo k 0

)( ~(t&ty-1/ T)y)(t-t')dt's+ c c

where

The simplicity of this theorem suggests that
a simple physical description of the origin of this
effect might exist. Thus far, this approach has
proved elusive because the FID or echo depends
nonlinearly on the applied field and the inhomo-
geneous broadening introduces a nonobvious in-
terference among the coherently prepared packets.

It is interesting that the fundamental nature of
this phenomenon has escaped attention until now.
The theorem should prove useful, therefore, in
interpreting future coherent transient experi-
ments, especially at optical frequencies.

Since the structure of (i3) conforms to (5), the
previous arguments apply and the same conclu-
sion follows.
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