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The differential equation for the photon conditional probability distribution in a nonlinear amplifier is numerically
solved, using the continuous approximation. Saturation effects on the. development of fluctuations in the
amplification of coherent light are studied. They are compared with the results obtained by solving the moment

equations.

I. INTRODUCTION

Some years ago® statistical properties of the
fluctuations in the amplified light were studied,
but only for the linear case. Recently, more
realistic studies have been published which take
into account the nonlinearity of the amplifier.
Some papers treat the amplification of coherent
light.2 Others, in treating the amplification, take
into account the spontaneous emission® %% and at
least a recent paper gives a more complete de-
scription of the light-amplification processes.®
Recent progress in integrated devices and optical
fibers has enhanced the interest of studying light
amplifiers in view of their use in the optical
communications system.

In this paper, we present numerical results of
the photon conditional probability distribution for
an amplified coherent light. The probability dis-
tribution, and first and second moments of the
distribution are displayed. We use a model of
nonlinear amplification which is an appropriate
modification of the equation of Scully and Lamb.”
Our results show that the normalized second- and
third-order moments of the distribution first in-
crease and then are continuously decreasing
whereas the first moment (i.e., the mean photon
number) is continuously increasing. The combi-
nation of the two facts may be of some interest in
the theory of optical communication.

II. PHYSICAL HYPOTHESIS OF THE MATHEMATICAL
APPROACH

We consider a gaseous optical amplifier con-
sisting of two-level systems which are made of
two excited states of an atom or a molecule. They
are held in an inverted population state by an ex-
ternal pump. The Bohr frequency of these sys-
tems is nearly resonant with the frequency of the
amplified light. This light is assumed to be mono-
chromatic. The photon-number distribution at the
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input of the amplifier P,(0) is given. The photon-
number distribution at the abscissa z into the
amplifier P,(z|n,) given the mean photon number
n, at z=0, contains the information which is neces-
sary to calculate the main properties of the am-
plified light. The fundamental equations which
govern the evolution of P,,(z[no), which we call
P,(z) in the following, were first extensively
studied by Shimoda, Takahasi, and Townes* for
the linear amplification case. Actually an optical
amplifier can be considered as linear only for a
very small number of photons. It is an unrealistic
case since the purpose of an amplifier is to give
an output number of photons sufficiently great to
drive a photon detector (a counter or another sys-
tem). Equations (3) of Ref. 1 should be improved
in order to take into account the saturation process
which unavoidably occurs.® Scully and Lamb” have
given an equation which takes into account the
saturation phenomenon, but only for the terms
which govern the photon emission. These terms
are multiplied by a saturation function

1
1+xn

fn)= , (1)
where » is a phonon number and x a coefficient
which is depending on the nature of the amplifier
medium. In our model we take into account the
saturation of the absorption by multiplying the
terms which govern the absorption by the appro-
priate form of the function f(n).

Recently, a similar expression for the function
of saturation has been found.®!° The solution of
these nonlinear equations cannot be easily ex-
pressed in a closed form. One common way to
solve the problem is to solve the set of 2 equa-
tions for the (#*) moments of the photon number
or the related coefficients

go=n®D/ (W) =1 (> 1). (2)

Usually one restricts the study to =1 and 2. We
then have the mean value of » and the g, coefficient
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which is the most commonly used ratio to describe
the second-order statistical properties of a sta-
tionary random field. Unfortunately, the approxi-
mations which are mandatory in order to have
tractable partial differential equations for the
evolution of (xn) and g,, are very drastic.

One can replace the expression 1/(1 +xn) by
1 - xn or a Taylor expansion at the second or third
order. Then the mean value (#°) and eventually
{n*) are replaced by the decorrelated expressions

(n®) = (n®)n) (3a)
and
(n*y=(n?)?. (3b)

Another way consists in making the following ap-
proximation:

n* >_ {n*) 4)
<1+xn ETION

The first method has a major drawback. The Tay-
lor development is not valid for x{n)> 1, i.e., for
the very large values of (») for which the satura-
tion phenomena become significant.

The second method is a more dangerous ap-
proach. The approximation contained in (4) is
equivalent to an all ordér decorrelation. Such a
decorrelation is valid only for a Glauber pure
coherent field. So we are computing the g, coef-
ficient which depends on statistical nature of the
field and we make simultaneously an approximation
which assumes that the field is coherent. A de-
correlation process at any order is only valid if
the field is coherent or nearly coherent. So we
have to use as the input a Glauber coherent field
and we have to check the g,(7) coefficient to en-
sure that it remains very small compared to one.
So it is not advisable to use the results of such
calculation if they have not been controlled by an
exact calculation [i.e., a numerical integration
of the system of differential equations which govern
the evolution of P,(z)].

In this paper we present some new results ob-
tained by an exact numerical integration. We
compare them with the results obtained by the
approximate method and which are in only a qual-
itative agreement.

Using the Eqgs. (17) and (59) of Ref. 7 and intro- '
ducing the modification described above we find
that we have to integrate the system of nonlinear
differential equations

Do) - _[(n+ 1) fln+ 1)+ B £ )] P(7)

+nf(n)P,. (T)+ B+ 1) f(n+ 1)P,, (1), (5)

where

T=Az/c, (6a)
B=B/A, (6b)

c is the speed of light, z is the abscissa into the
amplifier, and A and B are, respectively, the
coefficients which govern the emission and the
absorption of the photons. These equations take
into account the spontaneous emission of photons
in the one normal mode which is considered in
this model. We made the following approximations
in order to solve the system (5) more effectively.
(a) The discrete function P,(7) is replaced by a
continuous function P(xn, 7). This approximation is
usual® and is justified by the great number of pho-
tons which are always involved in the process.

(b) Plnt1,7)=Pln,7)s 35%
+p EET), ™
n
(e) flrt1)=f)Fxf(n). : (8)

It is important to note that these approximations
are valid if (#)> 1 and if P(n, 7) is a smooth func-
tion of n.

If the conditions for validity of these approxima-

‘tions are satisfied for 7=0 they will remain satis-

fied for any value of 7 if P(n, 7) is always a smooth
function of n. So the smoothness condition will re-
main valid. However, the validity of the above ap-
proximations can be easily controlled during the
computation,

As suggested in Ref. 9, to solve the equations
more effectively we have considered the transfor-
mation

P(n, 7) = exp[Rlz, 7)], " )

and we have integrated the partial differential
equation of the form '

3R(n,T) _ < 8R 9%R )
—— =F R(n,T)’a—n:"é;lf:n . (10)

This last transformation does not involve any sup-
plementary approximation. The detailed expres-
sion for 8R/97 is given in the Appendix. We give
also some details concerning the method used to
compute Eq. (10).

1I. MOMENT EQUATIONS

Solving the “exact” equation (10) directly is
difficult and requires a long computation time.
The solution P(n, 7) is obtained for one set of
parameters (8, X,7,). So the study of the depen-
dence of the solution against the variation of the
parameters is a cumbersome task. These prac-
tical considerations make the solution of the mo-
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ment equations an interesting approach despite
the severe shortcomings of this method, which
have been pointed out in Sec. II.

The time evolution of the mean photon number
{n) and the second moment (»?) may be derived
from Eq. (5) and are

dn), = Ay 1+x8{n)

ar T xlny T T x(my?’ ()
d(n®)y _ 28(n®)+ Q(n)+1
ar T+ x{m,f
o SRR Bpts
where we set
A=1-5 (12a)
and
Q=34+4. (12b)

We assume that (#)> 1 and we use the decorre-
lation method mentioned above. For x=0, the
solutions to Egs. (11a) and (11b) are easy to find.
We obtain

(m)o(T) = (mo+1/8)e® =1/, (13)
and
(n®o(1) = [n§+ Mg+ % <n0+ Kl) - liz—ﬁ]ezm
- % (no+ %)e“+ 12213 s (14)

where 7, is the given mean photon number at the
origin of the time axis. The symbol g3(7) stands
for the g,(7) coefficient defined by Eq. (2) in the
particular case k=2, x=0, and g¥(7) is the same
coefficient for x#0. Then g3(7) is very well ap-
proximated by the relation

nog %)= 2 (1- L e'“). (15)

For an infinite value of 7 it reaches the asymptotic
value 2/A. To solve Eq. (11a) in the nonlinear
case (x #0) we find that a reasonably good method
consists in using a perturbation method starting
with

d{n)y _  Aln)o(7)
dr 1+ x(m(7)’

(16)

where (n),(7) is given by Eq. (13). We then obtain
- 1 _X"o AT )
() (T) =no+ : 1n(1+ T (e?"-1)). ()

Of course, the exact solution of Eq. (11a) can be
calculated but only in an implicit form. This has
actually been done by Litvak® who also gave an ex-

plicit approximate expression of {n)(7) for large
7. But the interest of Eq. (17) is first to give a
good approximation to {n)(7) in the full range of 7,
and also to allow us to compute analytically the
second moment via Eq. (11b). Here again starting
with (#?),(7) given by Eq. (14), we use a perturba-
tion method to seek a solution to (x#?),(T). We con-
sider two cases: 7<7 and 7> 7  where
1 1 :

Ts_ -A— ln(%;\) (18)
(with the parameters chosen here 7,=~23). Note
that

(mo(T)=1/x (19a)

and

(M (1) >my+ % 1n(1 +2xno)' (19b)

For 7<T7, solving Eq. (11b) leads to

AT\2

ror 0=l (TG @
where g (1) is given by Eq. (15). For 7>7, the
same method is unfortunately inappropriate be-
cause it requires having the boundary value which
is in our case unknown.

We find that, if we replace in Eq. (11b) the

second term of the right-hand side by its Taylor

- development at first order we obtain results which

are in a qualitative agreement with the exact re-
sults. Under these assumptions Eq. (11b) becomes

d{n)« (n?)
= ), (1 - x{m)) +2 Tox(n, (21)
whose solution, valid only for 7>7,, leads to
g3(1)=g2(1) - Qx7. (22)

We need to keep n,gX(7)>1. The upper limit of 7
for this expression will be T,~1/Axn,=100, with
the parameters chosen here.

Note that these solutions (19b), (20), and (22)
have been obtained from oversimplified moment
equations. Their simple analytical expressions
make them very useful for an approximate study
of the variation of the statistical properties ver-
sus the parameters of the problem. Nevertheless,
they give at least a correct qualitative behavior of
the moments versus the time, and they are also
reasonably good estimates to the exact solutions
which we calculate now.

IV. RESULTS AND DISCUSSION

We have computed the first three moments of
the fluctuating amplified light intensity using the
exact equation method (EEM) and the moment



22 STATISTICAL PROPERTIES OF COHERENT RADIATION IN A... 633

equation method (MEM). The calculations have
been performed in the linear case (x=0) and in

the nonlinear case (x=107%). In the two cases we
have chosen 8=0.9. The input field was a coherent
Glauber field with a mean photon number of 1000.

In the linear case the moment equation method
is an exact method since decorrelations are not
required. The exact calculations for the same
conditions, have led to severe computational diffi-
culties (probably connected with some instabilities
of the differential equation system) so we have only
used the moment equation method to compute the
first and second moments of the distribution.

Figure 1 displays the photon number distribution
P,(7) in the nonlinear case for the values of 7=5,
15, 30, 40, and 50. In Fig. 2 we display the first
and the second reduced moments in both the linear
case and the nonlinear case.

In the linear case, we note that the first moment
is exponential and the reduced second moment is
constant for long times. In the nonlinear case the
amplification process is nearly exponential when
the amplifier is weakly saturated (x{»n)< 1) and
tends to become linear when the amplifier is
strongly saturated. The first moment calculated
by Eq. (19a) becomes linear for 7> 7,. It is im-
portant to note that the limiting form of the exact
equation shows that the amplification is truly li-
near for a very strong saturation case.

More interesting is the behavior of g X(7). In the
weak saturation region it is increasing. It reaches
its maximum value in the moderate saturation re-
gion (T"‘Ts); then it is continuously decreasing.
The g calculated by the moment equation has the
same behavior but the coordinates of the maxi-
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FIG. 1. Photon-number distribution for the nonlinear
case (x=10"%) with the values of T=5, 15, 30, 40, and
50. The distributions are normalized so that E,,P (n,T)
=1.

mum of g% are only in a qualitative agreement with
the values given by the exact calculation. The
computation of g% (7) as defined by Eq. (2) for 2=3
shows similar behavior for g%(7) as for g%(7). For
7«1, alack of accuracy in the computation of
g3(r) should be noted. The curves n,g5(7) (d) and
70,82(7) (b) should more clearly coincide. Also for
7 -0 all the curves plotted in Fig. 2 approach 1.

The decreasing part of the n,g%(7) curve that is
the region for which there exist reductions of rela-
tive fluctuations, would be very interesting to
transmit and detect optical information after non-
linear coherent amplification.

The use of two decorrelation processes in the
integration of Eq. (11b) is unorthodox. In fact,
it is not easy to justify physically nor mathemati-
cally the use of two different approximations in the
same integration process. We can only assert that
these approximations are the ones which the better
fit the exact curve. In these conditions the mo-
ment equations cannot be used to predict the be-
havior of a nonlinear amplifier if an exact calcula-
tion has not been yet performed since we have no
sure way to choose the best approximation if we
are not guided by the exact calculation. Its only
practical use is to study the effects of small varia-
tions of the parameters around the values which
have been used in the exact computation. There-
fore, our calculations are another warning against
the unconsidered use of the decorrelations in
quantum optics.

V. CONCLUSION

In summary the results presented here show
that nonlinear amplification of laser light tends
to reduce the relative fluctuations of the intensity.
The simple model we considered does not require
any limitation for the gain. We also established
approximate and locally valid formulas for both

100 - a
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FIG. 2. Variation of the first two reduced moments
versus T for the linear case (x=0) and the nonlinear case
(x=10"%). )o(1)/ngis displayed by curve a. )y(1)/n,
is displayed by curve c. g3(t)ng and g¥(t)n, are displayed,
respectively, by curves b and d.
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gain and second-order photon-number fluctuations.
In the intermediate region from linear amplifica-
tion to saturation, no change in the photon distribu-
tion shape have been observed because of the high
level of the photon number involved. Calculations
for a low level of photon number will be done in a
future publication.

APPENDIX

We give here some details on the computational
methods used to obtain the numerical solution of
Eq. (5). Using the approximations (7) and (8) we
obtain, after a straightforward calculation, the
differential equation

—A(l +1Xn = x(1+xn1) %(n + 1)) P(n, 1)

8P(n,7) _) . (B - an

= x(1+xn)?B(n+ 1)) a—lf-(%ﬁ

aT 1+xn
+ % ((lni;ﬁ X(1+xn)?B(n+ 1)) H(—Zg’-ﬂ )
(A1)
where
A=1-8, (A2a)
o=1+8. (A2b)

Using the relation (9) we obtain the more simple
differential equation

2R,T) 4 e +B[(%%)2+ %Z%] +C,  (A3a)
where
A=f)[Br+1)=1]-f2n)x(n+1)8, (A3Db)
=:{f@[B+n(1+B)]-fPWBR+ 1}, (A3c)
C=fm)(B =D+ m)x[n(1-B)+1-B]. (A3d)

Equation (A3a) has been numerically integrated
using a grid method. In other words, given the
values R(n, 1), 8R(n, T)/3n, 9°R(n, T)/on for a

value of 7 and for p equally spaced values of n, we
integrate equation (A3a), using a Runge-Kutta
method, to obtain these functions for the same
value of n but for 7’=7+ 67, and we repeat the
process. But the value n,, of n corresponding to
the maximum P_,, of P(r,T) and the width of the
distribution P(n, T) are varying during the integra-
tion. As our program assumes that P(n, 7) is
computed for a fixed number p of values of n, we
have to extrapolate P(n, 7) to take into account the
evolution of the shape of P(n,T). We use the fol-
lowing process. For n>n_,, we use the extrapola-
tion function

max

P*(n)=P,, {cos?*(a) exp[-o(n - n_, )]
+sin’*(a) exp[-6(n - n,, )]} . (A4)

For n<ng,,
tion

we use the similar extrapolation func-

P(n)=P,, {cos?*(a’) exp[-¢"(n_, — n)']
+sin®(a’) exp[—56"(n,, — n)e'])L .
(A5)

The coefficients o, ¢, A, 8, ¢ and the similar
coefficients of Eq. (A5) are obtained by a least-
square fitting of P*(n) or P (n) against the p points
curve obtained by integration of Eq. (A1). This
extrapolation process must be carefully checked
because slight fitting errors in the wings of P(n, 7)
can induce severe errors in the computation of
&:(7).

Then we compute a set of values of R(n,7),
8R(n, 7)/8n, 8°R(n, T)/on? for a new set of p values
of n. The values of the parameters used in func-
tions P*(n) and P™(n) show that the shape of P(n, T)
is always nearly a Gaussian curve.

The program has been run on an IBM 370/168
computer. The computing time necessary to ob-
tain the results displayed in Fig. 1 and 2 is about
one hour. We have choosen p=7T1, and the final
relative accuracy of the results was about 1073,
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