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The incomplete spectrum of finite complex-scaled Hamiltonian matrices H is studied. It is pointed out that the
occurrence of an incomplete spectrum of complex-scaled Hamiltonians in the finite-element approximation is
neither accidental nor rare, and the existence of a defective eigenvector (orthogonal to itself) of H can be
associated with a complex-stationary point which represents the resonance state. A physical interpretation of
the incomplete spectrum (the eigenvalues of a defective Hamiltonian matrix) is given, supported by numerical
results for e -He+ scattering worked out as an example. The numerical procedure suggested here for the
purpose of identifying the resonance state. with the eigenvalue associated with the defective eigenvector of H,
may prove to be not very practical. This is so as long as only relatively small basis sets are used. However, in the
finite-element approximation, this procedure does yield a better understanding of the behavior of the resonance
solution.

I. INTRODUCTION
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where W, =E„-—,
' iI' (E„and I' are the resonance

position and width, respectively). When the ro
tation angle 6 satisfies

8 I"/[2(E„-E„...„)],

(2)

(3)

the resonance eigenfunctions become square-inte-
grable functions, and therefore they are isolated
from the eigenfunctions corresponding to the con-

The fundamental works of Aguilar, Balslev,
Combes, and Simon' have provided a mathemat-
ical foundation for the description of atomic and
molecular' resonances by the complex- scaling
method.

In the complex-scaling method, the internal
coordinates of the Hamiltonian H(r) are complex
scaled by ri= exp(-i8), and thereby a complex
Schrodinger equation is obtained,

H„(r) II( (r) = W 0 (r) (1)

in which H„(r) =H(r/ri) and W, = (E„+iE,.)„. The
effect of the scaling on the spectrum of the Hamil-
tonian is as follows'.

(1}The bound-state energies (E„&E', where E'
is the lowest eigenvalue of the (n —1)-particle
Hamiitonian, and E, =0) are 8 indep. endent.

(2) The continuum-state energies are rotated
to the complex plane by varying 8, E,. = (E„

Eg(( b) tan(2 8)
(3}The resonance states (like the bound state,

and unlike the scattering states) are 8 independent:

tinuous spectrum.
If the eigenfunctions of H~ form a complete set,

then the nondegenerate eigenfunctions are com-
plex normalizable' and

((,((,)=f ((,(r)(,(r)ar-. O

for all space. Consequently, the resonance func-
tion 4„can be expanded in a linear combination of
orthogonal basis functions (P,.] forming a complete
set. The linear coefficients 0,. can be chosen to
satisfy the complex-variation (stationary) prin-
ciple (Ref. 3) BW/BC,. =0, where

and

W= gC,.C,.H, ,/gC, .C„
it/ tsar

H, = ((t,. (r) ~H(r/ri)(t(, .(r)) .
By truncating the basis set to N basis functions,
the original complex Schrodinger equation [Eq.
(1)] is transformed into a finite-matrix eigenvalue
problem

(H(ri)- WeL)Vs=0 k=1)2) ~ ~ ~ ~N ~ (4)

It has generally been assumed that by increasing
N, the complex-stationary point sW/sri~t4=0 [see
Eq. (2)] will converge to the exact resonance eigen-
values of the Schrodinger equation. 4 However, it
is possible to have degenerate poles in the scatter-
ing amplitude, so that the resonance eigenfunction
is orthogonal to itself, ((I(,

~ g, ) =0.' In such a case
the complex-variational and other theorems that
have been proved for H„(r) are not valid anymore. '

Actually, any infinitesimal perturbation removes .
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the degeneracy of the poles and the formal difficul-
ty mentioned above disappears. Therefore, it is
numerically unlikely to observe this phenomenon .

(incomplete spectrum because of multiple poles
in the scattering amplitude) in a finite-element
approximation of the complex- scaled Hamiltonian.
Conversely, if a defective eigenvector is observed
in a finite-element calculation, it is unlikely to
correspond to a true case of degenerate poles in
the exact scattering amplitude. In this paper, we
study the incomplete spectrum of the complex-
scaled Hamiltonians in the finite-element approxi-
mation.

In the next section it is shown that for such a
complex-scaled Hamiltonian matrix, one can al-
ways find at least one scaling parameter g for
which the matrix is defective and the spectrum
is incomplete. Moreover, the defective eigenvec-
tor of H„can be associated with the complex-sta-
tionary point which represents the resonance
state. In Sec. III a physical interpretation of the
incomplete spectrum is given. It is suggested
that the critical scaling parameter for which a
defective eigenvector is obtained may be associ-
ated with the critical rotation angle 8, = I'/[2(E„
-E,„„„)]for which the resonance state is
"covered" by the continuum solution (see Eq. 3}.
The incomplete spectrum of the finite-matrix Harn-
iltonian associated with the e -He resonance has
been studied as an example.

II. THE SPECTRUM OF THE COMPLEX-SCALED
HAMILTONIAN IN MATRIX REPRESENTATION

Let us restrict ourselves to an n-particle Ham-
iltonian in which the potential V(r) is a homogen-
eous function of the first order (e.g. , the Coulomb
potential). For this type of operators the complex-
scaled Hamiltonian in a finite-matrix representa-
tion can be written as

H(q) =H(q)/q = qT+ V,

with

W,.(q) =gX,.(q), i =1, . . . ,N. (10)

From a physical point of view, the interesting
case is when TVcVT, and we shall assume that
this holds.

Foll.owing the result of Motzkin and Taussky, '
the fact that [7,V] x0 implies that the eigenvectors
C,. need not be normalizable. For real q each
A. (g) is an analytical function of g,' and one can
analytically parametrize the eigenvector

det ~H(q) —~,.f [=0.

such that

Cr(g)L,.(g}= 6,, for q =Re(q) .
However, when g obtains complex value, so that
H(g) is complex symmetric, H(q) can have an ar-
bitrary Jordan canonical" form. We shall call an
eigenvalue b of II a defective eigenvalue if b is not
a simple pole of the resolvent (H —XI) '. That is,
for any choice of linearly independent eigenvectors
which span the eigenspace corresponding to b,
there exists an eigenvector 0, such that C~V, =0
when H(q)C~=&, C~. In that case the set of eigen-
vectors of II does not span the whole space and we
say that H has an incomplete spectrum. More-
over, the Motzkin and Taussky results" imply
the following theorems.

Theorem 1. If T and V are N x N (real or com-
plex) matrices which are similar to diagonal ma-
trices, and T and V do not commute, then there
exists at least one q, (a defective point) such that
A, (q~) is a defective eigenvalue for some j.

The eigenfunctions X,.(q), j =1, . . . ,N are alge-
braic functions since they satisfy the equation

H(q) = q'r+ qV,

where

r(i, j)=&y,.(r) ~f'(r)y, (r)& (6)

Therefore, the A. .(q} are analytic in q except at a
finite number of points g„... , g, which are the
branch points for some eigenvalues; i.e., some
X (q) do not have a Taylor expansion in (q- p~)
around the branch points q, . However, XJ(g} does
have an expansion in (g- g,)"~:

(H(q)-W, fg,. =o, i=i,
Without loss of any generality, we consider the
related Hamiltonian

(6)

are the discretizations of the kinetic- and poten-
tial-energy operators T(r) and V(r), respectively,
and fQ,.(r)j are N square-integrable basis func-
tions. The eigenvalues W,.(g), . . . , W„(g) of H(g)
are the solutions of the secular equations

(13)

the so-called Puiseux series. Here p ~2 is some
integer which does not exceed the multiplicity of
X,.(g,) in the characteristic polynomial [Eq. (12)].
The assumption T, V] x0 implies that at least one
branch point exists when T and V are constructed
from a real basis set [real P,. in Eq. (5)]. Then,
we can prove the next theorem.

Theorem Z. When T and V are N x N real sym-
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metric matrices and do not commute, then these
exists at least one branch point q, such that

(14)
dX,.(q)

+=rig

for some j. [Note that the resonance state, by
constrast, is a (stationary) point for which dW/

«I,„=d'/«I, „+~,./&. „=o.j
Proof. Suppose that for all finite q„X,'. (q, )

—= 8&,./Bql „ is also finite. This means that either
q„ is a point analyticity of X,.(q), or q, is a branch
point for X,. (q) and the coefficients o,„.. . , n, »».
vanish. Now let us consider q = ~. According to
Rellich's resultg each X,. (g) is analytic around q
=~ and we have the expansion

Then (p,„.. . , p.„)are the eigenvalues of the m x m
matrix, (V~rh, V,.). Thus if q, which satisfies Eq.
(14) is not defective, then the expansion in Eq.
(17) shows that d&&(q, )/dq= p, , which contradicts
Eq. (14).

However, it may happen that g, is a defective
point and Eq. (14) does not hold for any j. More-
over, there are cases in which q, is a defective
point but all X,.(q) are analytic at q= q, . We shall
illustrate such a possibility by giving the following
simple example.

Example.

144(q+ 1) -108(g+ 1) -180i

H(q) = -108(q+1) -544(q+1) -240i . (18)

x,.(q)=qx, .(T)+ Q o,~q, lql&R (15)
-180i -240i

and

k=0 Then the characteristic polynomial of H(q) is

X[X'+400(1+ g) X- 90 000(2+ q) q], (19)
Z.( )=X,.(T).

Here &,.(T) denotes the jth eigenvalue of the kinetic-
energy'matrix T. Therefore, the derivative of the
multivalued function X(q) is bounded on the whole
complex plane. The maximum principle implies
that each X~(q) is a constant. " (See, for example,
Ref. 13 for use of this type of argument. ) Conse-
quently, each X,.(q) is linear in q but then, by an-
other result of Motzkin and Taussky, ' T and V

commute, in contradiction with the assumption of
T, Vjx0.
It is also possible to show that the branch point

g„which satisfies Eq. (14) must be a defective
point. This is a result of the following variational
formula. "

Theorem 3. Let H(q) be an analytic symmetric-
matrix function on Pq —q, I

& R:

(16)

~,(n) = ~.+ ~,(n n.)-
+ n,.k q- g, "", j=1, . . . , m

k=a+1
(17)

where m is the multiplicity of ~p in h, .
Let (C„.. . , P ) be the eigenvectors of h, =H(7,).

Then

Assume that X, is semisimple, namely, that all
the Jordan blocks of h, corresponding to Xo =X; (7)o)

are 1 x 1 (&, is not a defective eigenvalue of h, ).
Then, for any A, (q) we have the Puiseux expansion

where X stands for the eigenvalues of H.
Therefore the eigenvalues of H(q) satisfy

x, (q) =0,

g, + 400 (q+ 1)X, , —90 000 (q+ 2)q = 0 .
Thus, for q=0 we have

X, (0) = X, (0)

(20)

(21)

(22)

X,(0) =-400.

Obviously in view of Eqs. (21)-(23), &,(q) and

&,(q) are analytic at q=0. On the other hand, a
straightforward calculation shows that the only
eigenvector which corresponds to ~, = ~, = 0 is

(23)

C=(4, -3, -5i), CrC=O. (24)

III. THE PHYSICAL INTERPRETATION
OF THE INCOMPLETE SPECTRUM

OF FINITE-MATRIX HAMILTONIANS

As was discussed in the Introduction, the reson-
ance wave function becomes square integrable
when the internal coordinates of the Hamiltonian
are complex scaled by g=exp(-i8), where 8&8,
and 8, = I'/(E„-E,„„,„). When 8 is exactly equal
to 8, the resonance eigenvalue (complex energy,

This shows that g =0 is a defective point. Further-
more, since BX/By=0 for all q, g=0 is also a
stationary point. This particular example shows
that a stationary point g„t for which

d X,.(q)
d'g

for some j, can also be a defective point at g,
~oyt '
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E,— iI ) is degenerate with the rotating continuum.
This is a necessary condition to have a branch
point associated with a defective spectrum. How-
ever, since the resonance wave function g„and the
eigenfunction corresponding to the continuous spec-
trum g, do not belong to the same class of func-
tions (g„ci', and g,g2, ), the eigenfunctions P, and

~P, cannot coalesce at 8= 8, and the spectrum is a
complete one.

In contrast with the behavior of the exact solu-
tion, when the Hamiltonian is approached by the
finite-element method the resonance eigenvalue
varies somewhat with 8 (though much less than the
continuum solutions), and the continuous solutions
are described by square-integrable functions.
Consequently, for 8= 8, (which approaches the ex-
act 8,) it is possible that both the eigenvalues arid

the eigenvectors that represent the resonance and
the continuum (scattering) solutions will coalesce
in the complex plane to a defective point at

rl~= n, exp(-i8, ) .
In other words, the incomplete spectrum of the
model Hamiltonian obtained by the finite-element
method may be associated with the critical rota-
tion angle 8, for which the resonance state is
covered by the rotating continuum solution.
study this possibility for a model Hamiltonian for
the 'S resonance of helium. "

For the lowest resonance of helium in the '8
state the kinetic and the potential matrices T and

V [see Eq. (5)] were constructed by a real basis
of 36 Hylleraas-type functions

(26)

(1+P»)r,'r2 r» exp(-P, r, —P,r, ) (2V)

in which P» permutes the particie labels, r, and

r, are the scalar distances of each electron from
the nucleus, and r» is the interelectron distance.
The 1,m, n are the preselected integers (0
-([1,m, n] ()3and were ordered by the values of
the sum (d = 1+m+ n, up to N = 36. The prescale
parameters were p, = p, =1.0. When the scaling
factor in Eq. (5) is q=n exp(-i8), then the insen-
sitivity of the resonance eigenvalue to changes in
8 is reflected (through the Cauchy-Riemann con-
ditions} in the most-stationary behavior of the
eigenvalue of H [Eq. (5)] with respect to n, when
8 is held fixed (the generalized stabilization meth-
od, Ref. 14). In the generalized stabilization meth-
od the real and the imaginary parts of the complex
eigenvalues of H are calculated as a function of
n =

~q ~. The resonance position and width are de-
termined from those eigenvalues that are only
weakly dependent on n (the exact resonance eigen-
value is n independent}, in contrast to the case of
the scattering states that are strongly 0, depen-
dent. To arrive at these eigenvalues we hold fixed

-0,765

-0.780-

O
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I
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0.5 I.O l.5

FIG. 1. Stabilization plot of E„(G')=Re fS'(0', 8, N)),
where 8= 0 and the basis set was composed of N =36
Hylleraas-type functions.

the rotational angle at a value for which a maxi-
mum flatness in the curves of either E„orE,. vs
a is realized. The optimal value of 6, 6„, is ob-
tained subject to the requirement that

I' &„'I E
&(

(8(M) 8Qj „
(28)

TABLE I. The complex eigenvalues E„+iE& at the
stationary points g= aors~ exp(-ie, z~) (Ref. 16).

~OP~ -&g (10')

0.8799
1.0677
1.2875
1.4722

0.2383
0.2284
0.2266
0.0963

0.77 767
0.77 821
0.77 774
0.77 782

0.252
0.229
0.259
0.437

where q„,= n„, exp(-i8„,)
Since the real part of the eigenvalue F.„ is less

sensitive to variations in 0 than the imaginary part
E, the resonance position can be approximated by
the real eigenvalue of the unrotated self-adjoint
Hamiltonian H(8=0)., which is almost stationary
with respect to the variation of the real scaling
parameter n (the Holoien-Midtdal procedure").
Figure 1 shows such a stabilization plot for hel-
ium, clearly indicating the resonance position at
approximately -0.777 a.u. This result is in good
agreement with the resonance position obtainable
from the real part of the complex-stationary points
satisfying Eg. (26). The stationary points that re-
present the resonance solution" are given in Table
I.

Following the analysis given in the beginning of
this section, the resonance position E„and width
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1"=-2E, can also be obtained from the branch
point that results from the crossing (in the complex
plane) of the curve of the almost-stationary eigen-
value (representing the resonance state) and the
family of curves belonging to the eigenvalues that
are strongly o. dependent (representing the contin-
uous solutions}. For 8=0, this crossing of the
curves representing the resonance and scattering
eigenvalues is avoided, as can be seen in Fig. 1.
Nevertheless, the branch-points positions can be
estimated from the values of o. associated with the
avoided crossing. We therefore would expect the
following:

(a) That these branch points will be of order
one-half [P=2 in Eq. (13)]. Following Theorem
2 in Sec. II, we may assume that o.'„w0 in Eq. (13),
(namely, sou/Sq ~,

' = ).
(b) That the number of the branch points associ-

ated with the resonance state (in the finite-matrix-
element approximation) is equal to the number of
times the continuum solutions cross the resonance
eigenvalue (see the dashed lines in Fig. 1). This
conjucture is based on the fact that the degeneracy
of the resonance state and the scattering state is
a necessary condition for obtaining a branch point.

(c}That the values of n for which the branch
points may be obtained can be estimated from the
positions at whi. ch the avoided crossings of the re-
sonance and the continuum solutions take place
(see the black dots in Fig. 1).

Following the first argument the energy in the
neighborhood of the branch point can be written as

w= w, [(n- n, )(q q,*)]"'+-w(&) . (29)

The branch point q, = n, exp(-i8, ) can be ob-
tained"" by expanding W„ in a power series in

(g/no —1):

(30)

where

W'"' = [P„,(cos8,) —P„(cos8~)]/(2n —I)n," '+H '"',

(31)

in which P„(x) is a Legendre polynomial and R'"'
is a reminder term. By neglecting the R'"' term,
Eq. (31) can be rewritten such that":

(n —4)(2n —3)/r„, —(n 3)(2n —5)/r-„,
n(2n- 5)r„- (n- l)(2n- 3)r„,

turbation theory" when the unperturbed Hamilton-
ian is

H"' =H(8 =0, n = (x,)

and the perturbation is

H —H"' = (g/n, —1)(2n', T+ n, y)

+ (rl/n, 1—)'n', T .
By solving Eqs. (32) for different values of n„
the branch points summarized in Table II were
obtained. One can see from thege results that
our conjectures (b) and (c) were satisfied as well:
The number of the branch (and defective) points
is found, as was indicated in Fig. 1, and the val-
ues of nb that were obtained from the above
branch-point analysis are in good agreement with
the estimated values obtained from Fig. 1 (as sum-
marized in Table II). The same phenomena were
obtained for a smaller basis set of 20 functions in
which 0 ~ [1,m] & 2 and n = 0.

The association of the defective point with the
resonance state can be also introduced by the 0-
trajectory results (see Fig. 2): For a certain
value of n, two eigenvalues of H approach one
another as 6 is varied, and these coalesce at the
defective point 6P = 0b. By increasing the value of
0, two branches of eigenvalues are obtained again,
where one branch is much more 8 dependent than
the other one. The branch that represents the
continuum spectrum solution is strongly rotated
with 6. On the other hand, the branch that is al-
most 8 independent represents the resonance state.
As the basis set becomes complete this resonance
branch will be closer to the branch point. The dis-
tance in the complex plane (L in Fig. 2) between
the complex-stationary solution and the defective
solution (the branch point) is an indication of the
quality of the basis to describe both the resonance
and the continuum solutions. Since the real
square-integrable basis functions are not well
suited to describe the rotating continua, it is not
expected that the branch-defective point will give
a good approximation to the resonance width. As
shown in Tables I and II, the rotation angle 6)b for
which the branch point was obtained deviates nu-
merically from the rotation angl. e g, = 0.005 that

TABLE II:. The complex eigenvalues E„+~i E; at the
defective points g= G.b exp(-i8).

(n„- 1)'r„+(1 —3/n)/r„,
COS6)b =

2(n, 1)(1—3/—2n)

where r„=W'"'/W'" ". Here W'"' can be calcu-
lated by the standard Rayleigh-Schrodinger per-

n(Fig. 1)

0,4
0.9
1.4
2.0

Ab

. 0.44 564
0.92 500
1.40 635
2.05 440

0.13 527
0.02 326
0.01 926
0.03 224

0.75
0.78
0.78
0.74

-E.

0.04
0.03
0.03
0.06
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; 8=0.0
RESONANCE

8=o o

-0.020-

-0040—
D
O

0.060 ~

ROTATI NG

CONTINUUM

(0.03)

I-0.080 r

should be obtained following the Balslev-Combes
theorem. '

IV. DISCUSSION

It has already been noted3 that in the finite-ele-
ment approximation of the complex-scaling method
some numerical and formal difficulties may arise.
For a certain value of the complex-scaling para-
meter g one eigenvector of the non-Hermitian
complex- scaled Hamiltonian H„ is orthogonal to
itself (so-called defective eigenvector), giving
rise to an incomplete spectrum. %'e proved here
that for any matrix representation of the complex-
scaled Hamiltonian one can find, at least, one

(0.04)
a I I i s I s I i i

-0.84 -0.82 -0.80 "0.7B -0.76 0.74 -0.72

Er (o.U.)

FIG. 2. 8 trajectory for fixed 0.'=0.925. The black dot
denotes the branch point in which the spectrum is incom-
plete. Note that the eigenvalues that represent the con-
tinuum are more strongly affected by 8 than those that
represent the resonance. The arrows indicate the di-
rection of motion of the eigenvalues with increasing 8.

such value of g. It was pointed out that this de-
fective eigenvector can be associated with a com-
plex-stationary point (s/&ri) [(g ~H ~ p)/(p ~ p)] = 0 that
represents the resonance state. Furthermore,
the defective point, which is not a stationary
solution in the variational space, may be associ-
ated with the resonance state as well. The defec-
tive point is the branch point obtained whenever
the resonance eigenvector and the eigenvectors
that represent the continuum as well as their re-
spective eigenvalues coincide. This phenomenon
was illustrated here for the e -He' scattering pro-
cess.

In order to get a proper estimation for the reson-
ance width from the branch-point analysis, the
matrix representation of the complex-scaled Ham-
iltonian should be good enough in describing both
those scattering states which are not square-in-
tegrable and the resonance state. The latter is
square integrable when the complex product rather
than the Hermitian product is utilized.

The numerical procedure suggested here may
prove to be not very practical; it does, however,
yield a better understanding of the behavior of the
resonance solution in the finite-element approxi-
mation.
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