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Stopping power for partially stripped ions
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The Bethe formula for the stopping power for bare ions is extended to the collisions between partially
stripped ions and neutral atoms. The resulting formulas can be presented in the same form as the original
Bethe formula by replacing the nuclear charge of the projectile Z and the mean excitation energy I by Z,ff

and I,ff, respectively. Both Z,„and I,ff contain contributions from excitations {including ionizations) of the
target by the projectile, excitations of the projectile by the target, and mutual excitations. They are defined

in terms of projectile and target properties that can be calculated from first principles. Expressions for Z,„
and I,ff reduce to those in the Bethe formula for bare incident ions. Formulas for atom-atom and ion-ion

collisions are also presented, Comparison with experimental data on Ar ions in Ar gas indicates that the

new formula is reliable for projectile energies greater than a few MeV/amu.

I. INTRODUCTION

The stopping power for a bare projectile of
charge Z '~'e and speed v'~' is given by the Bethe
formula'

where N, is the density of target atoms, a, is the
Bohr radius, and T=-, m, (v ~')' with the electron
rest mass m„S is the Hydberg energy, N "' is
the number of electrons in the target, and I"' is
the mean excitation energy of the target. Through-
out this paper we use superscripts (P) for the incid-
ent projectile and (f) for the target. The mean ex-
citation energy I of an atom or ion with N elec-
trons is defined in terms of the dipole oscillator
strength distribution L(0) as".

Nln —=I. 0 = „ln —"

where f„ is the dipole oscillator strength for the
transition from the ground state ~0) to the excited
state in), E„ is the transition energy, and the sum-
mation includes all discrete and continuum excita-
tions.

The Bethe formula is based on the first Born
approximation, and it is valid for fast bare ions.
The factor of 2 in front of (Z '~')' in Eq. (l) em-
phasizes the fact that glancing collisions and
knock-on collisions contribute equally Ii.e. ,
(Z '~')' each] to the stopping power.

When both the projectile and the target carry
orbital electrons, energy loss due to collisional
excitations occurs through one of the three mech-
anisms: (a) excitation of the target while the pro-
jectile remains in the ground state, (b) excita-
tion of the projectile while the target remains un-

excited, and (c) excitation of both the projectile
and the target. For a bare projectile, only mech-
anism (a) applies.

Also, for a bare projectile, any energy loss by
the ion results in the slowing down of the ion as
well as energy deposition in the target. For a
partially stripped ion, however, process (b) above
slows down the ion but no energy is deposited in
the target. The process simply converts the kin-
etic energy of the projectile to its internal energy.
For instance, in an experiment where the projec-
tile beam passes through a thin foil, different val-
ues of dE jdx will be obtained depending on whether
the energy deposited in the foil is measured or the
loss in kinetic energy of the ion is measured.

The situation becomes more complicated if the
projectile is in a metastable state. In such a case,
the target can be excited without slowing down the
projectile, and it is even possib1. e that the ion is
accelerated after a collision (particularly for light
projectile on heavy target) by converting its inter-
nal energy to kinetic energy.

In the present work, we develop the theory for
the loss in kinetic energy of the projectile; i.e.,
we include process (b) in the derivation of the
stopping power. We also assume that all projec-
tiles are in the ground state.

Qualitatively, for glancing collisions with large
impact parameters, electrons in the target atom
see a fully screened charge of the projectile,
whereas the bare nuclear charge of the projectile
is responsible for knock-on collisions with small
impact parameters. These conclusions are
clearly reflected in the results presented below.

In reality, due to electron pick-up and stripping,
the charge state of the projectile changes during
the passage through a layer of target. The usual
procedure to account for the fluctuation of the
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charge state is to replace Z (~' in Eq. (1) by an
effective charge y'~' which is often determined
empirically. ' For comparison with experiment,
empirical terms such as the inner-shell correc-
tion' are also added to Eq. (1).

In this paper we generalize the Bethe formula,
Eq. (1), to ion-ion, ion-atom, and atom-atom col-
lisions, utilizing sum rules on the Born cross sec-
tion for such collisions. ' Further refinement of
the Bethe formula (e.g. , charge pick-up, inner-
shell, and Z' corrections) is beyond the scope of
the present work. The generalization of the Bethe
formula does not involve any empirical adjust-
ments. Atomic constants that appear in the finai
results can be determined either from first prin-
ciples or from experimental data such as the di-
pole oscillator strength distribution and x-ray
form factors. As an illustration, the stopping
power for Ar ions colliding with Ar gas is calcu-
lated according to the generalized formula and
compared with experiment.

II. THEORY

A. Preliminary

It is convenient to define the mean energy-loss
cross section, 0» by

dE/dx =-NQS g~,

where OE is the sum of all excitation energies
weighted by corresponding inelastic cross sections:

The maximum momentum transfer is limited to

(6b)

for heavy projectiles. '
For a particle with nuclear charge Ze and N

electrons, the Born form factors in Eq. (5) are
defined as

«'. (Q) = (e « —Qe'"' 0),

where r,. is the position vector of the jth elec-
tron. For elastic scattering, E,(Q) can be ex-
pressed in terms of the x-ray form factor E(Q)

(8)

while for inelastic scattering, E„(Q) (n x0) is re-
lated to the generalized oscillator strength' (GOS)

f„(Q) as

l«. (Q) l*=Q(«e&«,)f (Q) = (e ge'e', ())

(9)

For small Q, the elastic form factor E,(Q) and
the GOS f„(Q) can be expanded into power series
of

EQ(Q) = f+a~Q+ a2Q2+ ~ ~ ~,

f.(Q) =f.+ &&Q+ ~,Q'+

~(g ) ~(p)
&E =

Oon + ~mO
nAO nt/0

(@
( Q ) +@(g ))

+ O'mn

rnWO nf 0
(4)

where g =Z —N is the net charge, f„ is the dipole
oscillator strength used in Eq. (2), and

a„a2 5] b2 . are atomic constants related
to the expectation values of powers of x. For
large Q, asymptotic behavior of Eo(Q) and f„(Q)
is also known":

In Eq. (4) o denotes collision cross sections. The
first subscript of o refers to the excitation of the
projectile and the second one of the target (0 for
elastic scattering). The first, second, and thiid
sums on the right-hand side (RHS) of Eq. (4) cor-
respond to energy-loss mechanisms (a), (b), and
(c) of Sec. I, respectively.

In the Born approximation, the collision cross
section 0 „ for the excitation of the projectile to
state ~m) and the target to state ~n) (m =0 and n
= 0 included) is given by'

E,(Q) =Z —(a,'Q '+ a,'Q '+ ~; ~ ),
f.(Q) = b&Q '+ I)2Q '+ ' ' '

(12)

(13)

«'&(Q)=Q Q l @ )f.(Q) .

For small Q,

(14)

where ayp a2p 5y 52& are again atomic con-
stants that can be calculated from the wave func-
tions.

In calculating the stopping power, it is conven-
ient to introduce the incoherent scattering func-
tion S(Q) which appears in the sum rules for the
Born cross sections" "

(5)
S(Q) = c,Q+ c,Q'+ ~ ~ ~, (15)

Q,„=(E")+P-"))'/4r I . — (6a)

where Q
—= (Ka,)' is defined in terms of momentum

transfer KS. For fast collisions4
while for large Q,

S(Q) =1+c,'Q '+c,'Q '+ (16)
where c„c„.. . , c,', c,', . .. are atomic constants.
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To derive the Bethe formula, Eq. (1), the pro-
jectile is taken as a bare charge (Nj ~'=0), and
the first sum on the RHS of Eq. (4) is carried out,
keeping only two leading terms (lnT/T and T ') in
the expansion of the cross section 00„ in inverse
powers of T." Higher-order terms of the Born
approximation compete with other mechanisms
that were excluded from the Born approximation
such as the electron exchange, distortion of the
charge distribution of the projectile as well as that
of the target. To extend the Bethe formula to par-
tially stripped ions, we also retain the same lead-
ing terms only.

B. Ion-ion collision

As we have mentioned before, there are three
mechanisms leading to energy losses. We dis-
cuss their respective contributions.

1. Proj ectile elastic, target inelastic

From Eqs. (5)-(9), the first term on the RHS
of Eq. (4) becomes

I
g g ~ g (T E /jil

n/0

I&."'(Q) I'f"'(Q) —. (1'1)

Prom the series expansion of E,(Q) and f„(Q)
near Q =0 [Eqs. (10), (11)]and the definition of
Q „[Eq. (6a)], we have

[I&,'"(Q) I'f"'(Q) —(g"')f~'] =o(Q „)in

0

~

2
n

~
n

~ ~~ I
~ ~i n

0

= O(T-') . (18)

We can thus extend the lower limit of integration
to zero in Eq. (1V) and replace Q by 4T/(R
[Eq. 6(b)]:

4vn2 4 T/ e
) cf I'4T

[IF,"'(Q) I'f."(Q)- (K "')'f."']—+2(&'")'f"'»I Ee~ + o(T ) .
nAO 0

Since the limits of integration are constants now, we can interchange the summation and the integration.
Utilizing the Kuhn-Reich sum rule g„zo f„=N and the Bethe sum rule +„40f„(Q)=N, we get

4~g2 I

4P/R
[I+'"(Q)I'- (& "')']—+nV'"(V"')'»

I I

—2(g '&')'~'"lnI
I

+o(T-'),
0 iSj &@)z

(20)

where I"' is the mean excitation energy of the
target defined in Eq. (2). To factor out the lead-
ing T ' dependence in the above expression, we
rewrite the integral on the RHS as

Q
2 g2

q 2 (2 g2 + q 2

1

I„= F, '-g' — Z'- EQ

+ (Z' - g') ln(4T/8 ) + O(T ') .
If we define Gz as

jz'+|.")»I 4', I fjz —Iz.=(0j'j
@1

(22)

g2 g2 + g2 y q 2

1

(21) then, from Eqs. (20)-(23),

Q
2 f2 23

Here, Q, is an arbitrary constant. For conven-
ience, we choose Q, =1. From the asymptotic be-
havior of F,(Q) [Eq. (12)], we find that the last in-
tegral on the RHS of Eq. (21) is of the order of T '.
Thus,

2

P
)

ff "'lj
-2(g'~') N"'inI

I
+O(T '). (24)iS)
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2. Projectile inelastic, target elastic

In this case, the result is the same as Eq. (24)
with superscripts p and t interchanged:

4''
G~

I(P)
-2(g"')'N"'ln

~

+O(T ').
6I )

(25)

3. Projectile inelastic, target inelastic

For the third sum on the RHS of Eq. (4), we have, from Eq. (9),

(E"&+E"&) 4 a', f&„t&(q),f."&(Q) «&f-'"«&n«vn' n vn"""&)"'
mW. O tnt 0 rftgo, n~0 imin Ol

(26)

F o the series expansion off„(q) [Eq. (11)], we can extend the lower limit of integration from Q,„to
zero in Eq (26) by neglecting terms of order T . Util-izing the Kuhn-Reich and the Bethe sum rules and

from the definition of the incoherent scattering function S(Q) Liven by Eq. (14), we have

4ma' 4TIR 4r/ fsi4»ao N&t&N&t& S&»(q) Q + S" (Q) +O(T )inel, inel T/(R Q 0 Q
(27)

To extract the leading T ' terms on the RHS of the above relation, we set

S —= S Q — 1 —S —+ ln 4T (R +0 T ',
0 Q n Q l Q

where we have made use of the asymptotic behavior of S(Q) given in Eq. (16). If we define G~ such that

(.
~~,
", )=f ((-t(n»,' —f e(n&,',

we then have

(28)

(29)

4' (& & «& 4T
Il el lne] T j6I 2N N ln «» «&)„, + O(T )

/ Gs Gs

Combining results of Eqs. (24), (25), and (30), v~ for ion-ion collision becomes

os(ion-ion) =
+ 2N Z, «ln

~

4&tao &t& n ~4T
Ie

where Z,«and I,«are defined as

2N t&Z&n -N ( t &[(g & t)2&+(g &
l)&2&] + N& t[(&Zt ()2&(+g t&)&2] + 2N( && &Nt&

(30)

(31)

(32)

2N't'Z' ln(I „/6I) =N't '[(g 'e')'+ (g '&'&)']In(G(o'/(ll)

+N "'[(Z "')'+ (I "')']»(O" '/(~t)+ 2(t "')'N"'»(I" '/6I)

+2(g 't ')'N'e'In(I'e'/6I)+N't'N 't'In(O't'G't'/6I') (33)

It is obvious that Eq. (31) is a generalization of
the Bethe formula given in Eq. (1) by replacing
Z ' ' and I"' by Z, «and I,«, respectively. %e
can understand the role and origin of each term
in Eq. (32) easily. The first term on the RHS of
Eq. (32), N"'(Z 't')', comes from the excitation
of the target electrons (N" ') by the bare charge
of the projectile as a result of close collisions
with large momentum transfers. The second
term, N&t& (g&~&)', arises from distant collisions

(small momentum transfers) where the target
"sees" a fully screened projectile. The third and
fourth terms are the same as the first two with the
roles of the projectile and the target interchanged.
The last term of Eq. (32), of course, comes from
the mutual excitation of the projectile electrons
(N&~&) and those of the target (N"') by close col-
lisions.

The terms contributing to I,«[Eq. (33)] come
both from close and distant collisions; they are
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well defined in terms of the projectile and target
properties, but their evaluation requires the
knowledge of the x-ray form factors [Eqs. (8) and
(23)], incoherent scattering functions [Eqs. (14)
and (29)], and the dipole oscillator strength dis-
tribution [Eqs. (2), (24), and (25)]. These proper-
ties can be measured from x-ray scattering, elec-
tron scattering, and photoabsorption experiments,
unrelated to the ion-atom collision we are focus-
ing upon here. They can also be calculated from
wave functions if they are known. The term that
is most difficult to calculate theoretically is
»(I/(R) defined in Eq. (2), because the summation
covers all dipole-allowed states including the con-
tinuum. One can deduce 1n(I/(R), however, if any
of the stopping powers for fast bare particles (pro-
tons, electrons, cf particles, etc.) are known for
the same target.

Since I,«appears in a denominator in Eq. (31),
a larger value of I,« leads to a smaller stopping
power. The contributions from mechanisms (a),
(b), and (c) are divided into Z,«and I,«[Eqs.
(32) and (33)] in such a way that all binding effects
of the electrons in the projectile and the target
are put in I,«. As a result, the RHS of Eq. (32)

C. Ion-atom collisions

Since there is no net charge on the target
(g"'=0), we have, from Eqs. (31)-(33)

47t a2
oz(ion-atom) =

/
' 2N"'Z', «lni

ei' f

where

2N (t )Z2 N (t )[(Z (2))2+ (g (2))2]

+ N ( t )(Z (t ))2+ 2N (t) )N ( t )

and

(34)

(35)

amounts to treating the electrons on the projectile
and the target as free electrons. The first term
on the RHS of Eq. (33) represents the screening
of the projectile nucleus by the electrons on it
during the excitation of the target electrons. The
second term accounts for the screening of the tar-
get nucleus during the excitation of the projectile
electrons. The third and fourth terms similarly
adjust for the binding effects in the contribution
of glancing collisions [g2 terms in Eq. (32)]. The
last term of Eq. (33) stems from the binding ef-
fects in mechanism .(c), and this term is the smal-
lest in magnitude.

2N't'Z2»(I /41) =N"'[(Z "')'+(& "')']in(c,"'/6l)

+N (»(Z «')2 in(c t /6l)+2(p '2')'N"'ln(I")/(il)+N'2'N"'1n(cz G2' /(R ) . (36)

Here G~ and G, are defined in Eqs. (23) and (29),
respectively, with g

' "= 0. The origin of Z,« is
the same as in the case of 'ion-ion collision, ex-
cept for the lack of the distant collision term
[N(2)(g "')' in Eq. (32)], because there is no net
charge on the target as seen by the projectile at
a distance.

If the incident projectile is a bare ion, we have
N(2'=0 and E(2'(Q) =Z '2'=

g '2). As a result,
G Q (8 Z ff Z I ff I' ", and Eq. (34) simply
reduces to the Bethe formula of Eq. (1).

where

+0(T ') (37)

2N (t )z2 —N (t )(z (2))2 + N (2)(z (t ))2 + 2N (2)N ( t )
eff

(38)

D. Atom-atom collisions

Since there is no net charge on either the pro-
jectile or the target, we have p

'~ ' =
&
"' = 0. From

Eqs. (31)-(33),

4 a'
o~(atom-atom) = ' 2N ")Z'„ln

and

2N «'Z', in(I, «/(9. ) =N" '(Z '2')' ln(G ~2'/8)

+N '2'(Z "')' in(c,"'/6l)

+N 'o'N "' ln(c',"G"'/6l')

(39)

The origin of the terms in Z,« is the same as
that in. the case of the ion-ion collision, except for
the lack of any distant collision terms [N")(t (2))2

and N")(g "')' in Eq. (32)].

III. DISCUSSION

As is clear from the original work by Bethe and
the derivations in Sec. II, the stopping power
formulas (31)-(39) should be used at high energies.
In principle the projectile speed should be much
faster than any of the orbital speeds of the elec-
trons attached to the projectile or the target.
Kith the ion accelerators currently available,
only light ions can be accelerated to sufficiently
high speed to satisfy the validity of the underlying
Born approximation. At such high speeds, how-
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ever, the light ions are likely to be stripped fully
by the target. Furthermore, each term in the
stopping power formulas (31)-(39)was calculated
with the assumption that the net charge of the pro-
jectile remains constant, which is somewhat un-
realistic. The actual charge state of the projec-
tile will be determined by the competition between
stripping and charge pick-up, as was mentioned
earlier. Experimental evidences' are such
that the electrons on the projectile will be stripped
if their orbital velocities are of the same order
or slower than the projectile speed.

The preceding derivations are based on particle-
particle collision cross section, and the formulas
presented here are appropriate for collisions in
the gas phase. If the gas pressure is sufficient
to establish an equilibrium charge distribution of
the projectile, one can use the most probable
charge state as g

(t) in E(ls. (31)-(39). Our results
on Ar ions presented below- show that the stopping
powers are not very sensitive to a small change
in &

'~' as long as &
'~' is sufficiently different

from zero or from Z '~ .
If the charge-state distribution of the incident

ion is known, one could accordingly used the
weighted sum of the stopping power for each
charge state. For a projectile in metastable state
we must distinguish the loss of the kinetic energy
and that of the internal energy of the ion as we
mentioned in the Introduction. Furthermore, we
must understand the partition of the released in-
ternal energy among competing processes —ex-
citation and ionization of the target, acceleration
of the target, and acceleration of the projectile,
which depend on details such as energy levels,
ionization potentials, and masses of the projectile
and the target.

Although extended formulas for the stopping
power have room for further improvement, it can
nevertheless provide, in its present form, useful
estimates of the -dE/dx in high-energy ion-atom
collisions where there are no proven methods.

Formulas (31), (34), and (37) can be extended
to projectiles with relativistic speed as in the
case of the bare projectile" by replacing

(a) 4tta2e6I/T by 4ttaoct'/P',

(b)» by»
( ~ ~ I-P4T f 4p~S.

eff ett )
where z is the fine-structure constant and P
=v (e)/c, c being the speed of light. Thus, the
relativistic form of E(ls. (31), (34), and (37) be-
comes

(40)

Ari8+
Ar'"
Ar'"
Ar"+
Arf4+
Ari3+
Ari2+
Arii+
Ari0+

Ar~
Ar~
Ar~+

Ar'+
Ar"
Ar4'
Ar3+
Ar2+

Ar+

Ar

0
1

3

5

7
8
9

10
ll
12
13
14
15
16
17
18

0
0.3534
0.7242
0.9435
1.171
1.422
1.678
1.93V
2.195
2.450
2.698
2.840
2.972
3.090
3.192
3.276
3.341
3.385
3.418

0
5.334
5.292
4.368
3.887
3.817
3.751
3.686
3.622
3.557
3.491
3.193
2.933
2.771
2.618
2.471
2.327
2.181
2.034

18
17.79
17.61
17.45
17.32
17.22
17.15
17.10
17.09
17.10
17.15
17.22
17.32
17.45
17.61
17.79
18.00
18.23
18.49

179.0
224.7
280.9
298.8
317.0
340.3
363.3
385.4
406.3
425.3
442.3
428.8
416.9
407.0
398.7
392.3
387.7
385.0
385.9

IV. COMPARISON WITH EXPERIMENT: Ar"+ IN Ar

As an example, we compare our theoretical re-
sult for Ar ions in Ar gas with the experiment by
Martin and Northcliffe. ' The constants presented
in Table I were calculated from Hartree-Fock
wave functions corresponding to average configu-
ration of each ion. The mean excitation energy of
Ar, J =179 eV, was deduced from semiempirical
oscillator strength distributions by Eggarter. "
The data in Table I show that there is a broad
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NET CHARGE OF ION
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2 0

FIG. 1. Stopping powers for Ar~' in Ar gas at dif-
ferent incident energies as functions of thecharge state

The value of p= 1783.7 pg/cm is used for the den-
sitff of argon gas. The curves are calculated from Eqs.
(34)-(36) and the data in Table I.

TABLE- I. Constants for the stopping powers for Ar~
in Ar. +t) 18 In(Gfp~/(a= 3.418, In(G(t)/(a} 2 034 I(t)
=179 eV.]

l (g& &/S) 1 (Q~ &/R) Z, I, ( V)
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20

LIJ

I

IO

0 I I I I

6 8
INCIDENT ENERGY (MeV/amu)

I

IO

FIG. 2. Stopping powers for Ar~ ' in Ar gas at dif-
ferent f as functions of incident energy. Solid curves
are based on the present theory, and the circles repre-
sent the experimental data by Martin and Northcliffe
(Ref. 14).

minimum in Z,«near Ar"' and a less broad maxi-
mum in I,«at Ar". The stopping power at a given
projectile energy shows a minimum (as a function
of charge state) near Ar".

The effective charges for Ar' and neutral Ar
(as projectile) exceed 18 because of the contribu-
tions from mechanisms (b) and (c) mentioned in
the Introduction. For ions of low-charge states,
the terms with 1n(G„/61) in Eg. (36) dominate the
value of I,«. For ions of high-charge states, the
major contribution to I,«comes f rom the ln(f "'/6t)
term.

In Fig. 1, we present stopping powers for Ar
ions in Ar gas at three projectile energies. We
note that the stopping power for Ar" is the smal-
lest at all projectile energies (&10 MeV/amu) as
expected from the largest value of I,«of the ion,
although the stopping powers for ions with g = 5-10
are all within 10% of each other. The minimum
at Ar" and a sharp bend at Ar"+ reflect the
closed-shell structures of the ions; Ar" lost all
M electrons, and Ar"' has only E electrons.

Also, Fig. 1 clearly shows that the dE/-dx for
bare projectiles is the largest. Since a bare pro-
jectile is likely to pick up electrons as it goes
through target gas, actual -dE/dx will be less
than that for a bare ion.

In Fig. 2, we compare our results with the ex-
periment by Martin and Northcliffe. " In their
experiment, the charge state of the incident ion
was Ar", but the charge states of the ion after
the collision were not determined. The collision
cell was sealed by Ni foils at both ends and the
ions must have had various charge states (&3+)
in the collision cell. Among the values for, vari-
ous charge states, -dE/dx for Ar", the lowest
one, agrees best with the experiment. At high
incident energies, however, the experimental
data seem to be headed toward theoretical values
with higher-charge states. Since a projectile of
10 MeV/amu in the target gas is likely to carry
only K electrons with it at the most, Fig. 2 sug-
gests that the extended Bethe formula slightly
overestimates the stopping power,
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