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Numerical predictions are obtained, within a relativistic multipole central-field approximation calculation, for the
radial matrix elements and resulting angular distributions of photoelectrons ejected from inner through outer
subshells of uranium and for photoelectron energies from near threshold (1 eV) to 100 keV. Some data are also
presented for outer subshells of mercury. We confirm that for inner shells higher-multipole effects persist to low
energies, while we find that for outer shells such effects become small. For uranium inner ns subshells the
asymmetry parameter P„, differs from its nonrelativistic value 2, but not more than 30% {for n &4), until the
energy becomes quite high (the radial matrix elements for ns —+ ep», and ns ~ ep3/2 transitions for these inner
shells are similar). For outer s subshells relativistic spin-orbit splittings cause large deviations from the
nonrelativistic predictions which can be understood from the magnitudes, zeros, and splittings of the two radial
matrix elements. For U 6p „,and 6p3/2 p6p has the same qualitative features found in nonrelativistic calculations
for outer p shells of other high-Z elements, but the angular distributions from the two states do differ in detail. Such
differences in angular distributions of the photoelectrons from the two j substates of given l become smaller for
inner p shells. For outer d and f subshells the asymmetry parameter oscillates with photoelectron energy in a
manner similar to that found by Manson in nonrelativistic dipole d-subshell calculations, and no qualitatively
important relativistic effects have been identified; this is due to the decrease of the fine-structure-splitting interval
with increasing angular momentum. For high energies the shapes of the angular distributions from a sequence of
states of varying principal quantum number n, for fixed angular momentum (JL), tend to merge into a common
curve because at high energies the matrix elements are determined at small distances where all radial wave functions
of given (JL) have the same shape.

I. INTRODUCTION

We wish to discuss the influence of relativistic
and higher-multipole effects on photoelectron
angular distributions from heavy elements as a
function of photoelectron energy and of the sub-
shell (rdL) from which the electron is removed.
There has been increasing interest in these photo-
electron angular distributions dtt/dQ, particularly

'

within 100 e7 above threshold, since they are sen-
sitive to the details of atomic models and dy-
namics. ' ' Most work in the past has assumed
the validity of nonrelativistic (NR) dipole approxi-'
mation in which case the unpolarized differential
cross section becomes

= 4" ~ [l ——,'P„+, (cos8) j,
characterized by the energy- and subshell-depen-
dent asymmetry parameter P„~, where 8 is the
angle between the momentum vectors of incident
photon and ejected photoelectron. For electrons
in a central potential, ejected from initial s states,
P„,

—= 2, independent of photoelectron energy, for

in this case the angular distribution in NR dipole
approximation is simply proportional to sin'8.

However, in various circumstances, important
deviations from NR dipole predictions have been
noted. ' ' Walker and Waber' worked out the rela-
tivistic formalism, which no longer requires that
P„,= 2 in dipole approximation, and other authors' '
have recently noted that P„, can be quite different
from 2 for outer s shells due to the different radial
matrix elements for ns -EP, ~, and ns -&p3/2 trans-
itions which would nonrelativistically be the same.

In a previous work we' have also examined the
importance of higher -multiPol e as well as r ela-
tivistic contributions. We found within the cen-
tral-potential-approximation, experimental results
for Ne and Kr in better agreement with our full
relativistic multipole calculations than with the
NR dipole approximation. In a more general dis-
cussion" of der/dQ, making sample calculations
for several elements and several subshells, we
found that for inner shells, miltipole effects were
important (except for light elements) down to
threshold, while relativistic spin-orbit splitting
effects were not important until the energy be-
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comes quite high. For outer shells multipole ef-
fects were unimportant, while relativistic spin-
orbit splitting gave a large deviation from the NR
dipole predictions for s waves, due to the dif-
ferent energies at which the radial matrix ele-
ments go through zero and change sign.

Here we wish to report a more systematic study
of the deviations of the photoelectron angular dis-
tributions from NR dipole predictions, as a func-
tion of subshell (nJL), for a given high-Z element
(U, Z =92). We will also include some data for
other subshells of Hg. As before, we approxi-
mate the process as a single electron transition
in a screened central potential, which is of course
at best only qualitatively useful at low energies,
but which seems to indicate the importance of
higher-multipole and relativistic effects.

The general relativistic multipole angular dis-
tribution of photoelectrons ejected from a given
subshell can be written"" (for unpolarized radia-
tion)

B cos8 ,
m=O

where B,=—1, and where —28, plays the role of
P„~ in NR dipole theory if all other B except B,
are small. Here o is the total cross section for
photoemission from the subshell; the coefficients
B (energy dependent) of the Legendre polynomials

characterize the angular distribution. The B
(as well as o) are in turn determined by radial
matrix elements, defined by integrals over pro-
ducts of initial and final radial wave functions
together with spherical Bessel functions j ~(kr),
where A. is the photon multipolarity and k is the
photon energy.

In Sec. II we report the results of our calcula-
tion of the B for various subshells of uranium
and mercury, from near threshold (l eV) and
as high as 100 keV. We identify the circumstances
and nature of deviations from NR dipole predic-
tions; for inner shells, relativistic spin-orbit
splitting is not important while higher-multipole
effects remain large to low energies; for outer
s subshells, spin-orbit splitting of matrix ele-
ments to final continuum p states causes a big
deviation from NR dipole behavior while multi-
pole effects are not important. For higher-L
states, it is also generaQy true that higher-multi-
pole effects become smaller for outer shells,
while spin-orbit effects decrease with increasing

The B, for L&0 oscillate as a function of
energy but no qualitative deviation from NR di-
pole predictions for outer shells was noted in the
cases examined here. The remaining subshells
of uranium show some more interesting features
and will be discussed in our next paper. At very

high energies, for each m the B (eJL) for a se-
quence of states of varying principal quantum
number n, for fixed angular momentum JL, tend
to merge into a common energy-dependent curve.

In Sec. III we give expressions for the B in
terms of transition matrix elements and phase
shifts, focussing on B, and, to a lesser extent,
on B,. For some representative subshells we
examine the energy dependence of the dominant
matrix elements contributing to these B 's. We
find that relatively simple properties of the matrix
elements lead to the more complicated behavior
of the B . In particular we see how the existence
of two, rather than one, important radial matrix
elements in the relativistic outer-shell s wave
case, with somewhat different energy dependences,
leads to an angular distribution very different from
NR predictions, especially when at least one of
the matrix elements goes through zero above
threshold (Cooper minimum), as the other matrix
element will remain finite at that energy. At
higher energies, the matrix elements for a given
(sIL) subshell are determined at small distances,
where all (JL) state wave functions have the same
shape independent of n; the matrix elements for a
sequence of such subshells of fixed J,L but va-
ried n will have the same photoelectron energy
dependence for energies which are large com-
pared to subshell binding energies. As a result,
for each m the sequence of B as n varies for
fixed (JL) tends to m'erge into a common curve
as the energy becomes higher. Inner-shell B
reach the common curve only at the highest
energies, both because inner-shell wave functions,
due to their larger binding energies, deviate from
a common shape at smaller distances, and be-
cause when we pick a given energy (and wave
function) for the outgoing photoelectron, the photon
energies (and wave function) differ more for inner
shells at low energies. For outer subshells of highe r
angular momentum (Hg 5d, @, U 6p, I„and U

4f, I,) we see only small higher-multipole effects
until the photoelectron energy becomes as high as
1 keg. The resulting angular distribution of an
outer d subshell (Hg 5d, ~,) shows the same os-
cillating feature as Manson found in an NR dipole
calculation. '" We have also examined for various
s states of uranium the matrix elements and the
phase-shift differences contributing to B„which
characterize the first higher -multipole effects
beyond dipole appr oximation.

II. PHOTOELECTRON ANGULAR
DISTRIBUTIONS FOR URANIUM AND MERCURY

We present in Figs. 1-5, B, through B4 for all
E, L, and N subshells and some M, 0, P, and
Q subshells of uranium, as well as for several
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FIG. 1. Total cross sections (top curve and right-
hand scale in barns) and B~ coefficients (lower curves
and left-hand scale in dimensionless units) for m =1-4,
of uranium 1-4s subshells. Lower horizontal scale is
outcoming electron velocity e//c, with the corresponding
electron kinetic energy T in keV on the top horizontal
scale.
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FIG. 2. The same as Fig. 1, for U 5-7s subshells
and the Hg 6s subshell.

outer subshells of mercury, as a function of the
outgoing photoelectron velocity v/c (or kinetic
energy T) The uran. ium cases include photo-
effects from all s states and selected p, d, and

f states as shown in Table I. In each of the fi-
gures we also show (on a separate scale) the cor-
responding total cross section for the subshell.
We note that it is possible to have significant var-
iations in the angular distributions in an energy
range through which the total cross section is
essentially constant. As we had observed be.-
fore, "the total cross sections are roughly con-
stant until the continuum electron kinetic energy
(top scale of each figure) becomes comparable
with the binding energy of the initial electron,
except for cases in which a shape resonance oc-
curs. In all the figures we see that the B gener-
ally grow rapidly at high energy, reflecting the
increasing forward peaking of the angular distri-
bution, characterized by features such as [1—
(v/c) cosa] ' and so by large coefficients in a
I egendre polynomial expansion.

Figure 1 shows photoeffect angular distribution
coefficients from 1s -4s subshells of uranium,
and we notice that B,(—= —B,) grows much larger
at low energies as we go into the inner shells,
indicating that higher-multipole effects are im-

portant for inner-shell photoeffect down to thres-
hold. B, for the 1s state is qualitatively different
in behavior from all the others, remaining large
and negative for photoelectron energies from
threshold to 10 keV. B, remains fairly close to
the NR dipole value of —1. In Fig. 2 we show the
5s, 6s, and Vs subshells of uranium and the 6s
subshell of mercury. Here we see quite different
features from those of Fig. 1. While B,—= -B3
becomes smaller as we proceed into the outer
shells and is negligible at low energies, B, shows
a drastic change from the NR dipole value of —1.
In U 5s, B, becomes small at threshoM, while in
6s, B, goes through zero and'changes sign at
about 90 eV above threshold, then approaching
zero from above. In U Vs and Hg 6s we see at
energies lower than 100 eV two sign changes over
a relatively small energy range, above and below
which B, returns nearly to the NR dipole value.
We will discuss the origin of this feature in terms
of matrix elements in Sec. III; however, we may
already note that in this last case the total cross
section shows some hint of a Cooper minimum in
the region where B, is rapidly varying. This sug-
gests that the different positions of the zeros of
the two relativistic matrix elements cause quali-
tatively different features in the resulting angular
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TABLE I. Summary of subshell cases examined in
this work.

with o 2 x 2 Pauli matrices. ) Equation (4) reduces
in the NR limit to

g*p & e'"'g, d 'r,M;= $R ~ I 3

with single-component Schrodinger wave functions

g replacing eth 4-component wave functions g of
Eq. (4). This further reduces in NR diPole ap-
proximation to

K
I
M

0
P

~si/2
2si/2~
3s i/2y

4si/2;
5si/2,
6si/2, '

Vs i/2

6si/2

2P i/2~
1

4Pi/2

6Pi/2

Z= 92 (U)

2P3/2

4P3/2& 4d3/2& 4d 5/2 & 4f5/2 & 4f1/2
t

6P3/2,' 6d3/2

Z=80 (Hg)

——;5d3/2, 5d5/2

~

~

2m+ '"
$*p eg d'r27T

='(2~~~V f g, r c yiu'r. (6)

The general expression for the B in terms of
relat t' multipole matrix elements and phase-
shift differences, resulting from an expansion in
par ia wave,1 s has been given in our review o

h t ff ct" we shall notrepeatthis rather
icdi olecomplicated expression here. In relativistic dipo e

t' th xpression reduces, after aver-
aged over initial polarizations and summed over ini-
tial and final electron states, to
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x (2j +1)(2j +1)(2m +1) t

1 ())

x W(11jj;mJ')
1 m 2J+1

!—1 0)

8 A g ( —1)'""cos[6„—6„-+-2'1j(1-1)] and continuum states, respectively; the 6's are
the corresponding phase shifts for the two final
continuum states'characterized by z and z, and K
and x are the quantum numbers combining angular
momentum and parity for bound and continuum
states, respectively. [K = (-1) "" (j+2).] In the
NR limit the large components G and g reduce
to the NR radial wave functions, while the small
components E and f become'

j~ + Q ~ +. g (10)

if I + l+m is even (8 = 0 otherwise), where

1 2Z+1 2J -1, 1
I.6v 12J ' ' 12J(J+I)

In this limit E(I. (9) reduces to the NR e(luivalents
of the dipole velocity form

d 2L +1y1

2J +3
12(J+1) 4

Q

p, ~„+(r)rP„~(r)dr,

= (/2/64w 2cjpE)g s (8)

so that 8,=1 (notice that 8, =o/41/ in our review
since the 8 are defined there by d()/dA =KB„P ).
Also

2&-=(h —I()fchGhjj'„ch

h(h —CC —1)f Chjs(„sh,

where G, E and g, f are the large and small com-
ponents of Dirac electron wave functions of bound

R~ = R~ „ i-f K&0 (J=L 2)
J-1

! B~ ~, if E&0 J=L+ p

R „, if K & 0 (J'= L ——')
B~ ~=

R~=R1,1, if %&0 (J=L+2).

(12)

prom Egs. (7) and (8), 8,—= 1 and

if the continuum and discrete radial wave functions
P„/r and P„~/r, respectively, are exact. Here,

(2J+1) (2J —3)(2J —1), (2J —1)(2J+3), (2 J+3)(2J'+5)
48J2 1-1 48 J2(J'yl)2 & 48(J'+I )2 &c'1

2J—1 „(2J+3) (2 J'+1)(2J'+3)
sc'(ch() '( ' ") sc(ch()'"'( h h" ) sc(ch() '( h' h" ))

(13)

2/2 2PP1/2 ( 2 1)

R„,+2B&„ (14)

Nonrelativistically, R3/g Ry/p and 5, =5, so that
B, reduces to -1. We have found that the cosine
of the phase-shift difference 5, —5, between the

while other B =0; thus, in general, three radial
matrix elements contribute to the cross section
and angular distributions within relativistic dipole
approximation. Here, R,.= R&g'6~.

For bound 8 states, only B,/, and R», contribute
in relativistic dipole approximation. These two
matrix elements characterize ns -&Py/p and ns-
KP3 /Q transitions, respe ctively,

two continuum states Cpy/, and CP3/, for uranium
is fairly constant, close to 0.9, over the entire
energy region considered in this work. This in-
dicates that the spin-orbit effect has little energy
dependence. Thus when the ratio of the two ma-
trix elements R, /, /R, /, for the given ns subshell
is close to 1 (the NR ratio), we get 8, close to —1
(the NR value). But if either matrix element va-
nishes for some energy at which the other matrix
element has a nonzero value, the ratio will be
very different from 1 and hence B, will be very
different from —1. These circumstances arise
when the matrix elements change sign above thres-
hold. When B,/, =0, B,=0. B, has its maximum
value, which in the case of equal phases ~ g '5y is
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arbitrary units. (a) R&~2(U ns &p&~2). (b) R3~2 (U ns
—&P3)2)

+0.5, achieved for R,&,
= —0.5 R, ~» for the equal-

phase case it returns to 0 by R», = —2 R», and by
Ri]2-0 y B, has become —0.5.

Figure 6 shows the energy dependence ofP R»,/&„,
and p R,&,/N„, for the 1s, 3s, 5s, 6s, and Vs states,
where each R is. divided by the normalization con-
stant N„, for the ns bound states. Since we have
multiplied R byp, the momentum of the photoelec-
tron, we do not see the divergence of R's near
threshold. This exhibits the common features in
these curves, for reasons we shall discuss sub-
sequently. As previously remarked, we see that
for all n these reduced ns matrix elements of
given PL) merge into a common curve as energy
increases. We can also see that the large devia-
tion from the NR dipole prediction for 8, [Fig.
5(d)], which occurs for outer shells at lower
energies, is due to the different (shifted) positions
of the zeros of R, ~, and R, ~» which would coincide
in NR dipole approximation. In this NB limit the
cross section vanishes as the matrix elements
pass through zero at the Cooper minimum, but
the angular distribution shape does not change
through this region. [We have divided the R's by

N„, in order to exhibit the common energy de-
pendence at high energy, but it should be realized
that, contrary to the casual impression from Fig.
6, the R's themselves become smaller with in-
creasing n. Threshold cross sections do tend to

increase with n, since as the threshold energy
decreases, k '~' in Eq. (4) usually grows faster
than the R's decrease ].

Comparing Fig. 5(d) and Fig. 6, we see that the
matrix elements do not vanish above threshold
for inner shells (as for the ls and Ss cases shown
in Fig. 6) and so 8, remains close to —1. This
behavior persists until 5s, where R» has nearly
vanished by threshold, so that B, deviates sub-
stantially from —1 (approaching 0) at threshold.
For 6s R,&, has passed through 0 above threshold,
allowing 8, —= 0.4 (0.28 for Hg Ss) at its maximum
(rather than 0.5 which we would get if 5,~, =5,~,),
but -R,&, is not yet bigger than 2R, j, by threshold,
so that B, does not return to negative values. By
Vs, both R's have gone through 0 above threshold,
so that after the peak value of B,=-0.4, B, has
returned to —0.72 by threshold. We see in Fig.
5(d) a minimum in 8, of about —O. S for all s sub-
shells of uranium except 1s at approximately 40
keV photoelectron energy; Figure 6 shows that this
feature arises because at this energy the com-
mon Rj / 2 and R», curves of uranium s states Cross
over (R,~, =R~~,) so that 8, would become —1 if
5, &,

=5,». (The position of the minimum is some-
what shifted from the matrix element crossover
since the phase shifts are not equal. ) The 1s ma-
trix elements do not cross. over in the dipole re-
gime and so we do not see such a feature in B,
for the 1s case.

We have noted that for high energies, By B2
[Figs. 5(c) and 5(d)] and R's (Fig. 6) for most s
states have similar energy dependences; the same
property is found for the n dependence of any
fixed (OL). The prop'erty of s state cases reflects
the fact that at high energies the matrix element
for a given subshell is determined at rather small
distances, where, apart from normalization, all
s-state wave functions have the same shape;
similar comparisons can be made among p states,
etc. Such a common shape is the shape of a near-
zero-energy bound or continuum wave function of
given (JL). The greater the energy (positive or
negative) of a state, the smaller is this distance
at which its wave function deviates from this com-
mon shape. An inner -shell bound-state wave
function deviates within its orbit. The matrix
element for a subshell is determined within the
region of common wave function shape if the pho-
ton energy is several times the threshold photon
energy for ionization of that subshell. (For the
uranium 1s state, the highest energy which we
have displayed is still not high enough to be well
above the 1s threshold. ) Normalizations and
hence the absolute cross sections, of course do
depend on the principal quantum number n. As we
approach lower photoelectron energies, the photon



KIM, PRATT, RON, AND TSENG 22

Z=80a

0.001
s s s s I

0.01 0. 1

T(keV)
(a)

1.0-
'0.8—
0.6—
0.4—
0.2—

0—
-0.2—
-0.4—
-0.6—
-0.8
-1.0

0.001
1.0

Z=80
peas(gy-8 4) =-

I

0.01 0. 1

T(keV)
1.0

energy for each given inner shell successively
ceases to be well above its ionization threshold;
the matrix element for such a subshell begins to
be determined at larger distances, where the
bound-state wave function for that subshell has
already deviated from the common shape. Hence
the character of the B for such a subshell begins
to deviate from the common curves describing
those shells exterior to the given shell.

In general, spin-orbit effects become smaller
1as angular momentum increases. For O'=L + —,

initial bound states of outer shells, where multi-
pole effects are small and where except for L, =0
there are two nonrelativistic radial matrix elements,
one of whic h will split into two when spin-orbit inter-
action is added. The resulting photoelectron angular
distributions for L & 0 cases which we observe here
are not qualitatively different from those obtained
in NR dipole calculations. (Quantitative differ-

lences, and energy shifts, between 4=I +2 dxs-
1,12tributions remain noticeable. ) Manson ~ ob-

served the same oscillating features in his NR

12

10

s s s s s

Z= 92

97xa

8

cu

V-

dipole calculation for the Xe 4d subshell as we
observe for U 6d, ~» Hg 5d, ~» and Hg 5d, &, sub-
shells. He identified three origins for these os-
cillations of the asymmetry parameter: a Cooper
minimum, below it a shape resonance, and fi-
nally, just above the threshold (below the range
of our calculation), a Coulomb phase-shift change.
Our total cross sections in Fig. 4 do indeed show
shape resonances and Cooper minima features at
the positions of these oscillations in B„ in agree-
ment with his analysis. To demonstrate this more
clearly we show in Fig. 7 the phase-shift differ-
ences (and their cosines) and radial matrix ele-
ments for Hg in the 5d, &, case, corresponding to
Fig. 4(e). We see that the relevant phase-shift
difference rapidly changes by n (corresponding to
a rapid variation of 5,= 5~), with a shape re-
sonance in the matrix elements at the same ener-
gy. This is followed by a zero (Cooper minimum)
in the same radial matrix elements at a higher
energy. %e do not see any qualitative relativistic
effects, due to the small spin-orbit effects on ef»,
and sf», states, which as we show leads to al-
most the same matrix elements for 5d, ~, -ef,~,
and 5d, &,

-ef, &, transitions.
For outer P and f subshells, the situation is

somewhat similar. However, in Fig. 8 we see
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FIG. 7. (a) Phase-shift differences between the three
final continuum states K = —2(~p3&&), K =3(&f5&2), and
K = -4(~f&&2) relevant for the calculation of mercury 5d5(2
photoeffect in relativistic dipole approximation, demo-
strating that 63 and 6 4 have a significant energy depen-
dence. (b) Cosines of t'he phase differences of {a). {c)
Dipole transition matrix elements R& (Hg 5d5~2- &E;)

multiplied by momentum p of photoelectron, in arbitrary
units, showing a Cooper minimum above a shape reso-
nanc~ for R&~2 and R5g2.
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FIG. 8. The same as Fig. 7(c). (a) for R&(U 4f~])
~E ) showing shape resonances and Cooper minimaj

probably just below the threshold. (b) For R~(U 6p3~2
~E ) with less obvious shape resonances and a littlej

larger separation between zeros.
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in the uranium 4f, @ subshell a shape resonance
at higher energies with a Cooper minimum pro-
bably below threshold, while for the uranium 6P3/2
substate the separation of zeros of matrix ele-
ments is a little larger and a shape resonance is
less obvious.

Finally, we may discuss the radial matrix ele-
ments which are responsible for higher -multipole
contributions, limiting our attention to emission
from s states. To characterize the full relativistic
transitionmatrix elements from a given (JL ) state

to a final continuum state specified by j and l due
to a photon of multipolarity X, via a 2~-pole trans-
ition, we adopt the notation

(& I gq f)-=(«-K+X)Jl G,q„f„dr

+(« K ——A) F«j,g„dr.

Then we have for emission from s states, keeping
the leading terms only,

B, = —[5(1011)(2132)cos(5, —5,) + (1031)(2132) cos(5, —5,)
9

+9(1031)(2152)cos(5, —5,)] /[(1011)'+2(1031)']. (16)

In this notation, R,&, =(1011)and R, &, =(1031). The
additional radial matrix elements which enter this
expression, (2132) and (2162), are shown in Fig.
9(a) for the s states of uranium, again divided by
the corresponding bound -state normalizations.

I I I I I I . I I I I I I I
I

I I

The merging of these additional matrix elements,
except 1s, in the same fashion as for R, /, and

R3 /2 explains the common high-energy BI curve
for the uranium s shells; the merging is again
to be understood in terms of the determination of
these matrix elements at small distances. Jn the
NR limit,

B, = —R Q~ cos(5~ —5~)/R2~,
2V
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FIG. 9. (a) Quadrupole transition matrix elements
(2132)—and (2152)——,contributing to B&, for U ns,
n=1, 2, 4, 5, 6, 7, scaled as in Fig. 6. (b) The co-
sines of the phase-shift differences contributing to B,.

for s waves, where R& =R, for K= —1 in Eq. (12),
and Q~ is the matrix element for ns -zd electric
quadrupole transition.

Figure 9(b) shows the cosines of the three phase-
shift differences of Eq. (16). We see that cos(5,
—5,) and cos(5, —5,) are closer to each other
than to cos(5, —5,), indicating that the difference
in phase shift due to spin-orbit coupling is larger
between eP, &, (« =1) and eP, ~, («= —2) than between
fd, f (K =22) and cd, ~, (« = —3). [In fact, cos(5, —5,)
is close to 0.90 over the entire energy range with-
in fluctuation of +0.01, and cos(5, —5,) is with-
in 0.995 +0.005. At the highest energy shown, the
deviations of these two cosines from I become
slightly bigger. ] From Figs. 6 and 9, we can
explain the common zeros in B, in the high-ener-
gy region. of Fig. 5(c). For photoelectron ener-
gies of about 25 keV, all three cosines in Fig. 10
and all the dipole matrix elements in Fig. 6 are
nonzero, but all the quadrupole matrix elements
in Fig. 9 except for the Is case go through zero,
resulting in the common zero in B, for all ns
states (except for 1s) at around 25 keV in Fig.
6(c). Between 4 and 10 keV, none of the matrix
elements in Eq. (15) are zero but the first term
in Eq. (15) is opposite in sign to the other terms



due to the cosines, as we see in Fig. 9(b). This
negative contribution will cancel the positive con-
tribution somewhere between 4 and 10 keV, be-
cause (2132) —= (2152) and (1011)and (1031) are
comparable to each other for all ns states. The
resulting zeros in B, are at about V keg for aQ
ns states.
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