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Hydrogen atom H and H2+ molecule in strong magnetic fields
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The finite-elements method is used to solve, to the given degree of accuracy, bound states of the H atom
and the molecular ion H, + of hydrogen in a strong magnetic field, 10 & H & 10" gauss, and stronger. In the
case of the hydrogen atom, the results are in agreement (within a factor of —10 ') with results of the best
variational calculations in the area of field changes, while in the case of the molecular hydrogen ion and for
the 0&H&10" gauss field they are far better than all calculations known to date. The opinion presented
here is that the finite-elements method used in this paper —i.e.„ the method of direct solution of the
particular problem on a plane —can also be successfully used in many other physics problems which are
reduced to partial differential equations on a plane, and when perturbation theory or some other similar
method of solution is not applicable.

The problem of the bound states of atoms and
the molecular hydrogen ion (H and H, ') in strong
magnetic fields, appears in astrophysics in its
treatment of neutron stars. ' This field reaches
an intensity of 10"G. In laboratory conditions
an analogous problem takes place in semicon-
ductors. In this case, excitons represent hydro-
gen "quasiatoms" with a small effective' mass and
large dielectric constant. ' The appropriate di-
mensionless parameter, which determines the
strength of the field, is equal to y= PsH/R„, where
p& is the Bohr magneton, H the field strength
(measured in gauss), and R„ the rydberg (Ry) or
effective rydberg in the case of atoms and in the
case of excitons, respectively.

Various methods are usually used in treating
areas of small, average, and large y. As such,
limits to their use are not fixed sharply enough
and results for the bond energy of the H and H,

'
system which are subsequently obtained, differ
sometimes even in the first significant digit.

In the paper a first attempt was made at spec-
tra calculation of H and H,

' within the frame-
work 0f the same approach in the whole area of
y change. However, for y= 0 in the case of H,

'
this method yields a value of 15.1 eV for the
ground-state energy, instead of the exact value
of 16.39 eV. In this way the problem of calculating
to the given degree of exactness the binding en-
ergy of hydrogen H and the molecular hydrogen
ion H,

' as a function of y in the whole region
0&y&104 of y change and greater, remains un-
resolved to this day.

In this paper we propose a general method for
calculating, to the given degree of exactness, the
bound states H and H, ' in fields which change in

the interval 0 & y & 104 and greater.
The Hamiltoniari of the hydrogen atom in a

homogeneous magnetic field H directed along the
z axis has the following form:

H, = —V„' —(2/r) + yl, + ,'y'r' s-in'8,

where l, is the z component of the angular mo-
mentum operator l= —i[rx V;], andr and 8 are
the spherical coordinates of the vector r =(r, 8, p}.

The. Hamiltonian of the hydrogen molecular ion
in a homogeneous field H whose direction coin-
cides with the direction of the vector R,&, which
connects nuclei a and h (protons) in the Born-
Oppenheimer approximation, has the following
form:

2 ~ 2H = -V'-+yl +-y r san 6 — -- ——+I r
a 5 ab

~here r. = lr-2H ~l ~r=
I r+2H~I, R.~= IH. ~l and

x is the electron position vector with respect to
the center of the B„segment. The Hamiltonian
H, is most naturally written in the spheroidal
coordinates g = (r, +r,)/R„, q = (r, —r,)/R„, and

q, in which the variables are separated in the
absence of a magnetic field (y= 0).'

The projection l, of the orbital moment L on the
z axis (in the case of H,

" the z axis has the di-
rection of the vector R„), is conserved in the
case of H just as it is in the case of H, ', l, =m,
and the angle dependence of the wave function has
the form (2m) '~'e' ~. After separation of azi-
muthal dependence, the problem of finding the
bound states of.the H and H, ' system with Hamil-
tonians H, and HI reduces to solving a typical
partial differential equation problem on surfaces
r, 8 and g, q, respectively:
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TABLE I. The ground-state energy E~ (Ry) and E(R0) (Ry) of the hydrogen atom and molecular ion in a magnetic
field (remaining characteristics are described in the text).

H (gauss) Zo E(gp) 8'0 ——2 [E(Bo)+ 1/Ao] Eg ——8'p —E

10
5 x1ps

1010

5 x10&o
10"

5 x 10&&

]012

5x1P
10 3

5 x 10&3

1014

0.425 502 2
0.2127511x 10
0.4255011 x 10
0.2127511 x 102

0.425 502 2 x 10
0.2127511x 10
0.4255022 x 10'
0.2127511x 104
p.4255022 x 104
0.212 571 1 x 10~

0.4255022 x 105

1.9
1.7
1.2
0.8
0.6
0.354
0.287
0.181
0.15
0.104
0.086

-1.10139
-0.757 71
-0.286 99

6.502 47
15.870 09
96.953 19

201.1893
1 049.031
2 115.95

10 678.75
21 402.58

-1.15015
-0.338 94
1.092 69

15.504 94
35.673 52

199.556 1
409.347 3

2 109.111
4 245.234

21 376.72
42 828.41

-0.920 78
0.049 46
1.640 34

16.754 4
36.847 89

203.543 42
416.431 25

2 151.766 9
4 323.205 5

21 928.05
45 396.85

-0.229 37
-0.388 40
—0.547 65
-1.249 3
-1.774 37
-3.987 32
-7.083 95

-42.655
-77.97

-551.33
-2568.44

429.19
2 164.92
4337.22

21 948.30
45 404.33

H,g, (x, 8)=—,—~' —+, . —sjn8——, , +——ym ~y r sin 8 g, (~, 8)=E,g, (r, 8),1 8 28 1 8 . 8 Pl 2 2 ' 2

r Bx Bx' r sin0 BO 80 x sin 0

for 0&r&~, 0 &8&m, with boundary conditions

9 0 e~'K 86) r~~

1 4 1 (8 2 8 8 2 8 4 $ 2 m
III(~& l& ~b) = —

2„. g2 ~ I,g
«' - ),] +

8~ ( -&')—,
q

+
R g2 g2 R2 ($2 1)(1 g2)

2"r'(I n')(&'-1) 6-(&, n;R.~) =Ex(R.~)4(&, rl;R.~),32
(2)

for I & $ &~, —1 & q & 1, with boundary conditions

lim (g'-I)
K ~ x+ 8

„ay,(t, q;R.,)llm (1 —Q ) gng~-1+ l-
lim y, g, q;R.,)=0.

I

Coulomb centers in quantum mechanics. This
problem is solved to the high degree of exactness
of -10 "(Ref. 4). Using the finite-elements
method, the same problem is solved to an exact-
ness of 10 '-10 ' (Ref. 6). By way of comparison,

These problems are solved by the finite-ele-
ments method, "which makes it possible to find
eigenvalues for E„E(R„),and the eigenfunctions
(,(r, 8) and g~($, q; R„) to the given degree of
exactness which in this paper amounts to 10 '-
10 4. Having used the above-mentioned method,
we present in Table I results of our calculations
of the ground-state energy E, of the atom and the
molecular hydrogen ion E,(R,) for certain values
of the 0.425 & y & 0.425' 10' dimensi onless pa-
rameter. These results correspond to 10'. ~ H
& 10"6 field strengths. (In point R, the total
energy W(R, ~) = 2[E,(R„)+R,,'] of the hydrogen
molecular ion is at a minimum. ) In addition,
Table I also presents values for the total energy
Ij'0=~(RO) and energy of molecular hydrogen ion
binding E~ =@',-E„which is calculated in rela-
tion to the E, energy of the hydrogen atom's ground
state in a corresponding magnetic field.

In the case of y= 0, the problem of the bound
states of H,

' is reduced to the problem of two

g=r sine

-2 g=rcose

FIG. 1. Node lines of the wave function of the excited
state of the hydrogen atom for different values of the
y= p&H/8 parameter of the magnetic field, which for
p = 0 goes into the node line of the 2S wave function of the
isolated hydrogen atom.
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TABLE II. The ground-state energy E, (Ry) of the hydrogen atom in the magnetic field
H =yB„/p~.

H. S. Brandi
(Ref. 10)

D. Cabib
(Ref. 2)

Dos Santos
(Ref. 8)

R. K. Bhaduri
(Ref. 3) This work

0
1
2
3

5
20

100
300

1000

-0.523 86
0.09190
0.809 11
1.5798
2.384 2

-0.662 41
-0.044 50

0.670 87
1.438 4
2.239 2

-0.633 08
-0.027 59

0.684 02
1.450 2
2.251 0

—1
-0.002 94

15.683 83
92.74

289.868
985.758

-0.999 957
-0.662 28
-0.044 43

0.671 19
1.438 72
2.239 6

15.592 7
92.522 3

290.362 2
991.877 7

the last column in Table I presents energy E„,
values for the ground state of the anisotropic
oscillator. As the intensity of the H field in-
creases, the corresponding E, values of the hydro-
gen atom's ground state gravitate toward these
values. For example, then, for H= 10'~ 0, E„,
-E,= 1.5 Hy, which represents =0.02'%%uo of the cor-
responding value of the anisotropic oscillator
energy. Let us note that up to the present time,
all variational investigations of this problem of
the mol'ecular hydrogen ion in strong magnetic
fields" give in the region 0 & y & 5, values for the
binding energy E~ which are even 50%%uo greater
than the energy values given in this paper.

In Fig. 1, on the u, v plane, the node lines of
wave functions of the excited state of the hydro-
gen atom are represented for various values of
the parameter y=0, 1, 5, 100, and 300. In the
case of y=0, this coincides with the node lines
of the 2S state of the isolated hydrogen atom. With

y growth, node lines approach the v axis, and for
all values of variables are symmetrical with re-
spect to the direction of the field which has z-axis
direction.

Using our method of calculation, Table II com-
pares E, values of the ground state of the hydro-
gen atom in a homogeneous magnetic field which
changes in the interval 0&y & 1000 with the results

of other authors. In the whole 0&y&1000 region
our findings coincide with the best variational cal-
culations with an exactness of -10 '. Calculations
are performed in several works"' for the
0 & y & 5 region but are only performed in one
work' in the whole 0 &y & 1000 region. For y&104
values it is necessary to take relativistic effects
into consideration. "

The algorithm' based on the finite-elements
method' used in this paper makes it possible to
solve, to the given degree of exactness, the prob-
lem of bound states of the H atom and the mole-
cular ion H,

' of hydrogen in a homogeneous mag-
netic field and in a wide range of changes in the
strength of the II magnetic field. It should be
mentioned that in our approach it is neither nec-
essary to introduce any kind of supplemental
hypothesis, or, as is usually the case, to select
special trial functions for different areas of H
changes. ""'It is our opinion that this al-
gorithm can also be very useful in solving other
problems which are reduced to the direct solution
of partial differential equations on a plane.
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