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_The optical potential in principle gives a complete description of the effect of the target continuum on an
electron-scattering problem truncated to a discrete set of channels. A momentum-space form for the optical
potential has been derived and computed for the continuum in various approximations for the case of
hydrogen. The total ionization cross section is excellently reproduced in the weak-coupling approximation
above 100 eV by the most detailed model, and is tolerable as low as 50 eV.

I. INTRODUCTION

Current theories of atomic reactions initiated by
electrons® may be described in terms of the Fesh-
bach? projection operator formalism. The space of
reaction channels is divided into two complement-
ary subspaces by means of projection operators P
and @. P space consists of a finite set of discrete
channels, including the entrance channel in which
the target is in its ground state. The remaining
channels, including the continuum, comprise @
space.

In practice a discrete set of coupled equations
can be treated numerically by the close-coupling
method. P space is defined to be the set of chan-
nels treated in this way. Computational methods
differ in their treatment of the channels in @
space, most difficulty being caused by the continu-
um.

The pseudostate method! represents @ space by
a finite set of discrete pseudostates at excitation
energies higher than those associated with P
space. In the close-coupling calculation, it is
found that the description of scattering involving
channels whose energies are much lower than those
of the pseudostates is a considerable improvement
over the situation where only a physical P space is
used. The reason is that flux which physically goes
into @ space is absorbed in the calculation by the
pseudostates. The drawback of the method is that
it cannot adequately represent scattering at ener-
gies near those of the pseudostates where, for ex-
ample, pseudoresonances and pseudothresholds oc-
cur.

The optical potential method® is formally an ex-
act treatment of scattering involving only the P-
space channels. The projected Schrodinger equa-
tion for @ space is formally solved and its solution
included with the potentials coupling the P-space
channels ¢ and j to give an optical potential matrix
V. |

The optical potential has most often been calcu-
lated only for elastic scattering. In this case P
space consists only of the entrance channel §=0.
The optical potential consists of a first-order sta-
tic-exchange potential and a complex polarization
term describing real and virtual excitations of @
space.

The data that must be described by the ground-
state optical potential V{J’ are elastic differential
cross sections and spin polarizations and the total
reaction cross section 0{?, i.e., the total cross
section for excitation into @ space.

The simplest ab initio optical potential is ob-
tained by making the closure approximation for the
target states.® It is necessary to approximate Q-
space eigenvalues by a closure energy which is
treated as a parameter. It is not a free param-
eter, since it may be chosen so that the long-range
real polarization potential approximates the dipole
form, which can be calculated.

The purpose of the present work is to consider
the continuum in much more detail. In order to go
further than the closure approximation, it is nec-
essary to make a specific model for the structure
of the target states. We understand the structure
in terms of an independent-particle-model repre-
sentation based on target Hartree-Fock orbitals.
Final states may be described in terms of config-
uration interaction which splits the states given by
the single-particle excitation model. The (e, 2¢)
reaction* has shown that the splittings are usually
confined to a range less than 10 eV from the cor-
responding Hartree-Fock single-particle values,
for continuum excitations of reasonably high ener-
gy. Therefore, all the excitation strength is given
by the independent-particle model in such cases,
and we are justified in using it for considerations
of the total ionization cross section. This is what
we will be concerned with in the present work.

In the independent-particle model, excitations
are given by a three-body problem involving the
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incident electron, one target electron, and an inert
core. The principles of the reaction are therefore
illustrated by considering the case of a hydrogen-
atom target. We will confine our discussion to hy-
drogen.

In the case of hydrogen, the validity of the weak-
coupling approximation has been demonstrated by
McCarthy and McDowell.® In this approximation
the total reaction cross section obtained from a
one-channel calculation with an optical potential
V§Q is equal to the cross section for exciting
states in @ space. We are interested in investi-
gating the continuum part of the optical potential
and therefore choose @ to be the space of ionized
target states. The measurable quantity that we
calculate is the total ionization cross section o{¥
=0y.

The present work uses a formulation and compu-
tational technique that is entirely new in the field.
The optical potential is formulated in momentum
space. It takes the form of an integral over all
possible final states in @ space of an integrand,
which is essentially the product of two three-body
excitation amplitudes, each with the same final
state in @ space. It is of course impossible to cal-
culate three-body amplitudes with Coulomb forces
exactly. The approximation used for the three-
body amplitude characterizes the optical potential.

The momentum-space formulation has the great
computational advantage that the three-body ampli-
tudes are smooth functions of the momentum coor-
dinates and can be written completely in terms of
elementary functions. We can thus use multidi-.
mensional integration and avoid partial-wave ex-
pansions in the evaluation of the potential. The
method can be generalized to target systems larger
than hydrogen with not too much greater numerical
effort, and of course is equally effective at very
high energy.

The object of this work is to find an approxima-
tion to the optical potential which involves the
minimum numerical effort and which reproduces
the experimental values of the total ionization
cross section with reasonable accuracy. We take
success in this as an indication that our treatment
of the continuum is correct. Once a correct treat-
ment of the continuum has been achieved, the con-
tinuum contribution to the potential may be added
to the potential used in standard methods of cal-
culating elastic and inelastic scattering.

Since the potential is calculated in momentum
space, calculation of the total reaction cross sec-
tion is done by solving the Lippmann-Schwinger
integral equation in partial-wave form. We show
that the reaction cross section in an approximation
with incident plane waves is proportional to the
diagonal optical potential in momentum space.
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This gives us an approximation which is accurate
for high partial waves and enables the partial-wave
expansion to be cut off at a manageably small num-~
ber.

Comparisons are made with a calculation of the
optical potential for ionization by Alton, Garrett,
Reeves, and Turner,® who used a coordinate-space
method in the approximation of a plane-wave prop-
agator.

In Sec. II we formulate the optical potentials. In
Sec. III we relate the present calculation of the tot-
al ionization cross section to the more convention-
al method of integrating kinematically complete
differential cross sections over phase space. The
equivalent local approximation for the optical po-
tential is discussed in Sec.IV. This is used to re-
duce the magnitude of the computation. In Secs.V
and VI we discuss different approximations for the
ionization amplitude and their effects on the total
ionization cross section. Section VII gives ex-
amples of the imaginary potential in coordinate
space. In order to enable the reader to follow the
methods, some computational details are given in
the Appendix.

II. THE OPTICAL MODEL

We consider the optical model for a hydrogen-
atom target, which is typical of the three-body
system that is considered when making the inde-
pendent-particle model for a larger target. Hydro-
gen has the computational advantage that some rel-
evant functions are known in closed form. We use
the momentum representation and atomic units
throughout our discussion, and neglect the kinetic
energy of the heavy nucleus.

The Hamiltonian for the electron-hydrogen sys-
tem is

H=K, +K, +v,+ v, + 1, (1)

where K and v stand for kinetic energy and poten-
tial operators, respectively. Since we are not in-
terested in three-body rearrangements, it is
simpler not to use the cyclic notation usual in the
three-body problem. The potentials v, and v, act
in the two-body subsystems defined by electrons 1
and 2 and the nucleus. The interelectron Coulomb
potential is v;. We first consider operators gov-
erning the scattering. One does not consider anti-
symmetry at this stage. Antisymmetry is intro-
duced by using properly normalized antisymmetric
state vectors in matrix elements of the symmetric
operators.”

The reaction channels j are labeled by the hydro-
gen-atom functions ¢,(p):

(e,~K,—v,)¢,=0. )
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We think of electron 2 as the initially bound target
electron, although the operator formalism must be
made symmetric in the labels 1 and 2. For con-
venience of notation, we sometimes use discrete
notation j for continuum target states x(7(k,). In-
tegrations over k, are then denoted by ;.

The definition of the optical potential V{9(q’,q)
for transitions within P space is understood in
terms of an operator notation. The three-body
Schrodinger equation is written as

E-K=v, 3)

where we make the approximation that the nucleus
is infinitely massive:

K=K, +K,, 4)
V= v+ vy + vy (5)

The operators operate on the three-body wave
function |¥). By using the projection operators

P=_Z“;I¢,-><¢,~!, (6)
Q=1—P, (7)

we separate the total Schrédinger equation (3) into
two projected equations

P(E-K - v)P=PvQ, (8)
Q(E -K - v)Q=QuP. _ 9)

Solving (9) and substituting in (8) we have
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PE-K-vOp=0, (10)
where

VO = p+9Q[1/QE-K - 0)Q]Qu. (11)

The potential v, does not connect P and @ spaces.
We therefore have

PvQ=P(v, +1,)Q . (12)

It is necessary to discuss the full three-body
Green’s function of (11) in more detail. First we
make a spectral representation® and use the prop-
erty Q?=Q: ~

1

Q(E”)-K (‘I’( )IQ

—QZI\P E<+>
(13)

The spectral index # is a discrete notation for the
continuum. It defines the asymptotic partition of
the three-body system into bound or ionized states
and specifies the quantum numbers and momenta
within each partition.

We make the approximation that the Green’s
function is diagonal in @ space. The minimum re-
quirement for this is that v, be diagonal in @
space, as it is, for example, if the state vectors
of @ space are plane waves.

The optical potential is now written explicitly as
an operator in three-body space (defined by the
momentum coordinates of particles 1 and 2):

VO =+ 0,43 3 (0 + 0)] o) Dl ¥ L) (EX = E )W bd (| (01 +25). (14)

n meQ

The problem of scattering involving only transi-
tions within P space is reduced to the solution of
the P-space equation (10), which may be expanded
in the usual discrete close-coupling expansion us-
ing channels restricted to P space. For incident
energy E, and momentum K we have

(E® ~K,)f(K, Q) = fdaq’z:v“”q 5K, q,

i,jEP. (15)

The momentum-space representation V{$ for the
potential connecting channels ¢ and j in P space is

ViPQ, ) =(q’, ¢;| V9l ¢;,q), ijEP.  (16)

Equations (14) and (16) display the dependence of
the momentum representation of the optical poten-
tial on the amplitude F,; for the excitation of the
three-body channel & (=mn), starting from the
three-body channel | ¢;,q):

Fki'—‘<‘I’,<,-)|¢m><¢m"”1+vsl¢na>- 1)

We may think of the partial overlap (¢,|¥.{”’) as a
distorted wave in the space of electron 1 and write

(om ¥ =17 (18)
If v, is completely excluded from the Green’s func-
tion (11), then x{™ is simply an eigenstate of K,
+v, with ingoing-spherical-wave boundary condi-
tions. However, the retention of the part of v, di-
agonal in @ space allows us to make screening
arguments for approximations used later.

Singlet and triplet contributions to the optical
potential with neglect of spin-orbit coupling are
introduced first by adding the term corresponding
to (14) for the optical potential with particle labels
1 and 2 reversed so as to obtain the symmetric -
optical potential operator V). Writing particle 1
on the right of a three-body state vector, we cal-
culate singlet and triplet potentials, respectively,
by using the matrix elements



Vg?’s/r(a', ‘D

=3(a", ¢, 14405, A" VR 65, @) £ [, 9,)) - (19)

We continue to use the unsymmetric form in order
to simplify the discussion. The operations de-
scribed by (19) are represented by the antisym-
metrization operator A.

1. THE WEAK-COUPLING APPROXIMATION

The weak-coupling approximation neglects off-
diagonal optical potentials in the entrance-channel
equation of the set (15). This decouples the en-
trance-channel equation from the remainder. We
write it as

(EO-K)5E 8 = [ g V@@, 95&, ).
(20)
From this equation we can calculate complex phase
shifts 5(% and a reaction cross section for Q

space:
1
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o= (/K" T @1+ D1 - lexp(@ic{®) 7] . (21)

The total nonelastic cross section for P and @
spaces is

0p =0+ Z o, (22)
i€P

where o is the cross section for exciting the dis-
crete channel i.

The central role in the weak-coupling approxima-
tion is played by the entrance-channel equation
(20). We separate the ground-state optical poten-
tial into first- and second-order terms

VD=V, 4V,

Vl(a" Q) =A(q’, Go | V1 + 5] Po» a, (23)

v,@, 9 =4 ;F:k(a')[l/( EM_E)|FW@, kEQ.

where we have used the transition amplitudes F,,
defined by (19).

Using the distorted-wave notation (18), the sec-
ond-order potential becomes

Vz(alv a) =A ;(6’, ¢o,v1 + Usld’k, Xl(z—)>[1/(E(+)"Ek)]<X§z')a ¢k'”1+ 03!¢o’ 6) , REQ. (24)v

The first-order potential is the static-exchange
potential. The second-order term V, is conven-
iently separated into Hermitian and anti~Hermitian
parts:

Vo==U~-iW, (25)

where U and W contain the real and imaginary
parts of the Green’s function, respectively. The
Hermitian property of W, for example, is expres-
sed by

w(q’,q)=w*@q,q"). (26)

U is the real polarization term involving virtual
(off-energy-shell) excitations into @ space. W is
the absorptive term involving on-shell excitations.
In fact, the proiection operator for discrete states
is real, so that U and W are both seen to be real
by subtraction from the closure sum.

Absorption from the entrance channel is under-
stood in terms of the divergence of the probability
flux j(¥). This is a coordinate-space concept. We
discuss it in terms of the coordinate-space analog
of the entrance-channel equation (20):

(7 + KR, P =2 [t UG, D+ w (@, 1)

x £, (K, 7). 27

The total reaction cross section g’ is the inte-
gral over all space of the divergence: of the flux,

|
divided by the incident flux K.

o @ =K1 f 4 (24) [ FEE, PV E, )

- &, DIVFrE, ). (28)

Substituting from (27) and using the Hermitian
property (26), we find

o= (2/K)2n £, @) | WA E)) (29)

Equation (29) is combined with the anti-Hermitian
part of the weak-coupling optical potential (24) to
give an approximate sum rule, valid in the weak-
coupling limit. The sum rule is similar to one de-
rived by Coulter® under somewhat more restricted
approximations:

ol@ =; o®, reQ (30)

where the partial reaction cross section ¢{" for
channel k€ Q is given by

0P =K "1 (21)*A(f,(K), ¢o | v + V5| dar x5
XCx87, dul vy + 03] 90, oK), Ex=E.  (31)

Note that with the discrete channel notation k&,
ol is a differential cross section in the kinematic
variables of 1 and 2 electrons in the cases of
bound and ionized target states, respectively.
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The amplitudes in (31) are the distorted-wave
Born approximation to the amplitudes for excita-
tion of channel k. In fact, o is the distorted-
wave Born approximation to the cross section for
exciting the channel %.

The importance of the sum rule is that cross
sections for excitation of parts of @ space are
given by the reaction cross section calculated from
the entrance-channel equation using an optical po-
tential with the projection operator corresponding
to the same part of @ space.

The sum rule has been tested by McCarthy and
McDowell,® who used a phenomenological imagin-
ary potential chosen to give the experimental value
of the total reaction cross section in a close-coup-
ling calculation where P space consisted of the »n
channels of lowest excitation energy. The close-
coupling value of o4 agreed with the weak-coupling
value within about 5% at energies ranging from 30
to 200 eV for n=3.

IV. THE EQUIVALENT LOCAL APPROXIMATION

The potential V, and the exchange term of V, are
nonlocal. Computationally this complicates the
elastic scattering problem in coordinate space, be-
cause the Schrddinger equation becomes an inte-
grodifferential equation. For this reason, there
have been several attempts to approximate nonlocal
potentials inatomic scattering by an equivalentlocal
potential, and thus reduce the Schrédinger equation
to the standard differential equation. For example,
the equivalent local potential of Furness and
McCarthy!® is obtained by replacing the gradient
operator in a Taylor expansion of £,(K,T’) about T
by the self-consistent local value of the momen-
tum. It gives very satisfactory results for the ex-
change term of V,. We call this the self-consis-
tent-local (SCL) approximation and generalize the
concept to describe the potential V,, in addition.

Since our approach and calculations are based on
the momentum representation, we first derive the
representation of the equivalent local potential in
momentum space. In operator notation the equiva-
lent local potential® has the form

Vieea®) = @mX K| (F|VIK), (32)

where V on the right-hand side is the exact non-
local potential and the matrix element is taken in a
conjugate representation of coordinate and mo-
mentum space. Regarded as an operator, we have
for Vlocal

< FI Vlocall FI> = Vlocal(F)G(Fl - F) ’ (33)

and on taking the Fourier transform, the momen-
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tum-space representation of the equivalent local
potential becomes

<a/,vlocal’a>=<a_a,+ﬁlv‘f€>'_ (34)

It is clear from (34) that the potential is a function
of {—q’, so we write the momentum-space matrix
element as Vi..(q-q’).

Since the exact potential (q’|V|q) depends only
on q’/, g, and q’-q, apart from the energy depen-
dence of K =(2E,)"/?, Vi,.ais a function only of P
and u, where

p»;«-_-a,
1= (35)
u=B-K/PK .

Thus we may expand V., in a multipole expansion
in u:

V{ocal(ﬁ) =z)‘: V( M(P)P)\(u) o (36)

The equivalent local potential (34), defined for a
general potential, lacks one important property of
the optical potential, namely the symmetry under
interchange of q and §q’. If we impose this addition-
al constraint, odd multipoles vanish:

) ,
3 f du(2x + 1)V, (P)P,(x), X even
VOP) = o (37)

0, Xxodd.

The term V(P) is local and central and one
would hope that it would be by far the major con-
tribution to Vi,,. The approximation Vi, =V‘® can
be tested for the static-exchange potential by com-
paring the singlet and triplet phase shifts for hy-
drogen using this approximation with the exact
phase shifts calculated by Vanderpoorten.!! This
comparison is made in Table I together with the
SCL phase shifts for E =50 and 100 eV,

We are encouraged by these results to use the
approximation V{» for the second-order potential
V,. The contribution of the higher even multipoles
in the expansion (36) was tested by adding V{* to
V£ and solving the Lippmann-Schwinger equation
for the resulting momentum-space potential. This
was done at 40 eV using the Born approximation
for F,, in the case where @ projects onto the con-
tinuum. Addition of the quadrupole term had a neg-
ligible effect. The effect will be smaller at higher
energies.

The purpose of using the equivalent local potential
is to reduce the magnitude of the numerical comp-
utation. This becomes particularly important in
the case of (q’|V,|q), whose calculation is quite
time consuming. The saving in the case of the sol-
ution of the Lippmann-Schwinger equation is in the
number of matrix elements of V, that must be cal-
culated. For the exact nonlocal potential, the solu-
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tion requires a knowledge of {q’|V|q) for arbitr-
ary ¢, |q-q’|, and . The equivalent local cen-
tral potential V(® is completely specified as a
function of the single variable P = Ia— E'l at a given
incident energy. This is true also for the higher

multipoles (37).
J

V. CALCULATION OF IONIZATION CROSS SECTIONS

As our first application of the optical model, we
consider @ space to be the space I of ionized chan-
nels. The optical potential V,, making the equiva-
lent local and weak-coupling approximations, is

1 o oa . 1 ey "
V,(P) =3 f dufd3q" fd3p”A<K+P, bol v5 [XT(B" X V@) FH_L(g72 4577 x@x (0" | vs | o, K) -
1

We have dropped the terms in v, from the ioniza-
tion amplitudes. They correspond to heavy-par-
ticle knockout, which is a minor effect.'?

Compared with the direct part of V,, the real
part of V, is insignificant for the calculation of the
ionization cross section o;. We have therefore
computed only the imaginary part W(P) of (38).
Since the exchange term of V, makes less than 1%
difference to g,, it too is omitted.

We are able to find analytic approximations (dis-
cussed in Sec. VI) for the amplitudes. The calcu-
lation of W thus involves a six-dimensional inte-
gral, which is computed directly using the Monte
Carlo integration method of Lepage.’®* The tech-
nical details are discussed in the Appendix. For
P <2, we normally require the standard error
estimate to be less than 1% of the potential value.
For higher P we allow up to 3%.

The total ionization cross section o, has been
calculated in two basic approximations involving
the optical potential W(P). The simplest is the in-
cident plane-wave approximation which comes
from approximating the entrance-channel distorted

TABLE I. The first-order approximation for elec-
tron-hydrogen phase shifts. The exact (EX) and self-
consistent local (SCL) values were obtained by Vander-
poorten (Ref. 11). The column headed V{? gives the re-
sults of the spherical approximation in momentum space.

Case z EX SCL v
100 eV 0 0.532 0.539 0.51
singlet 1 0.187 0.193 0.179
2 0.0796 0.0809 0.077
3 0.036 4 0.0365 0.036
100 eV 0 0.667 0.662 0.69
triplet 1 0.302 0.297 0.31
2 0.145 0.144 0.149
3 0.0712 0.0711 0.072
50 eV 0 0.541 0.547 0.44
singlet 1 0.0953 0.109 0.077
2 0.0275 0.0277 0.021
3 0.008 98 0.007 97 0.0087
50 eV 0 0.854 0.838 0.95
triplet 1 0.334 0.321 0.37
2 0.124 0.123 0.135
3 0.046 63 0.0474 0.048

(38)

'wa.ve fO(I_E) in (29) by a plane wave:
of =(2/K)2rY¥w(0). (39)

The use of the full optical potential in the approx-
imation V, -~ iW, where V, is the static real poten-
tial and -W is the imaginary part of V,(P) given by
(38), is equivalent to using the full entrance-chan-
nel function f£,(K) in (29). The total ionization cross
section is computed by (21) using phase shifts de-
rived from the solution of the Lippmann-Schwinger
equation for the partial wave /. For large enough
I the partial-wave contribution to the reaction
cross section is negligibly different from the uni-
tarized Born approximation, given by neglecting
the real part of the free-particle Green’s function.
In turn for some larger I=7,,, the unitarized
Born approximation is sufficiently close to the
partial-wave contribution to (39) [denoted by o,(1)],
to enable one to compute the contribution of all
higher partial waves by means of the identity

0 (1>l )= 2, (21+1)02(0)

1> max

=of- 2 (@I+1)F0). (39")
O0=I=Imax

The ionization cross section for hydrogen has
previously been computed by Alton ef ql.® using an
optical potential calculated from the free-particle
propagator with no exchange contribution and by
Coulter and Garrett™ who added first-order ex-
change to this approximation. The results of Alton
et al. are given in the column headed AGRT in T a-
ble II.

VI. DIFFERENT APPROXIMATIONS FOR THE
IONIZATION CROSS SECTION

The approximations used in the present calcula-
tion are characterized by the approximations used
for the ionization amplitudes in (38). They are re-
stricted to approximations in which one of the dis-
torted waves in the projector is represented by a
plane wave.  There is no difficulty in principle in
using more detailed distorted waves, but computing
time is reduced considerably since the plane wave
in momentum space is a delta function. The other
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TABLE II. The ionization cross section for hydrogen
in units maf. The column headed Born contains the Born
approximation. The next four columns are the results
of optical-model calculations with different projectors
described in the text. Experimental data in the last col-
umn are centered on the data of Fite and Brackmann
(Ref. 15) with error estimates provided by Teubner (Ref.
16).

E@EV) Born DB AGRT SB OBO Expt.
20 0.61 0.62 0.56 0.45 0.33+£0.08
40 1.21 1.8 1.15 0.97 0.88 0.68+0.17
60 1.10 1.07 1.04 0.96 0.88 0.75+0.18
80 0.96 0.94 0.87 0.86 0.80 0.72+0.17
100 0.85 0.83 0.72 0.77 0,72 0.68 £0.16
150 0.64 0.62 0.56 0.60 0.57 0.57+0.13
200 0.52 0.51 0.48 049 046 0.49+0.11
300 0.37 0.37 0.37 0.34 0.37+0.08
500 0.25 0.25 0.25 0.23 0.24+0.04

distorted wave is represented by a Coulomb wave
with unit charge. All approximations make use of
analytic expression for the Coulomb transform of
the hydrogen-atom ground state:

Japx @3+ ) (Bl 4

iz d’re” nre-ia-i‘ X(H(E’ F)

1222 qlx P®),n), n=1 (40)
where
(q]xPE),n) ==r2r' (1 = iv)e™/?

(st 1oy

A=q®-(k+in)?,
B=|q-K[*+n?,
v=1/k. (41)

A. Direct Born (DB)

In this approximation x¢7(q”) is a plane wave,
x¢(p”) is a Coulomb wave for charge 1. Exchange
terms in (38) are omitted. . This approximation is
not expected to give a very realistic reaction cross
section, but it is interesting from the point of view
of obtaining an independent check of our numerical
analysis.
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The DB value of the optical potential W at P =0 is
w©)=n [a2q" [ a*p"(E, golvslx G, d7)
X (5[E—%(p”2 +q”2)]

X (", x B vs] ¢, K) , (42)

which is the usual Born approximation for ¢,. Our
calculation of ¢, in the Born approximation agrees
with the parabolic-coordinate calculation of Omid-
var and Sullivan'” within less than 1% at all ener-
gies from 20 to 200 eV. The results are given in
the column of Table II headed Born.

The results for o, using the DB optical model
phase shifts are shown in the column of Table II
headed DB. Even at low energies they are quite
close to the incident-plane-wave approximation
(Born), indicating that the plane-wave approxima-
tion for the wave function of an electron incident on
a hydrogen atom is quite good in distorted-wave
approximations for reactions.

For energies less than 100 eV, the DB ionization
cross section is not very close to the experimental
values. This indicates either that the distorted-
wave (weak-coupling) approximation is not good for
the ionization amplitudes, or that the direct Born
approximation is insufficient to represent the anti-
symmetrized final state.

A similar conclusion can be drawn from the re-
sults of Alton et al. who have solved the full inte-
gro-differential Schrédinger equation. Considering
the different method of solution and our use of an
equivalent local potential, the results are in rea-
sonable agreement, although their cross sections
are slightly lower with the largest difference oc-
curring for energies above 80 eV. It seems possi-
ble that this discrepancy may be due to the inclu-
sion of too few partial waves in their calculation at
higher energies.

B. Symmetric Born (SB)

The simplest way of taking second-order ex~
change into account is a semiclassical method in
which the faster of the two outgoing electrons is
represented in (38) by a plane wave, but the on-
shell energy integration for the imaginary potential
is cut off at E/2. The incident-plane-wave approx-
imation (39) for this model gives much better re-
sults than the Born approximation for lower ener-
gies.'®

The full SB optical model is a considerable im-
provement over DB below 200 eV.

C. Orthogonalized Born-Oppenheimer (OBO)

- This is the most complete model that can be made within the distorted-wave approximation taking into
account the computational restriction that a plane wave must be used for one of the distorted waves in the
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projector of (38).

The full Coulomb wave is used for the slower of the two electrons. The faster of the two electrons is
represented by a plane wave orthogonalized to the ground state of hydrogen. This partially fulfills the re-
quirement that P space and @ space must be orthogonal. Antisymmetry is approximately taken into account
within the plane-wave restriction by using the peaking approximation of Ochkur.!®

The approximation contains elements of the screening effect mentioned in the discussion of Eq. (18). The
presence of the potential v, considerably reduces the effect of the nuclear charge on the wave function of the
faster electron. The direct amplitude D in the OBO approximation is

D@, 57,3~ [a*p 1T~ T Do B)E +T = 3" X "GN, " p”

=.[d3pl fd3q1 fd3p1<¢o'5'>vs(,a,‘a1|)6(§1"a,—5’+a1)

X [(ByB") (Gl xAG") =< Bul pod b0 |B") (&, |x @ N], q"<p”. (43)

The Ochkur peaking approximation is used to reduce the p’ integration to the form (40) for ¢” <p”. In the

argument of v, we replace a, by q”, to obtain

D@, 5,30 =0T =31 [a[(oulB" 5+ =1 @)

~(olB( [ a a3 BT =BGV Bl0w))] a7 <p”. e

Repeated application of (40) and (41) gives an ana-
lytic expression for the integral in the orthogonal-
ity-defect term:

[ [ a0l 55"+ = Bulx@")(Bul 90

=(27)2728(q’'[x(@"),2) . (45)

The exchange amplitude E(q’, p”, q”) is given by
interchanging p”, q” in the direct amplitude. In the
calculation we ignored the relatively small contri-
bution to the real potential V, from first-order ex-
change and combined the singlet and triplet second-
order terms to obtain for the imaginary potential

w@,d=r [a¢" [ @p"(D@,5",3)* DG, 5,3
-:D@’,p",9")* D@, q",p")]

X 8[E-3(g"*+p"?)]. (46)

The ionization cross section calculated from the

OBO optical model is given in the corresponding
column of Table II. It agrees well with experiment

r
above 100 eV and is tolerable for energies as low
as 50 eV, below which it is possible to estimate o,
by the pseudostate method.?°

It is interesting to compare direct and exchange
contributions to o,. Since the effect of incident-
wave distortion is small, they have been calculated
for the OBO optical model in approximation (39).
The comparison is shown in Table III. The direct
to exchange ratios are within a few percent of the
values measured by Alguard et al.?*

VII. CHARACTERISTICS OF THE CONTINUUM
IMAGINARY POTENTIAL

The imaginary potential W (P) for the electron-
hydrogen continuum is an extremely smooth func-
tion of the momentum coordinate P, whose shape
varies little as E is varied. Its magnitude is
greatest at about 80 eV. At higher energies,
where all the calculated models essentially give
the same value for ¢,, the shape is essentially in-
dependent of the model.

The chief usefulness of W(P) is in coupled-chan-
nels calculations of electron-hydrogen reactions

TABLE III. Direct and exchange contributions to o; in the OBO optical model using Eq.

(39), units maj.

E(eV) 40 60 80 100 150 200 300 400
Dir 1.19 1.14 1.00 0.87 0.64 0.53 0.37 0.27
Exch 0.57 0.50 0.37 0.27 0.16 0.10 0.05 0.03
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starting with the ground state, where it is added to
the ground-state potential to give a representation
of the continuum. In principle it is necessary to
calculate the potentials V{} of (16) for all channels
i,j in the calculation, but since the second-order
part is considerably smaller than the first-order
part, it has a negligible effect in all but the 0,0
case. This has been confirmed numerically by
McCarthy and McDowell,® who used a phenomeno-
logical imaginary potential chosen to give the cor-
rect total reaction cross section.

In coupled-channels calculations the coordinate-
space representation is normally used. We have
therefore transformed the OBO approximation for
W (P) to coordinate space and given values in Table
IV suitable for interpolation for different energy
and 7 values. Figure 1 shows the total coordinate-
space imaginary potentials for 100 and 200 eV.
Their shape is very close to exp(-»), which is pro-
portional to the square root of the density, not to
the density as has been assumed in phenomeno-
logical form factors.5:°

Figure 2 shows the effect of exchange in the 100
eV imaginary OBO second-order potential. The
singlet potential is dominant up to a distance of
about 1.5 a.u. At larger distances the triplet po-
tential is of larger magnitude and longer range.
The singlet and triplet potentials are relevant to
close-coupling calculations of electron scattering
from hydrogen.

VIII. CONCLUSIONS

We have derived an expression [(14, (16)] for the
optical potential matrix V¢{$’ relevant to a trunca-
tion of the electron scattering problem to a dis-
crete set P of channels. If sufficient channels are
taken (in practice this means about 6 for hydro-
gen), the cross section for reactions to channels
outside the discrete set is essentially the total ion-
ization cross section, and we can take @ to be the
ionization space I.

Since the second-order part of the optical poten-
tial is small compared to the first-order part, it
is sufficient to neglect second-order parts in all
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IMAGINARY OPTICAL POTENTIAL
C HYDROGEN

W (eV)

r(au)

FIG. 1. The imaginary optical potential in coordin-
ate space for 100 and 200 eV.

but V§’ if we are calculating cross sections for
reactions starting with the target ground state.

We have derived a local approximation —W (P) in
momentum space to the imaginary part of V{»,
which for hydrogen has been calculated in various
approximations. The orthogonalized Born-Oppen-
heimer approximation reproduces experimental
total ionization cross sections very well for E >100
eV, and tolerably for E as low as 50 eV. This is
regarded as an excellent test of the potential.

For use in a coupled-channels calculation of
electron-hydrogen reactions, it is not difficult to
calculate the second-order real potential (continu-
um contribution to the polarization potential) and to
separate the potentials into singlet and triplet
parts. This has not been done for ionization cross
sections since it makes little difference.

The extremely satisfactory state of affairs for
electron-hydrogen scattering at intermediate ener-
gies has been brought about by the use of a com-
pletely new method. The momentum-space formu-

TABLE IV. Imaginary optical potential in coordinate space (OBO) (eV).

E(eV)\? 0.02 0.14 0.62 1.26 2.22 3.18 4.14 5.1
40 1.69 1.61 1.23 0.72 0.29 0.117 0.048 0.021
60 1.81 1.72 1.33 0.79 0.35 0.142 0.056 0.025
80 1.92 1.82 1.39 0.81 0.36 0.141 0.061 0.025

100 1.92 1.82 1.37 0.81 0.35 0.140 0.061 0.024
150 1.84 1.74 1.29 0.76 0.33 0.126 0.047 0.0194
200 1.711 1.62 1.20 0.72 0.30 0.117 0.043 0.0168




IMAGINARY OPTICAL POTENTIAL
I HYDROGEN , 100eV
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FIG. 2. The singlet and triplet imaginary optical
potentials in coordinate space for 100 eV.

lation of the optical potential allows integration by
the multidimensional Monte Carlo method, in which
the use of Cartesian coordinates eliminates diffi-
culties caused, for example, by two-center inte-
grals and enables partial-wave expansions to be
eliminated in the integration. The method is equal-
ly effective for targets larger than hydrogen, al-
though the analytic integrations possible for hydro-
gen become rather clumsy in the general case. It
is probably necessary to perform these integra-

22 CONTINUUM IN THE ATOMIC OPTICAL MODEL 511

tions numerically. This is not a serious difficulty
for the Monte Carlo method, where increased di-
mensionality does not cause a disastrous increase
in computing time.

The most attractive possibility for nonhydrogenic
targets is suggested by considering the shape of W

‘for hydrogen. It is a very smooth function in both

coordinate and momentum space with a weak de-
pendence on the incident energy. This suggests
that it may be possible to find a simple transla-
tionally invariant second-order potential, analog-
ous to the first-order interelectron Coulomb po-
tential, which can be folded into the density to ob-
tain the optical potential for the continuum in the
case of larger target systems. The universality of
such an operator would depend on the fact, estab-
lished here, that non-Coulomb distortion in the
projection operator for ionization is a minor ef-
fect.
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APPENDIX: NUMERICAL METHODS

In order to illustrate our numerical procedure, we consider the optical potential V{®(P) for the direct
Born model of Sec. VIA. Using Eqs. (38), (40), and (41) we have

1
Véo)(P)=4ﬂ2f du fd3q” fdsp”<K+P_anlx(-»)(an), 1) *vs(K+_§—a”)[E""—%(q”2 +pr/2)]-1
-1 .

X (K=q"|x B, 1) v,(K-3"), A1)

where II_{.|=(2E[,)“/2 and vs(ﬁ), the momentum-space representation of the e-e interaction, is given by

v,@Q)=1/21%Q%.

(A2)

The spherical symmetry inherent in the integrand suggests the use of spherical polar coordinates to

evaluate the integral. In an obvious notation we write

1 o 00
vow)=ta [ au [aa [av,. [ aar [TaprEe.n a5 an e [EO -G 0]
-1 o] (]

and on introducing the transformation
q"” =rsina,

p”"=rcosa, O<as<u/2, r>0,

(A3)

decompose the Green’s function into its principal value and imaginary parts to give
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1 /2 0
V§°’(P)=4rrzf du fdszq,, fdsz,,,f da(Pf rar £ %
=1 0 (o}

where
qp=7gsina,
pp=7gcosa,

= (2E)1/2 i
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"II pll’ q// p”)

(E 2,',2) inF(Pyuy CI"yP", qupg)) ) (A4)

(A5)

The function F has in general real and imaginary components, but the general requirements of Hermiticity
[Eqgs. (24) and (26)] for the two components of V, coupled with the local approximation, lead to the pre-
scription that one needs only to compute the integral for the real part of F.

For the computations carried out in the present paper we have concentrated on the calculation of the
imaginary part of the second-order potential. Calculation of the real part requires modification of the
form given in (A4), since use of Monte Carlo multidimensional integration precludes treatment of the prin-
cipal-value integral by direct integration. However by making use of the identity

© ar
e =0
P’/(; E_%TZ ’

(A6)

we can subtract out the singularity, which leads to an equivalent nonsingular representation of the real
part of V{° suitable for computation by Monte Carlo techniques:

ReV,® (P) =4n® [idu fdﬂqufdnbu fom)da

(0]

The Monte Carlo integration program we used is
based on an adaptive algorithm due to Lepage.'®
The integral is evaluated for a number of iterations
and the adaptive feature optimizes the weighting of
the integration points over successive iterations.
For the numerical calculation of the imaginary
second-order potential we found that about six iter-
ations of the order of 12 000 calls to the integrand
per iteration were sufficient to evaluate the six-
dimensional integral to within 1 or 2 percent. The
accuracy obtained depended marginally on the en-
ergy but did vary with the value of P. Attainment
of the required accuracy proved most difficult in

v fmdr ,},Pnqule(P’u’ é," 5”, 4”, P") JpgzquF(P, U, 5"’13", qupfg')

E-ir2

A7)

r
the region 1.5 < P < 2.5 a.u. The resultant potential
had a smooth dependence on P, enabling one to cal-
culate it for a few points and to obtain all other
values by interpolation. In practice the potential
had become negligibly small by P =17 a.u,

A technique that we found helpful in reducing the
time required to calculate the potential for succes-
sive P values was to use the weighting of the inte-
grand points from the last iteration for the pre-
vious value. This proved to be very close to the
optimum choice for the computation of the potential
at the next value, thus reducing the number of it-
erations needed to obtain the desired accuracy.
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