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Iterative approach to the Schwinger variational principle for electron-molecule collisions
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We present an iterative approach which uses the Schwinger variational principle to solve the I.ippmann-

Schwinger equation for electron-molecule scattering. This method combines the use of discrete basis

functions to describe the effects of the noncentral molecular potential with an iterative procedure which

provides systematic convergence of the scattering solutions. Results for electron-H, scattering in the static-

exchange approximation show that the method converges rapidly and gives very accurate results.

I. INTRODUCTION II. THEORV

The Schwinger variational principle for the 'l'

matrix has been found to be very useful in obtain-
ing accurate solutions for electron-molecule scat-
tering. This method was introduced as a discrete-
basis-function approach to scattering' and has
evolved as a general numerical technique. ' The
Schwinger variational principle has been success-
fully applied to the scattering of low-energy elec-
trons by He, He', H„H, ', N, ', and LiH (Refs. 1-7).
In the present paper we apply an iterative ap-
proach to the Schwinger variational principle' "
to obtain scattering solutions to the electron-mol-
ecule collision problem. The method uses trial
scattering wave functions which contain both dis-
crete basis functions and numerical wave functions
which explicitly satisfy the scattering boundary
conditions. The discrete basis functions effec-
tively describe the scattering wave function in the
region near the nuclei where electron-exchange
and partial-wave coupling are strong. The numer-
ical wave functions are obtained from the Lipp-
mann-Schwinger equation using a procedure which
does not require solving coupled integro-differen-
tial equations. This is a powerful method for elec-
tron-molecule scattering combining the advantages
of using discrete basis functions with an iterative
procedure which allows convergence to an exact
solution for the potential chosen to describe the
interaction.

We apply the iterative Schwinger method to elec-
tron-H, scattering in the static-exchange approxi-
mation. The results of these applications show that
the method is very effective and converges rapidly.
Although the formal theory is given in terms of the
7" matrix and wave functions which satisfy outgo-
ing-wave boundary conditions, for numerical con-
venience we actually perform all calculations using
the E' matrix and wave functions which satisfy
standing-wave boundary conditions.

The iterative Schwinger method starts with the
solution of the I ippmann-Schwinger equation for
the 7 matrix

7 = U+ UG~,'&r (1

using a separable approximation to the exact po-
tential. The form of the separable potential used
here is

&rlv" lr'& = Q &rl vl~;&(v ');,&~, I
vlr'&,

ct], o. , C. Rj

where g is an initial set of expansion functions and
U= 2V. With this separable potential the solution
of the Lippmann-Schwinger equation Eq. (1) is
given by

&rlT" lr') = Q &rl vl~, &
I(&'"') '1;;&~, I Vlr'&, (3)

where

d, = (n, ~

v - vd'via, ) .

As has been pointed out by several authors, ""
this form of the T matrix is equivalent to that
obtained from the Schwinger variational expression

(y„.Ivly", ,l„'&&y', ,„"lvly~, „&
Tt t'm &latm IT I 4&('m & (,~( )& [V Vg(+)V ),I(+)&

V'&lm 0 Y'kl'm ~

(5)

where the partial-wave trial functions are linear
combinations of the expansion functions

y",,"(r)= Q C'„", ,.~,. (r). (6)
y, . FRi

The form of the T matrix given in Eq. (3) or
equiva. lently Eq. (5), has been used by the present
authors to obtain scattering results in several
systems. ' ' The errors that exist in this Schwing-
er variational I matrix are due to the difference
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between the exact potential 0 and the approximate
separable potential U'0 given in Eq. (2). It is pos-
sible to eliminate these errors due to the differ-
ence potential by an iterative procedure.

Our iterative procedure begins by constructing
the scattering wave functions which correspond
to the Schwinger T matrix given in Eq. (3). There
are no coupled equations to solve to obtain these
wave functions since the corresponding T matrix
is exactly known. The scattering solutions are
computed using the partial-wave expansion of the
wave function

Z/2

+-''rr) =-
lm

For a, linear target molecule, p~„" may in turn be
expanded in a partial-wave series by

g(,",'.rr) = p 0,",.'„(k,~)I;,(~) . (8)

The Lippmann-Schwinger equation for the wave
function is

y'""rr) = ya,.rr)+ &rlG"U'oly'""'&

where p„(r) are the free-particle solutions

p, rr)=j, (k~)I', (~).

By using the identity

(9)

(10)

we obtain an expression for the wave function in
terms of the T matrix

(12)y(.",". r) =y„.r) rid."T"ly„.&.

This equation for g(„",~'0 is now uncoupled, and the
partial-wave functions are given by

A(":(k ~) =i~(k~)5»

k(j, (kx, )k(('(kz) )Y, (r) I Ul n, &[(D") ']„(c(,IUI j,.(kx. )I',„(r)&.
0'. ~, a E'B

(13)

—k&e...lT"ly...»', "(k~) . (14)

The radial function ((((',~ is readily obtained from
Eq. (13) by numerical integration.

The iterative procedure proceeds by augmenting
the expansion set 8 of Eq. (2) by the set of func-
tions So=(g'0, ((I'„(0„,. . . , g'o ] which consists of

the scattering solutions corresponding to the T
matrix given in Eq. (3). Using this augmented
set of functions, the first iteration is completed
by calculating a new T matrix given by

rr IUlq;&[(D") '];;&q, IUlr')
x; x&&zoso

(15)
Note that the expansion functions contained in the
set 8 US, include both the initial set of expansion
functions ft =[c(,I and the continuum solutions given
by Eq. (12).

A second iteration is begun by constructing the
set of solutions S,=Q, . . . , p",„jwhich are as-
sociated with the matrm 7"i given by Eq. (15). The
set S, combined with the initial trial function set
p yields a new T matrix T 2. In general 7.' n,
g',&, and the set of functions S„are given by

rUy; ' ', , X,. Ur'
x;x, &RJs„z

(16)

The asymptotic form of the partial-wave solutions
are then

4'(".0(k ~) j((k~»-(r

and

where

r))=re„,.(r)+(rlG". T"Ip„,
This iterative scheme is repeated until the wave
functions converge.

If the wave functions do converge such that

(18)

g(+) „rr) —y(+) „rr)
klm

(19)

and if we have

for 1 &i (p and 1 (j (p, and

&O'„,,
"„"

I
U Ud, "Ul~;&-= &e,, IUI~;& (21)

+ r G()UX
x;.x;&~

x [(D") '];;&x, IUI @..& (22)

for 1 &i &P and n,. c3, then itfollows thatthefunc-
tions p(,',)'~ satisfy the Lippmann-Schwinger equation
for the exact potential U. This can be demon-
strated by substituting Eq. (16) into Eq. (18) to
yield

p(As„~ rr) —
y rr)
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Then using the relationships given in Eq. (20} and
Eq. (21), Eq. (22) reduces to

(28)
X;~X .&&~

ai 0 Xi

(25)

Thus if Eq. (19) is also satisfied, Eq. (28) reduces
to

(24)

which is just the Lippmann-Schwinger equation for
the exact potential U.

It is of interest to note that Eq. (20) and Eq. (21)
are identically satisfied if pp, is the exact solu-
tion. This suggests that the degree of convergence
of an approximate wave function can be judged by
how well the relations given in Eq. (20) and Eq.
(21) are satisfied. Also note that each side of Eq.
(20) is a nonvariational approximation to the par-
tial-wave Z' matrix where p,'f„ is an approximate
trial function. Thus the convergence of the wave
function can also be judged by how well the two
sides of Eq. (20) compare with the variationally
stable partial-wave T matrix given by

One of our original motivations for using the
approximate solutions y'o in a new separable ex-
pansion as a way of calculating an improved wave
function was an observation of Ernst qt g&. '4 They
noted that if one had the exact solution to the Lipp-
mann-Schwinger equation, then the potential given
by a one-term separable approximation of the
form in Eq. (2), where instead of the set R one
uses the exact solutions, would give the exact on-
shell and half off-shell T matrix. Thus it can be
expected that the use of an approximate wave func-
tion satisfying the scattering boundary conditions
in the separable expansion of Eq. (2) would give
improved estimates of the T matrix from which
an improved trial wave function could be calcu-
lated.

A more precise understanding of the nature of
the convergence of the iterative procedure outlined
above is obtained by dividing Eq. (16} into two
parts giving"

&r IT"lr'& = &r l7"Olr'&

+
1»i»P, j»&»&

(26)

y ) —&y(-)s„pig IJ / ga(+&/ Ifl q(+)8,
g). m s 0/ymi

and with

~V= U- U'0.

(27)

(28)

I

Thus G~" is given by

~. , n. .GBi' j

d+) —g(+) + G(+)ps~(+&
0 0 s (29)

Equation (26) clearly shows the different contri-
butions from the two sets of functions A and $„,.
The Green's function G,' in Eq. (27) is the Green's
function for the separable potential U'0 and satis-
fies the Lippmann-Schwinger equation

(80)

The expression for the partial-wave g matrix ele-
ments obtained from Eq. (26) is then

TABLE I. Convergence of the Schwinger variational K matrix starting from plane waves
for Z~ symmetry in H2 with k= 0.5 a.u. Values in parentheses indicate powers of ten, a(b)
= g x1P&

n=o
sn

Kali 0
2

(0, 0)
(o, 2)
(2, 2)

-2.931
0.128(-1)
0.163(-1)

-1.701
0.133(-1)
0.163(-1)

-1.552
'0.134(-1)
0.163(-1)

-1.548
0.134(-1)
0.163(-1)
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TABLE II. Convergence of nonvariational approximations to the K matrix starting from
plane waves for Z~ symmetry in H2 with k=0.5 a.u. Values in parentheses indicate powers
of ten, u(b)=a &&10&.

(E, E ) n=o
I UI @o)

1 2

(o, o)
(o, 2)
(2, o)
(2, 2)

3.055
O.521(-1)
0.521(-1)
0.165(-1)

-2.931
O.128(-1)
0.128 (-1)
o.1es(-1)

-1.331
0.180(-1)
O.135( 1)
o.1es( 1)

-1.603
o.12v(-1)
o.1s5(-1)
0.1.63( 1)

-1.515
0.139(-1)
o.1s4(-1)
0.163(-1)

(E, E')
&'pro l U- U&o 'U

l &oi o &

1 2

(o, o)
(o, 2)
(2, 2)

-2.921
0.129(-1)
0.163(-1)

-5.045
o.12o(-1)
0.162(-1)

-1.139
o.18o(-1)
0.163(-1)

-1.659
O.128(-1)
0.163(-1)

-1.483
0.138(-1)
o.1es(-1)

&'". =~~ + (-) (+)
i=~~p, x=~ o&ko7 oI&Ulg

kl] nt

x[(E'") '1 g&y' '"-'l«ld'", ) .
kf. m kl'm

(31)

Thus, after the first iteration, first- and second-
order errors in the difference potential aU have
been eliminated from E*,&, since with n= 1, Eci. (31)
should give at least as good a correction to T'o

S S'm

as a distorted-wave second Born approximation
would. " Further iterations will give still higher-
order corrections.

havior of the iterative Schwinger method are given
in Tables I-IV. The results presented in Tables
I and II are obtained by starting the iterative pro-
cedure with p'o just equal to the free particle
states p» . This starting point corresponds to
U'0=0. It can be seen in Table I that the varia-

TABLE IV. Convergence of nonvariational approxima-
tions to the K matrix and of matrix elements involving
the discrete function starting from one discrete scatter-
ing function for ~~ symmetry in H2 with k= 0.5 a.u. Val-
ues in parentheses indicate powers of ten, g(b)=n && 10~.

III. RESULTS

We have used the iterative method described
above to study electron-H, scattering in the static-
exchange approximation. The target self -consis-
tent-field (SCF) wave function is constructedf rom a
(Ss2z) Cartesian Gaussian basis set as given by
Watson et al. The Hartree-Fock energy for H,
in this basis set is -1.1330 a.u. and the quadru-
pole moment is 0.452 a.u.

The results of a study of the convergence be-

TAME III. Convergence of the Schwinger variational
K matrix starting from one discrete scattering function
for Zz symmetry in H2 with k= 0.5 a.u. Values in pa-
rentheses indicate powers of ten, a(b) =a && 10~.

{E,E')

(o, o)
{o,2)
{2,0)
(2, 2)

(E, E')

(o, o)
(o, 2)
(2.2)

n=o 1

-1.602
o.1v9(-1)
o.1ov(-1)
0.161(-1)

-1.56v
o.1s1{-1)
0.136(-1)
o.1es (-1)

-1.642
o.eev( 2)
O.155(-1)

-1.586
o.1s2 (-1)
o.162(-1)

&Po,o I Ul c') '

6.180
0.834{-1)

«.»l U-UGo 'Ul&oi'o&
n=o 1

-1.549
0.134(-1)
o.1s5(-1)
0.163(-1)

-1.550
O.135(-1)
o.1es(-1)

&Qg,

gaol

U-UGo Ul a)
n=o 1

(o, o)
(o, 2)
(2', 2)

-2.045
-o 2ve(-1)
-o.sv2(-s)

-1.552
o.1ss(-1)
o.1es (-1)

-1.548
0.134(-1)
o.1es(-1)

6.190
0.1VO

~See Eq. (21).

6.224
O.824(-1)

6.180
0.830(-1)
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TABLE V. Iterated Schwinger variational X-matr ix
elements for Z symmetry in H2. Values in parentheses
indicate powers of ten, a(b) = a && 10 .

oooo

0.1 -0.217
0.3 -0.722
0.5 -1.55
1.0 8.04

g CRM
000

-0.217
-0.722
-1.55

8.05

+iio
O.12S(-1)b

0.113
0.411
1.34

g CRM
iio

0.127 (—1)
0.119
0.421
1.34

0.1
0.3
0.5
1.0

+020

0.406 (-2)
o.evs(-2)
0.134(-1)
0.122

g CRM
020

o.se(-2)
O.11(-1)
0.15(-1)
0.11

+130

0.105(-2)
o.ss5 (-2)
o.vos( 2)
o.so4(-1)

g CRM
130

0.15(-2)
0.34(-2)
o.v1(-2)
0.29 (-1)

0.1
0.3
0.5
1.0

+220

O.165(-2)
0.687 (-2)
o.16s(-1)
O.914(-1)

g CRM
220

O.21(-2)
o.v4( 2)
O.18(-1)
o.es(-1)

KS30

o.ev1 (-s)"
0.290 (-2)
0.520 {-2)
o.19o(-1)

g CRM
330

0.73 {-s)
o.s1(-2)
0.56 (-2)
0.20 (-1)

All numbers in this column are from Ref. 17 [Collins,
Robb, and Morrison (CHM)l.

A grid extending to 125 a.u. is used to obtain this X-
matr ix element.

tional Schwinger K matrix converges to three
places in four iterations. However, Table II shows
that the nonvariational estimates of the partial-
wave K matrices from the left- and right-hand

sides of Eq. (20) converge more slowly. In this
calculation, these nonvariational K matrices re-
quire another four iterations before they converge
to three places. Table III gives the variational
Schwinger K matrix for an iterative calculation
where U'0 is a one-term separable approximation
to U, constructed using a single g Cartesian
Gaussian of exponent 0.5 centered on the nuclei.
With this starting point, the iterative procedure
converges in two iterations. Also note that the
nonvariationally stable matrix elements given in
Table IV, which are associated with Eq. (20) and
Eg. (21), are well converged by the second itera-
tion also.

In Tables V and VI we present K-matrix ele-
ments at several energies for both 'Z and II sym-
metries. We also compare the present results
with those of Collins et al." The separable po-
tentials U'0 used in these calculations are four-
term approximations. The potentials are con-
structed from Cartesian Gaussian functions cen-
tered at the nuclei. The Cartesian Gaussian func-
tions have exponents of 0.3 and 1.0 and are of s
and z types for the 'Z symmetries and & and zz
types for the 'll symmetries. All variational lf'

matrices converge to three places by the first
iteration. This extremely rapid convergence is
expected since the difference potential 6 U should
be small.

All integrals were calculated using single-center
expansions as is described elsewhere. '" The in-
tegrations are performed on a grid extending to

I

TABLE VI. Iterated Schwinger variational E-matrix elements for II symmetry in H2.
Values in parentheses indicate powers of ten, u(b) = a && 10~.

0.1
0.3
0.5
1.0

0.1
0.3
0.5
1.0

-O.296(-2)
o.195(-1)
0.102
0.334

&131

o.11o(-2)
0.267 (-2)
0.483{-2)
0.142(-1)

g CRM
iii

-0.306(-2)
0.218(-1)
0.108
0.335

~CRM
131

O.12(-2)
o.2s(-2)
0.50 (-2)
0.14(-1)

&221

0.106(-2)
o.s68 (-2)
o.1os(-1)
O.692(-1)

+241

0.493 (-3)
0.148 (-2)
o.2s5(-2)
O.564(-2)

g CRM
221

o.1os(-2) '
0.400 (-2)
O.114(-1)
o.v13(-1)

g CRM
241

0.63(-s)
O.15(-2)
O.24(-2)
o.58(-2)

0.1
0.3
0.5
1.0

ESS1-

0.286 (-3)
0.217(-2)
o.s92(-2)
o.15v(-1)

~CRM
331

0.»(-3)
O.23( 2)
0.42 (-2)
0.1v(-1)

S
~441

o.465(-s)"
o.1se(-2)
0.245 (-2)
O.611(-2)

~CRM
441

o.1s(-s)
O.15(-2)
0.26 {-2)
O.6v(-2)

~A11 numbers in this column are from Ref. 17.
A grid extending to 125 a.u. is used to obtain this Z-matrix element.
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40 a.u. , except as noted in Tables V and VI where
a grid extending to 125 a.u. is used to accurately
compute some integrals at low energy.

As can be seen, the K matrix elements are in
good agreement with those of Collins gt gjt." The
small discrepancies which exist are probably due
to differences in the potentials used.

IV. CONCLUSIONS

The iterative Schwinger variational method pre-
sented here is a powerful method for computing
electron-molecule scattering solutions. With a
sufficient number of iterations, this method gives
accurate scattering results which are independent
of the initial discrete basis set used. However, it
is important to note that even though the variation-
ally stable T matrix may converge in a particular
calculation, it is necessary to check that the con-
ditions given in Eqs. (19), (20), and (21) are satis-

fied to be assured that the T matrix has converged
to the correct solution.

The Schwinger method does not require the solu-
tion of integrodiff erential equations. All equations
are decoupled integral equations which are solved
by straightforward integration procedures. With
a reasonable choice of the initial separable poten-
tial U'o, this iteration method converges in only
a few iterations. Applications to larger molecular
systems are underway.
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