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The many-electron Dirac-Coulomb Hamiltonian HDC, on which most calculations of relativistic eAects in

many-electron atoms are based, has no normalizable eigenfunctions corresponding to atomic bound states.
Two alternative Hamiltonians H+ and h+, which are derivable within the framework of quantum

electrodynamics and hence do not suffer from this defect, are considered, They differ from HDC by the

presence of external-field or free positive-energy projection operators in the interaction terms; the Breit
operator can be included in H+ or h+ without any difficulty arising thereby. The use of H+ or h+ as a
starting point for a systematic approach to the calculation of energy levels and transition amplitudes in

atomic physics is described. Hartree-Fock (HF) approximations to the eigenfunctions of H+ and h+ are

defined and the related relativistic HF equations are derived. The results are used to clarify the meaning of
the solutions of the Dirac-Hartree-Pock (DHF) equations associated- with HDc. The reduction of H+ and

h+ to fully equivalent relativistic Schrodinger-Pauli Hamiltonians HP' and h P' is carried out in closed form.
The HF equations associated with h P' are found to be simpler than the DHF equations.

I. INTRODUCTION

Interest in the relativistic aspects of many-elec-
tron atoms has increased greatly in the past de-
cade. A popular approach to the problem of taking
relativistic effects into account has been based
on a relativistic version of the Hartree-Fock (HF)
approximation, the so-called Dirac-Hartree-Fock
(DHF) approximation. ' In this approach an N-elec-
tron wave function x = x(1, 2, . . . ,N) is constructed
as a Slater determinant of one-electron Dirac or-
bitals X;(r) (i = 1, . . . ,N), determined from the var-
iational principle

Here R o is the Dirac-Coulomb Hamiltonian de-
fined by

(1.2)

with RD, ,„,(i) the Dirac Hamiltonian for one elec-
tron in an external field with four-potential A.,„„(r)

x~, ,„,(i)=Z, p, +P;m

—ego„,(r, )+ en, X,„,(r, ) (1.3)

and Ve the sum of electron-electron Coulomb in-
teractions,

The resulting equations for the X, , the DHF equa-
tions, are then solved numerically and yield a rel-
ativistic HF wave function, X", for a low-lying
state of the atom. The DHF equations reduce to
the ordinary HF equations in the nonrelativistic
limit (o.Z «1) and Xsr reduces to an HF approxima-

tion y" for the nonrelativistic wave function y.
So all seems well at first sight.

However, it has been known for a long time that
the operator X c has no eigenfunctions correspond-
ing to bound states. 'The reason is that any nor-
malizable eigenstate g„'0' of

lies embedded in a sea of non-normalizable pro-
duct states with the same total energy, in which,
e.g. , one electron is in a continuum state with
positive energy E,&m and another is in a continu-
um state with negative energy E,& -m (Ref. 2).
The switching on of V„will cause P„"' to "dissolve

' into the continuum, " to use a language familiar
from the description of autoionization. In view of
this, a number of questions may be raised. (i)
Granted that X" is an "approximate wave func-
tion, " to what wave function is it an approximation?
(ii) Is there a physically sensible relativistic
N-electron Hamiltonian K which takes the most
important effects of the electron-electron interac-
tion into account and which has bound-state eigen-
functions? (iii) If so, can BC serve both as a start-
ing point for a practical central-field approxima-
tion, and unlike X c, as a basis for going beyond
such approximations? The purpose of this paper
is to discuss these questions.

The difficulty associated with R c is related to the
fact that K c corresponds to the use of Dirac 's "one-
electron theory. " When there is only one electron in
an external field, this theory is more or less equiva-
lent to Dirac's "hole theory, "i.e. , to quantum electro-
dynamics (QED). However, when there are two or
more electrons present and these electrons are
allowed to interact, Dirac's one-electron theory
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breaks down and one must use @ED to get sen-
sible results. If @ED is used, one never gets
into the trouble described above. As an example,
use of an external-field Bethe-Salpeter equation, '
derived from @ED, leads to a Hamiltonian R. de-
fined by

R.= Rn, ,„,(i)+ N, V„Z, .
-"1

(1.5)

Here Z, is the projection operator onto the space
8, spanned by the products of the positive-energy
eigenstates u„(i) of the R~„„,(i):

2.= 2,(1) ~ Z.(N)

with

(1.6)

&.(f)= g ~u„(f))&u„(f)~ . (1.7)

'The Hamiltonian K, is an example of a relativis-
tic many-electron Hamiltonian which doe& not have
the difficulties associated with R c. In particular,
when restricted to the subspace 8., the operator
X, can be expected to have a partially discrete
spectrum and associated normalizable eigenfunc-
tions P= iP(1, 2, . . . ,N), which satisfy

(1.8a)

and

expands Pn(x) in the plane-wave eigenfunctions of
& ~ p+ Pm h is defined by4'

h, = Rn(p, )+A, (V,„~+V„)A, , (1.9)

where RD(p, ) is the free Dirac Hamiltonian and

V,„, is the total interaction with the external field,

RD(p, ) = +, ~ p,. +P,m, (1.10)

V,„,=-e [A'„,(r, )-&, ~ A,„,(r;)j.
"1

Here A, is the projection operator onto the space
S, spanned by the products of the positive-energy
plane-wave eigenstates u, (k)exp(ik ~ r, ) of the
Rn (p, }. This time we may write more concretely

(1.11)A, = A,(1) ~ ~ A, (N),

where, with E(p) -=(p~+ m')'~', the operator A, (i)
defined by

A, (i) = [E(p,. )+Rn(p, )]/2E(p, ), (1.12)

is the familiar Casimir positive-energy projection
operator associated with RD(p, ). In analogy with

X, , the operator h. can be expected to have nor-
malizable eigenfunctions P = Q(1, 2, . . . ,N) satisfy-
ing

(1.13a)

S.(i)P=g (i=1,2, . . . ,N), (1.8b) and

and correspond to bound states. This is because,
with AO„, =Ze/r, there is a discrete spectrum if
V„ is set equal to zero, and when V„ is switched
on the operator Z,V„R„unlike V„, does not take
one out of 8, when acting on a function in N, : The
projection operator Z, to the left of V„makes all
the difference. The factor Z, to the right of V„
could be omitted because 2, g= P, but it is con-
venient to include it because it makes the Hermiti-
city of $C, manifest.

As described in Sec. II, the operator X, defined
by (1.5) may be obtained more simply, without
invoking the. four-dimensional machinery associat-
ed with the Bethe-Salpeter equation, by expanding
the quantized Dirac Field $D(x) in terms of the
eigenfunctions of X~,„,. The creation and annihil-
ation operators defined by this expansion can in
turn be used to define a "no-pair part" H"„and a
"pair-part" 8",'t' of the matter-field Hamiltonian
H „,written in Coulomb gauge, with H",~ con-
serving suitably defined electron and positron
number operators. The operator X, is then just
the configuration-space equivalent of the restric-
tion of Il"„to the N-electron sector of Fock space.

A Hamiltonian h, similar to R, which shares
many of the good features of X, and is somewhat
easier to handle in practice, is obtained when one

A.(i)$=$ (i=1,2, . . . ,N). (1.13b)

As explained in Sec. IIC, the most important
effects of the exchange of virtual transverse pho-
tons between the atomic electrons can be taken
into account by including the Breit operator

2 p
B(g= (-8 /2t'gg)(&; ' &g+ &) '1'gg&g ' X;g) (1.14)

in the Hamiltonians R, or h„ i.e. , by using the
operators

R,'= Q Rn, ,„~(i)+Z,(V„+B„)R, (1.15}

or

h,'= QRn(pq)+A, (V,„~+V,+B, )A, , (1.16)

where

8,= B)). (1.17)

R'P' =EP'

with the constraint

(1.18a)

Thus, instead of looking for approximate solutions
to Eqs. (1.8) or (1.13), one may equally well study
the equations
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S.(i)Q'= P' (i = 1,2, . . . ,X) (1.18b)

or

j'i I P I -EQ
t

with the constraint

A, (i)$'= P' (i =1,2, . . . ,X) .

(1.19a)

(1.19b)

The ancient caveat against using the Breit opera-
tor in higher orders than the first need not be
heeded here: The presence of the projection op-
erators 8, or A, guarantees that no spuriously
large terms are generated by the use of Z,B„Z,
or A,B„A, in higher orders. Equations (1.18) and

(1.19) have the advantage over (1.8) and (1.13) of
containing, in a v/c expansion, all the familiar
operators associated with fine structure.

For the case N = 2, the operator X, was apparen-
tly first used long ago in a calculation of the n'8
corrections to the fine structure of helium, where
it emerged in a natural way from a study of the
Bethe-Salpeter equation for two electrons in an
external field. ' It has also been used more recent-
ly in an extension of these calculations to terms
of order &4@.' 'The operator h,' has been found
convenient in a study of relativistic M1 transi-
tions in He and He-like ions4' and its analog for
the two-body problem, i.e. , with the external po-
tential switched off, has beeri applied to radiative
M1 decays of the psions, within the framework of
the charmonium model. "' However, the possible
utility of such operators in providing a starting
point for a systematic approach to ".he calculation
of relativistic effects in many-electron atoms ap-
pears not to have been stressed sufficiently up to
now. ' Renewed interest in this question has arisen
from a study of the theoretical foundations of the
calculation of parity-violating effects in heavy
atoms. '

Mention should be made of the work of M. H.
Mittleman, "who has also discussed configuration-
space equations for many-electron atoms obtained
from field theory which involve positive-energy
projection operators. However, these equations
are obtained from a variational ansatz made di-
rectly in Fock space, so that the projection op-
erators themselves depend on the solution to the
variational problem. The equations are therefore
highly nonlinear and progress along this line ap-
pears to be difficult.

I now outline the rest of this paper. In Sec. . II
the "X-type" and "h-type" relativistic wave equa-
tions are derived from quantum electrodynamics

I

(QED). These derivations exhibit the connection
between the configuration-space wave functions
and the state vector lying in the sector of Pock
space with charge Q =-eX; more importantly, it

shows how one may go further and take into ac-
count not only transverse photons as in (1.15) or
(1.16) but also virtual electron-positron pairs.
Although a part of this material can be found else-
where, '" I incctude it in order to make the dis-
cussion self-contained. In Sec. III, Hartree-Fock
approximations to the various wave functions are
defined, and the associated relativistic HF equa-
tions are derived. The results are then used to
clarify the meaning of the DHF wave function X.
In Sec. IV, the reduction of both the 3C-type and
k-type equations .to a relativistic Schrodinger-
Pauli (SP) form is carried out; this can be done
in closed form without nonrelativistic approxima-
tions or the use of inverse operators which depend
on the energy. The HF equations arising from the
relativistic Sp-type Hamiltonians are discussed
in Appendix A and the nonrelativistic limit is
studied in Appendix B. A summary and concluding
discussion is given in Sec. V.

II. NO-PAIR HAMILTONIANS FROM QED

A. No-pair Hamiltonians in Pock space

In Coulomb gauge, the Hamiltonian H of QED is
given by

B=H +Hg+H „t+H~+H~, (2.1)

where H, is the energy operator for the trans-
verse radiation field Ar(x) and H~ is the operator
for the Dirac matter field gn(x) in the Schr'odinger
picture. The operators H,„„H~, and H~, repre-
sent the interaction of g~ with an external static
potential A,"„,(x), the Coulomb energy associated
with the charge density j'.(x), and the interaction of
the current density j (x) with Ar(x), respectively. "
The operators in (2.1) which do not involve Ar(x)
have the form

~ x & ~ p+Pm ~x dx, (2.2)

H,„t= j„x ~„t x dx, (2.3)

and

i'(x) i'(x')
2

I x -x'I (2.4)

where j "(x)= e:$D(x)y"g~-(x): is the electromag-
netic current. I.et us suppose that H ~ can be
treated by perturbation theory. We are then still

' faced with the problem of diagonalizing the Ham-
iltonian H «describing the matter field in inter-
action with the external potential and with itself,

(2.5)

'The major difficulty with the operator H „is that
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Xv,„,(x) = n ~ fp+ eA„,(x)]

+ Pm —eA,'„(x).
I

Then we may, on the one hand, define "external-
field" electron and positron destruction operators
A(n) and B(m) by writing, as in the Furry bound-
state interaction picture,

(2.6)

it does not conserve the number of electrons and
positrons separately. However, it is possible
to split off from H „a"pair part" which involves
the creation or destruction of virtual electron-
positron pairs and which can in many cases be
treated as a perturbation, along with H~. The re-
maining part of H „, the "no-pair part, " then
commutes with the electron and positron number
operators so that the eigenvalue problem it poses
is equivalent to the problem of solving a relati-

I

vistic many-particle wave equation.
The definition of the pair part or, equivalently,

the no-pair part of H „is not unique. There are
two natural alternatives, the choice of which de-
pends on whether or not the interaction of the
Dirac matter field with the external field is includ-
ed in the zero-order Hamiltonian.

Let (u„(x)] and (v„(x)] denote complete orthonor-
mal sets of positive- and negative-energy solu-
tions of the external-field one-electron Dirac
8amiltonian

and Hp is the part of He which remains when (2.7)
is substitued into (2.4) and only terms like
(A~A)(AtA} or (AtA}(B~B) are kept, but terms like
(AtBt)(AtA) or (AtBt)(AB), which involve creation
or destruction of virtual pairs, are dropped. "
Then

Hmat Hmat + Hmat

where

(2.12)

Hp =H -H p
mat c c ' (2.13)

Note that with the choice (2.7), Hv, „,does not
have a pair part because' of the orthogonality of
the eigenfunctions of Xv,„,(x).

With the choice (2.9), we define the no-pair
part of Hmat by

(2.14)

where HD is defined by (2.2) and H;~ is the no-
pair part of H„„obtained by substituting the ex-
pansion (2.9) into (2.3) and keeping only the
scattering-type terms a~a and b~b. The operator
Hc' is similarly obtained Qy keeping only scatter-
ing terms like (ata)(ata), etc. ; it is not the same
as Hc' because different creation and destruction
operators are involved. The decomposition of
H «, corresponding to the definition (2.14) is then

(2.15)

gv (x) = g A(n)u „(x)+ g Bt(m) v (x) . (2.7) where

On the other hand, even if A.,"„40, we may define
"free" electron and positron destruction operators
a,(k) and b, (k), by expanding P+(x) in terms of the
plane-wave eigenfunctions u, (k) exp(ik x) and
v, (k) exp(ik x) ~of the free Dirac Hamiltonian

Rv(x) = n ~ p+ Pm . (2.8)

Thus an alternative to (2.7) is the more familiar
expression

gv(x) = g [a,(k)u, (k)e'"'*

Hp ai r Hpai r+ Hpai r
mat ext C

with

pair np
ext ext ext &

ac"'=ac —Hc'

(2.16)

(2.17)

8. No-pair Hamiltonians in configuration space

The operator H"„commutes with the electron
and positron number operators X, and X~ defined
by

A (n}A(n), X~= QB (n)B(n) . (2.18)

+ bt(k)v (-k)e""'*]~ (2.9}
We may therefore look for the state vectors 4
which satisfy

Hmat HD 0 ext +~c (2.10)

HD'ext x D'ext x D x dx=HD+Hext

(2.11)

The two choices (2.7) and (2.9}correspond to dif-
ferent definitions of creation and annihilation op-
erators and hence lead to different definitions of
the no-pair and pair parts of H „.With the choice
(2.7) we are led to define the no-pair part of H „
by

and

%~4'=N+, Xp4=0

H „4=E4 .

(2.19a)

(2.19b)

This eigenvalue problem is equivalent to one in
configuration space for a suitably defined multi-
Dirac-spinor wave function g= g(r„. . . , r„}as-
sociated with 4. We define g by

u„(r,) u„(r~}
nate ~ ~ ~ en@

x (A'(n, ) A'(nN)4',
~

4'), (2.20)
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where 4, is the vacuum state. It follows that g be-
longs to the space 8, spanned by the products of
the positive-energy solutions u„(x;) of RP'(x;),
so that

where

H =H, +H'~t

Z,(i))= P (i= 1, . . . , N), (2.2la) H'=H +H ~~*.
T C (2.26c)

where Z,(i) is the external-field positive-energy
projection operator defined by (1.7). The config-
uration-space equivalent of (2.19b) is readily
found to be

(2.21b)

where R. is given by (1.5). Thus, Eq. (2.21b)
coincides with Eq. (1.8a) of Sec. I, and the field. -
theoretic origin of this equation is explained.

Equation (1.13) may be derived in an entirely
analogous manner from the operator H"„. The
number operators which commute with H"„are

The residual interaction H' can normally be treat-
ed by perturbation theory and the problem of
calculating level shifts and transition amplitudes
can be formulated in a straightforward way.

As an example, the amplitude for a one-photon
transition 4, 4,+y, where 4, and 4, denote N-
electron eigenstates of H"„, is given by

5iI„.=&+,;k, ia a(z. -a, ) ff

(2.27)

The leading-order term in (2.27), proportional to
e, ls

X,=,k, k, Xp= bkb k (2.22)
Sg."= (p, g a,. fe"" g, (2.28)

and the analogs of (2.19a) and (2.19b) are

X,4=NC, X~4= 0

and

H .,C =re.
With Q = p(r„. . . ,r~) defined by

(2.23a)

(2.23b)

Although this is certainly a familiar looking for-
mula, it differs from the usual one in that the
wave functions P, and ft, are well defined as solu-
tions of a bona fide eigenvalue problem (1.8). Of
course in practice approximations will have to be
made for g, and g„but at least one knows what
quantity it is that is being approximated.

The level shift in the state 4, arising from H'
is given by

x &a, ,(k, ) ~ ~ ~ a,'„(k„)4,
~
C), (2.24)

where 4, is the vacuum state, we get as the an-
alog of (2.21),

~.=&~.~fi +a(E. a, g) a+ "~e.&-. (2.29)

The leading term in (2.29), proportional to 8', is

(2.30)

A,(i)P= P (i = I, . . . ,fi), (2.25a) One can write

h, / =ED. (2.25b)

Here h, is defined by (1.9) so that Eq. (2.25b) coin-
cides with (1.13b). Thus the field-theoretic origin
of this equation is also made manifest.

In Sec. III we study HF approximations to the
solutions g and Q of Eqs. (2.21) and (2.25), re-
spectively. However, first we consider how ef-
fects not included in X, or k, can in principle be
calculated, by returning to the Fock-space Ham-
iltonians H and H~„.

where A, (i) is the Casimir projection operator de-
fined by (1.12), and

H, =H;&+H;"', (2.31)

(2.32)

where the no-pair part H~' of H~ involves only
A~A or B B type of terms as far as matter field
creation and annihilation operators are concerned.
H~"' contributes only to what are effectively one-
electron self-energy effects as do the parts of the
term coming from H~' ~ ~ ~ H~' in which a photon is
absorbed by the same electron which emits it.
These contributions are, after renormalization
subtractions, small compared to the remaining
part which corresponds to one-photon exchange
between (different) electrons. This is given by

C. Photons and virtual electron-positron pairs

With the definition (2.10) for the Hamiltonian
H'„, the total Hamiltonian may be written as

where

H=H, +HI, (2.26a) (2.33)
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with i;,. = ai, ~.Z„exp(ik r,. ) and I, the positive-en-
ergy projection operator (1.6). If electron recoil
energies are neglected, we get

M~(k) = ( I/2iii2) Q&g, It;;S,&i+ fig, g;
I
g&. (2.34)

egg

Since the factors R,(i) and 2,(j) in 2, commute
with Pi and f„respectively, and Z,(i)g, = g„ the
operator 2, in (2.34) may be replaced by unity.
The integration on k can then be carried out and
we get the familiar result

&0
I
kg&=5ii (3 1)

&,(1)«(i)= «(I), (3.2)

A. HF equations from II+

For simplicity we consider only an unrestricted,
single-configuration HF approximation. Let
(«.(1)] denote an orthonormal set of N external-
field positive-energy Dirac orbitals. Thus the «
satisfy

&&&~'= ~a =-

where

(2.35)
where Z,(1) is the external-field projection opera-
tor defined by (1.7). To get an approximation g"r
to an eigenfunction ij of X, we construct the Slater
determinant

A
e /2+ii)(+i ' + i+ +i +i/+g'+it) (2.36)

is the Breit operator. However, in contrast to
the usual situation one can add B,i to e'/r, i in the
zero-order Hamiltonians K, or h, without generat-
ing spurious effects. " Thus one can equally well
use the operator

ij
"r = (1/MNt )Det[g, (1)g,(2) ~ ~ ~ g„(N)] (3.3)

and require that &g"r
I
X,

I

g"r& is stationary under
variations of the «, subject to the constraints
(3.1) and (3.2). Because Z2 (I)= g,(1), the condi-
tion (3.2) is equivalent to

(3.4)

or

Ii', = QRn(i)+A, QV„i(ri)

(2.37) Thus an appropriate variational functional is

~N'"'l- &&"'I&.
I

&"'&-

-g, Q; I&.(i) -1I4;&,
+ —+B;~ A,

j
(2.38)

'IH. HARTREE-FOCK EQUATIONS

The derivation of relativistic HF equations
based on X, or h, is straightforward. The only
difference from the usual procedure is the need
to take into account the positive-energy constraint
(1.8b) or (1.13b).

as a starting point for approximate calculations.
The leading effects of one-photon exchange will
then automatically be included and some of the
effects of the exchange of more than one photon
mill also be taken into account thereby.

To be precise, inclusion of B,i in (2.37) and

(1.18) is equivalent to the approximate summation
of all those time-ordered Feynman-type diagrams,
not involving self-energy effects or radiative cor-
rections to virtual-photon emission, in which (i)
one or more photons are exchanged between the
electrons, (ii) no more than one photon is "in the
air" at any time, and (iii) no electron-positron
pairs occur in intermediate states. The summa-
tion is inexact because of the neglect of electron
recoil energy in intermediate states.

where the X,, and v, are Lagrangian multipliers.
The requirement that 5p =0 for arbitrary vari-
ations 6g, then leads to equations which, after
use is made of the constraint (3.2), may be writ-
ten in the form

X a.„„,(1)$,(1)+Z, (1)'tt, (l)g.(l)g, (1)

where

and

(3.6a)

(3.6b)

Equation (3.5) differs from the corresponding DHF
equation only in the presence of the projection op-
erator 2,(l) standing to the left and right of all
terms which arise from the electron-electron
Coulomb interaction. As for the DHF equations,
the X„must be chosen so as to satisfy the con-
straint (3.1). Positive-energy analogs of, e.g. ,
the restricted DHF equations can be derived in
an entirely similar manner: They differ from
the latter only in the Z.(1) factors. Of course if
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A„(1)y,.(1)= y,.(1), (3.8)

where A,(l) is the free positive-energy projection
operator defined by (1.12). A Hartree-Fock ap-
proximation Q" r to an eigenfunction Q of h, is now

defined by

one tries to solve such equations numerically,
the constraint (3.2) must be taken into account.
Vfe return to this point later.

B. HF equations from A,+

In analogy with Eqs. (3.1) and (3.2) we consider
an orthonormal set fg,.(l)j of free positive-energy
Dirac orbitals. Thus the P,. satisfy

(3.7}

with

$, 14,', 1$,1,'1 = ~.j .'1 3.12a
Ji'i j

be given to restricted, extended, or other types
of DHF wave functions: For each type, '4 there is a
corresponding approximation to P or P which sat-
isfies an analogous set of relativistic HF equa-
tions.

D. HF equations from H+ or h+

Use of the operator K', and h'„defined by (2.37)
and (2.38), leads to HF equations fully analogous
to (3.5) and (3.10). Thus, with P,'. (r) and Q',.(r) the
orbitals associated with Slater determinants g'" v

and g'"F we get

3C,„„,(I)0,'(I) + &,(I)&,'(I)&,(I)tj,'(I}

g"'=(I/vÃ! ) DetI4, (I)y, (2) ~ ~ g„(&)]. (3.&)

Qn applying the variationa1. principle to
&Q" FIh,

I
Q" F) one gets, in obvious analogy with

(3.5), the result
and

&,', (1)=
&0,'(2)

I
e'l~„+&,.I 0,'(2)&,

V,. (1)= g ~,', (1)
(3.12b)

X,(l)y, (l)+ A, (l) V,.(1)A,(l)y,.(1) X,(I)y,.(1)+ A, (l)V,'. (1)A, (l) y,'(I)

where

U;, (I) = &0;(2) Ie'&&»
I 0,(2)), (3.1la) ith

A, (I)'u„(l)A, (I)0„'(I)= g ~;,0,'(I)
j'wi j

(3.13a)

V, (1)=-eA,'„,(1)+en, ~ X,„,(1)

+ QU, ,(l) . (3.11b)

Again, (3.10) differs from the corresponding DHF
equation only in the projection-operator factors
A, (l).

&,(I)0,'(1)= 0,'(I) (3.14)

U,' (I) = &0'(2)
I
"~~»+II»

I e,'( ))2

V,'. (1)=-eA', (I)+eo., X,„„(l)+g U', ,(I).
(3.13b)

In analogy with (3.2} and (3.8) the orbitals must
satisfy the constraints

C. Interpretation of the DHF wave function X A, (i)y,'. (I)= y,'. (I) . (3.15)

For equations like (3.5) or (3.10), normalizable
solutions can exist even if the projection operators
Z, (1) or A, (1) are omitted. Moreover, in the non-
relativistic limit, o.Z « I, the operators Z, (l) and

A, (1) may be replaced by unity in Eqs. (3.5) and
(3.10). It follows that, at least if nZ is not too
large, the orbitals g,. (r) associated with the (un-
restricted) HF equations arising from %Dc can be
regarded as approximations to the orbitals g,. or
Q, defined by the solutions of Eq. (3.5) or (3.10),
respectively. , as discussed in more detail in Sec.
III E below. Hence the DHF wave function y can
be viewed as an approximation to Pr or Q" F and
therefore to the functions g or Q, both of which
have a precise theoretical definition within the
framework of QED. A similar interpretation can

These equations are further discussed in Appen-
dix A.

E. Relation between the orbitals

The relation between the orbitals y,. associated
with the DHF equations and the orbitals Q,. and P,.

merits further discussion. It is convenient to first
consider the connection between the upper compon-
ents f e and lower components f ~ in each case. Be-
cause y,. is neither an eigenfunction of A, nor of
2, one must use the DHF equation (n p+ pm
+ V;.")}f,. =&,.y,. to obtain the connection between

y
~ and y ~, whereas for Q,. and $,. the constraint

equations (3.8) and (3.2) can be used directly, as
described in more detail in Sec. IV. The result
can be written in the form
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IV. REDUCTION TO PAULI FORM

Both the h-type and the more complicated X-
type relativistic wave equations derived in Sec.
II can be reduced to equations of the Schrodinger-
Pauli (SP) type. The reduction can be carried out
in closed form, without any change in the linear
character of the eigenvalue problem. With regard
to the X-type equations this possibility may ap-
pear to be in sharp contrast to the situation which
arises for the ordinary one-electron Dirac equa-
tion,

((2 ++ Pm —e Ao~)u =Eu,

where ff—= p+eX„,. With u("=(I +p)u/2, the usual
reduction of (4.1) leads to

(4.1)

where 6f ~ is a correction to the leading term
&x ~ pf (U/2m. Computation shows that (i) relative
to the leading term, 6)(

~ is of order (V;."/m)
—((2Z;.")2, where Z;."is an effective charge, of
order Z for the innermost orbits and of order un-
ity for the outermost orbits; (ii) 5(())~ is of order
(p'/m ) relative to the leadingterm, i.e., alsoof rel-
ative order ((2Z„2); (iii) 5$, involves corrections
not only of order (p'/m') but also of order (V,„,/m) and
hence is of order ZZ;"a' relative to the leading term.
Thus in all cases 6f (~ is quite small except for large
Z (a45 say) and the innermost orbits. The character
of the large components f (a can now be ascertained by
eliminating f~=a'pf ~/2m from the HF equations
and comparing the reduced equations with each
other. These equations turn out to differ only in
interaction terms of relative order (nZ)'m or
smaller, so that one concludes, e.g. , that yU
= (I+a,.)(U, where a,. is of order ((2Z)4 or smaller.
This in turn implies that )|~= (1+b,.)g~, where b,
is of order (nZ)2 or smaller.

This analysis shows also how a solution {)(,}
of the DHF equations can be used to obtain a good
starting point {g,.}or {(t),.}for obtaining a self-con-
sistent solution of (3.5) or (3.10). For example,
one may take P,". = y

e and then define (t)~ so that
Aj&, = (())(~, viz. , Q,. = (E2+m) '(J p)(,.". Similarly,
one ean take P = y

~ and define g(~ so that Z,g, = (t),

The use of these "improved" four-component or-
bitals presents an alternative to the procedure
considered in Sec. IV in which a reduction to up-
per components is carried out before the HF ap-
proximation is made.

A, (i)(t) =Q (i =1,2, . . . ,N) (4.3)

can be expressed in terms of its large component
P", defined by

y (+) —p(+). . .p
(+)

y

where

One can write (4.3) in the form

(~, p, +p,m;)0=E,0.
with

—
( p2+ m2)1/2

(4.4)

(4.5)

(4.6)

(4.V)

multiply (4.6) by P,' ', and solve for P,' )Q in terms
of p '(t). One then gets for p = p,"p+ p )(t), the
identity

4 =(I+R;)P '4,
where

(4.8)

PL

m+E;

It is convenient to rewrite (4.8) in the form

Q=S;A 'P

where

S, =—(1+R,)P 'A; .

(4.9)

(4.10)

(4.11)

Qne can choose the factor A,. so that S,. satisfies

p (+)
t (4.12)

Then S,. is pseudounitary, i.e. , unitary in the sub-
space of spinors which satisfy p,"@=p. The con-
dition (4.12) is met with the choice

cr. This equation involves an energy-dependent re-
duced Hamiltonian and represents a nonlinear eig-
envalue problem for the large component part u"
of u. However, the reduction of (4.1) can also be
carried out in another way, which does lead to an
energy-independent reduced Hamiltonian and a
linear eigenvalue problem. " By following an ap-
proach similar to that used in Ref. 15, this can
also be accomplished for the many-body equations
(1.8) and (1.18).

A. From Dirac spinors to PauIi spinors

1. Free-field constraint

It is easy to see that any multi-Dirac spinor P
which satisfies the constraint

[(r ~ 5(E+m+eA ) 'o 6 —eA ]u"=Eu" A = (1+R;R;) ' '= [(m+ E )/2E )]''.(4.13)

where o is the double of the Pauli matrix vector

Since P,."commutes with A,. and the operators as-
sociated with different values of i commute with
each other, repeated use of (4.10) yields the
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identity

e=(S,A, ') . (S A ")(P," P")0 (414)

Using the definition (4.4) we may rewrite (4.14),
(4.24)

P,' ' and using the form (4.22) for h (i), together
with the fact that P& 'p, = p,.P;"&, the relation

p (-)II) 6I p(+)y

where

SA-ly &+)

S=—S ~ ~ ~ S A-=A AE~ N'

(4.15)

(4.16)

where

(R, = [a, —b; + m+ eA', „,(i)] '
~Dx (c, II, -c, +d, )p, (4.25)

Equation (4.15) is the sought-for expression of Q
in terms of P&'&.

with

II,. —= p,. + eA,„,(i) . (4.26)

2. External-field constraint
Since g=P&'g+P& &tP, we may rewrite (4.24) in the
form analogous to (4.10)

A multi-Dirac spinor {{)which satisfies, instead
of (4.3), the constraint

where

8 8 lg (4.27)

Z,(i)P=P (i=1,2, . . . ,N), (4.17)
8,.

-=(I+(8,)P,.&'&8,. (4.28)
may also be expressed in terms of its large com-
ponents, at least in a formal sense. All one needs
is an analog 8, of the operator E, . A suitable S,
is the "absolute value" of 5CD, ,„,(i), defined via

(4.18)

Here the summation is over the positive-energy
eigenstates u„(i) of X~„„,(i):

RD, ,„,(i)u„(i)= & „(i)u„(z) (4.19a)

.
)

8 (i)+ 3C D, .„(i)
2S(i)

(4.20)

The condition (4.17) may then be written in the
form

with e„&0 and X ,D„,(i) o. f the form

IC .,„,(i)=(&., p,. +P,m+ V(i) . (4.19b}

Although V(i) = -eA', „,(r,. )+ e(&(, ~ A,„,(r, ) for the
case at hand, the following development can be
carried out for any V(i).

With the help of the operator &&'(i} the external-
field projection operator Z,(i) may be written in a
form analogous to (1.12) for A, (i),

and the factor 8, is, so far, arbitrary. It is again
possible and convenient to choose 8, so that

8&'8 P (+& (4.29)

i.e. , so that $,. preserves scalar products in the
subspace of multispinors which satisfy p&&'&g= g.
Because 8,. anticommutes with P, , one has

P (+&6I P &+) 0 (4.30)

so that a suitable choice for 8,. is readily seen to
be

88 &((+)

where P&+& —= P,&+& ~ 'P„&+)q and

$=$ ~ ~ $6=8 ~ 81 Np 1 N'

(4.32)

(4.33)

Equation (4.32) expresses {{) in terms of its large-
component part I()&'&, in exact analogy with Eq.
(4.15). Note that for A,"„,—0, (R; -R, so that
8- S, 8»A, and (4.32) reduces to (4.15).

(4.31)

Since 8, commutes with P, , one may use (4.27)
repeatedly and write

3C(&;„t(i)4=&(i)V. (4.21} B. Relativistic Schrodinger-Pauli equations

8(i) = a,. 1, + b, P, + c,.p,. + d, J3,.p,. , (4.22)

where the coefficients a, , . . . , d,- commute with
both P; and p, and have the form typified by

g(0) + ~.D . ~ (l )
i (4.23)

Since n, =
&& (np, , we obtain by multiplying (4.21) by

With p,
—= y, (i), we can use a basis for the vector

space of 4 x 4 matrices the four matrices 1;, P;,
p, , and P,.p,. together with the twelve more obtained
by multiplying these four by P, . Then S(i) may be
written in the form

With the help of Eqs. (4.32) and (4.15), the re-
duction of the relativistic wave equations (1.8),
(1.13), (1.18), and (1.19) to equivalent relativistic
SP-type equations is readily accomplished. Be-
cause the relations (4.15) and (4.32) are indepen-
dent of the electron-electron interaction, it is
sufficient to consider explicitly only the "primed"
equations, (1.18) and (1.19), containing the Breit
operators 8;& The reduced f.orm of Eqs. (1.8)
and (1.13) is obtained by dropping the terms aris-
ing from the B,&. We shall consider the simpler
equation (1.19) first.



FOUNDATIONS OF THE RELATIVISTIC THEORY OF. . .

1. Reduction ofh+P'= EP'

Because A,(i)(I)'= &t ', we may use Eq. (4.15) to
write

denote the multi-Pauli spinor wave function ob-
tained by collecting together the 2" nonvanishing
components of &)I&»'. Then (4.39) is seen to be equiv-
alent to

(4.34)
h»"4) =BI'» (4.42)

where Q» is defined by

pl =A-&yt&+) (4.35)

Here p"' is the large-component part of Q'.
Q» is essentially a Pauli-type wave function be-
cause the relations [P;,A] = 0 and P, &1)

"&= &(I)
"&

assure that
(4.43a)

. Then

A more explicit form of h~" is straightforward
to obtain. For any operator 6 we may define an
even part 8, which commutes with P, and an odd
part 8 which anticommutes with P( by

8,= a (8 + P(8P()

ti;4'p= 4p. (4.36) P(&)8 -8P(+) P(&&8 -8y(&) (4.48b)

sts p (+&. . .p (+)
E (4.37)

so that on use of (4.36) one gets

(4.38)

To find the equation satisfied by Q», we sub-
stitute (4.34) into (1.19) and multiply on the left
by St to get

Thus if- the standard representation is used for the
p;, &I&» has only 2» nonvanishing components, like

The factor A ' is included in the definition
of (t)»' because the mapping (4.34) then preserves
scalar products and leads to a reduced Hamilton-
ian which is manifestly Hermitian. Thus, from
Eqs. (4.12) and (4.16) one infers that S is pseudo-
unitary,

and on recalling the definition (4.11) of $, , one gets

Sr(8,$, =A, (8,+ R,8,R, )A, P,'", (4.48c)

$(r8 &), =A, (8 R, +R,8.)A, P(('& . (4.43d)

For example, using (4.43d) and (4.43c) one finds
that

stn .p $ (p2/B )P(+&

st, ms, =(m'/z )p& &

so that

stI6, (t&)s, =z, p,
('& .D

Computation along these lines yields

h'" &I)' =EQJ, ,

where

h'"~ =- Sth'S
+ +

(4.89a)

(4.39b)

O'"= E + V'" i

(4.44)

In view of Eq. (4.36), it is permissible, after one
simplifies (4.39) by commuting all P, operators to
the right and eliminates even powers of the a' s
via n ~ an ~ 1=o ~ ao ~ b, to replace P by
unity and o ~ by the 2 && 2 Pauli matrix vector 0.
With this understood, one can define a relativis-
tic SP-type Hamiltonian h~ ' by

where the operators I&',"„(,(i) and V"'(i, j) arise, re-
spectively, from the external-field and electron-
electron interaction,

V tet (i) = -eA, [A'.„,(i) +R(A', „,(i)R,

-R,o,. X,„,(i)-o,. X,„,(i)R, ]A, (4.45)
'I

with
hrei -hired~

Now let

&t).= 4,(1,".,~)

(4.40)

(4.41)
I

&z'

m+8] (4.46)

V"&(i,j)=A,A, ~

'
+R,

'
R, +R, ' R(+R,R,

'
R;R;~A&A;' (r]y '

r&& r&s
' ' r(g

' ')
A A A A A A A A A A A A

+A,Aq(B(g(R&+R,B(,R& +R&B()R(+R(R&B&&)A(Ag (4.4V)

with

B„=(e'/2&„)(o, o-, +o.,-~„o, r"„).
Here E,. and A,. are defined by (4.V) and (4.13), respectively.

(4.48)
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2. Reduc'tion of H+P' = EP'

The reduction of Eq. (1.18) is in complete paral-
lel with that of (1.19). Using Eq. (4.32) we write

3;e~8; =8;(e~ +(R~e+(R;)8;p(+),

8,'e s, =8, (e (R, +(R,'. e )e,.p,&').

(4.58a)

(4.58b)

These hold because (R, is p,.-even, like Jt, , so that
(4.49) P(+)(R P(+) = 0i i i (4.59)

with p~ defined by

yt g —
lyt(+)

The analogs of (4.36) and (4.37) are

p(4~ ()('s'

8+3 —
P (+) ~ ~ P(+)I N

so that as in (4.38),

&y'I y') =&&'I(('&.

The analog of (4.39) is

(4.5o)

(4.51)

(4.52)

(4.53)

(4.54a)

with, e.g. [see (4.23)],

(4.61)a =a'0)+o .a!"
1, i

Similarly, the Pau1i equivalent Q, of Q,. is defined
[see (4.31)] by

8,. —= (1+(R,(R ) ' ' (4.62)

Let us denote the Pauli equivalent of Zg";„,(i) by
s, (i)

To describe the result some new notation is need-
ed. The Pauli equivalent Q,. of Q, is defined by de-
leting p,. in (4.25) and replacing o~ by (), Thus

(R; —= [(I; -b;+m+eA, „,(i)] '

x(5,. II, -e, +(I,.), (4.6o)

+rrCd ~t+r ~ (4.54b)

The relativistic SP-type Hamiltonian analogous to
(4.40) is then

(4.55)

S~(i)=—[S~KD.,„,(i)8;]8. -, -() --, . ~ (4.63)

Using these definitions and the relations (4.28)
and (4.58) we find that

and the multi-Pauli spinor wave function

(4.56)

$) (i) =8;(o II;(R;+H.c. +m+eAO„, (i)

+(R, [-m+ ~e'.„,(i)] R,;)(i, , (4.64)

obtained by dropping the zero components of g~
satisfies

and the Pauli equivalent 'Ug' (i,j) of (e /x, ;+B,,).
can be similarly found. Thus we get

Zp~' g) =E(J . (4.57)

A more explicit form of ~' may be obtained by
using relations analogous to (4.43)

x,*"=g $,(i)+g ~;"(i,j),
where

(4.65)

(4.66)

The nonrelativistic limits of X~" and a~"' are discussed in Appendix B, together with some techniques for
simplifying the operators (R, , 8, , and S~(i).

V. SUMMARY AND DISCUSSION

In Secs. GA and IIB, two alternative Hamilto-
nians, each suitable as a starting point for the
calculation of relativistic effects in an pf-electron
atom, were derived from @ED. Unlike the Dirac-
Coulomb Hamiltonian +~, the operators ++ and
I),+, defined by Eqs. (1.8) and (1.9), respectively,
can be expected to have normalizable eigenfunc-
tions corresponding to the discrete part of the

atomic spectrum. The operator X, is just the con-
figuration space equivalent of the "no-pair" matter
Hamiltonian &"~ in the E-electron sector of Fock
space. In Sec. IIC it was shown how the field-the-
oretic origin of &+ allows one to go further and to
write down in a simple manner expressions for
transition amplitudes involving real photons and for
level shifts arising from the effects of virtual pho-
tons and virtual electron-positron pairs, in terms
of the residual part H'=H~+JJ~ of the full Ham-
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iltonian —no new questions of principle arise. The
leading terms in the one-photon transition ampli-
tude and in the level-shift are expressible com-
pletely in-terms of the eigenfunctions of +,. Simi-
lar remarks hold for jg, . Another feature of the
Hamiltonians ++ and h+ is that the first-order ef-
fect as well as some of the higher-order effects of
photon-exchange between. electrons can be included
by adding the Breit operator B„to e /r;, in &+ and

in'+, leading to modified Hamiltonians +, and h+
given by (2.3V) and (2.28). Because of the projec-
tion operators p+ or A+ no spuriously large terms
are generated thereby.

A Hartree-Fock approximation to an eigenfunc-
tion p of ~ was defined in Sec. III and relativistic
HF equations for the associated Dirac-spinor or-
bitals g, (1) were obtained. These equations are
similar in form to the DHF equations based on +M.
except for two projection-operator factors be-
tween which the operators associated with the
electron-electron interactions and with exchange
are sandwiched. It was shown that the orbitals

X, associated with the DHF wave function X can. be
regarded as approximations to the g„so that y
can be interpreted as an approximation to p"" and
hence to p itself, a function which has a clear-cut
theoretical significance within the framework of
@ED. Relativistic HF equations associated with
the other no-pair Hamiltonians g+, &+, and jz+ were
also derived.

In Sec. IV, the reduction of the Dirac-like equa-
tions X+/' =Eg' and Q+ p' =Zip' to equations for
suitably defined Pauli-type wave functions p~ and

P~ was carried out. This could be done in closed
form, without the use of operators which depend on
the energy E as a parameter. The resulting equa-
tions (4.5V) and (4.42) involving the relativistic
Pauli-type Hamiltonians K~' and h~' given by Eqs.
(4.65) and (4.44) are therefore not only linear but
still fully equivalent to the original equations in-
volving + and @+. The major advantage of the re-
duced equations over the original equations is that
the constraints g+ (i)p' = p' and A+ (i)p' = p' have
been eliminated; correspondingly, the wave func-
tions g~ and Pz have only 2 (unconstrained) com-
ponents, as in the nonrelativistic case. The HF
equations associated with h~" are described in
Appendix A. The nonrelativistic limit of the no-
pair equations is discussed in Appendix B; some
approximation techniques which may be useful in
applications are also described there. We now

consider further a number of aspects and impli-
cations of the results summarized above.

,
A. Comparison of relativistic Hamiltonians

When the electron-electron interaction is

switched off both K, and R'„become equal to

+g) ext
i

Xg) i +V,„gi (5.1)

whereas fg, + or h,' become equal to

(5.2}

Because A+(i)Q = p, h,'0' is equivalent to

(5.2)

where

(5.4)

It can be shown that the eigenvalues of R„(i) differ
from those of ~~.,„,(i) by terms of order (p2y', y
m$, which for V,„,= Za/r are of order (n Z) m
= (nZ)'(Z'8). The reasons for this difference is
that whereas the approach based on the external-
field expansion of the Dirac field y~(%) becomes
exact if Hc (and H~) are switched off, the free-field
expansion leaves over a term H~„& which must
still be taken into account. The leading effect of
H~„, may be computed by using second-order per-
turbation theory and neglecting lepton recoil en-
ergies in the intermediate states, which contain
not only the initial electron but also an electron-
positron pair. One then finds a contribution which
precisely accounts for the O((uZ) ) difference be-
tween the eigenvalues of X, (i) and R~. ,„,(i).

From this discussion it follows that within the
framework of an HF approximation to the eigen-
functions g and p af R+ and h,', the single-electron
energies eI and eI associated with orbitals q', and

p,'. will only differ by terms of order u m for high-
lying orbitals and by terms of order (a Z)'m for
the innermost orbitals. One can therefore con-
clude that the energy differences between states
that correspond to one-electron excitations as
computed from @+ will not differ appreciably from
those computed from &', .

B. Practical aspects

The advantage of the "-type" Hamiltonians +
or $C+ over the "5-type" Hamiltonians h. + or Q+ of
being exact in the limit p,„,» P, is balanced by
the fact that the @-type operators are much simpler
to work with. This is because, jn momentum
space,

'

the projection operator A+(i) is just an al-
gebraic function of p, whereas g+ (i) is a compli-
cated operator even in momentum space. In par-
ticular, the HF equations for the orbitals associa-
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hI =II~+II f, + ' ' ', (5.6)

where &„, is the completely nonrelativistic Ham-
iltonian for N electrons and &„ is the usual oper-
ator for, e.g., spin-spin, spin-orbit, and orbit-or-
bit interactions, responsible for atomic fine struc-
ture The .dots in (5.6) represent operators which
give rise to level shifts of order (o.Z)'~ or small-
er. (ii) The full operator hg' is, in momentum
space, no more complicated than the operator jV„,
+II f, .

It follows, in particular, that in momentum
space the HF equations corresponding toh~" for
the orbita)s associated with the Pauli function p~,
given in Appendix A, are basicaLLy no more com-
plicated than are the DHF equations. In fact, they
should be easier to solve numerically, because a
multi-Pauli spinor has only 2" components in con-
trast to a multi-Dirac spinor which has 4" compo-
nents.

C. Concluding remarks

The equations given in this paper can be used as
the starting point for the investigation of relativis-
tic effects in the spectra and transition probabili-
ties in many-electron atoms. Because they are
derived from field theory, no questions of princi-
ple arise in their use. The Hamiltonian pg p" leads
to HF-type equations which are, in momentum
space, simpler than the DHF equations and there-
fore it should be possible to use hp as a basis for
calculations which are both practical and securely
grounded in quantum electrodynamics.
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ted with an HF approximation to an eigenfunction
'

p' of h+ are no more complicated, in momentum
space, than the DHF equations for the orbitals
X;(I)

This feature of the equation for p' is preserved
on passage to the reduced equations for the Pauli
wave function p~

(5.5)

where kg' is given by Eq. (4.44). The operator
hg has the following properties. (i) In an expan-
sion in powers of 'fi,'. /~' it has the form

orbitals p,'. (1) are still subject to the positive-en-
ergy constraint (3.15), which may be awkward to
implement in numerical calculations. However,
this constraint can be eliminated by using the re-
duction techniques described in Sec. IV. Equiva-
lently, and more simply, one may instead derive
the reduced HF equations directly, by making an
HF approximation to

hg QJ =Ep~, (A1)

=Q X,,y,.(1),, (A3)

where

&;" (1)= &q; (2) I
V"'(1, 2)l q;(2)& (A4)

Vr81 (] ) Vfej (]) +Q Pl'81 (I) (AS)

Here V"' (l, 2) and V,.
'" (1) are given by Eqs. (4.4V)

and (4.45) of the text, respectively, and the X's are
the Lagrange multipliers associated with the con-
straint (p,. l cp,.) = 6,, .

Note that no projection operators appear in (A3).
Apart from kinematical factors of the form
([E(p) +m]/2E(p)P~' and 2m/[E(p) +mt which enter
the definitions of V."'(1,2) and V,"„',(1), (A3) has the
form one would get for the HF equations based on
the nonrelativistic SP Hamiltonian II„,+ Elf„where
Hf, contains the nonrelativistic fine-structure op-
erators. In momentum space, these kinematical
factors are slowly varying functions which would
be simple to incorporate in numerical calculations.

The HF equations based on X,', given by (3.12),
may similarly be reduced to SP form and the con-
straint 8, (1)P' = g' eliminated, by applying the
variational principle directly to the equivalent
relativistic SP equation (4.57). With a trial func-
tion of the form (A2) one gets

where p~ is the Pauli wave function associated
with P' and h~" is the relativistic Schrodinger-
Pauli-type Hamiltonian defined by (4.44). With
the trial function

P""= (I/WE!) Det[y, (I)y,(1)' ' ' y (1)l (A2)

and y,. (1') a Pauli wave function (spin orbital), the
variational principle applied to (A1) gives

APPENDIX A: HF APPROXIMATIONS FOR A&e& AND Hpe~

The relativistic HF equations based on h+, which
includes the Breit interaction, are given by Eq
(3.13) of Sec. HI of the text. In these equations the

g~(1)p, (1)+Q %lan'q'(1)qr, .(1) —Qeq (1)yq(l)
j~i jwi

=/~;, pg(1), (A6)
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where h~(1) is defined by (4.64) and

&;"&' (1)= &m;(2) I&& (1,2) I e;(2)}, (A'I)

with 'U~ (1,2) defined by (4.66). However, be-
cause of the complicated character of some of the
operators entering the definition of g~ and g~',
further approximations will have to be made be-
fore (A6) becomes amenable to numerical solu-
tion. [For an example, see Eq. (B11).]

APPENDIX B: NONRELATIVISTIC LIMITS

The nonrelativistic limit of 5„'" is easily found,
by expansion of the operators A,. and R; in powers
of p, /m = O(v/c). Using

A,. =1+ (p',./8m )+O(v /c ), (Bl)
g, = (o, p,. /2m) [1 —(p', /4m') + O(v'/c')],

one gets

V,'„", (i) = -eA,'„, (i) + [p, X,.)(i) + H.c.]

+ o, H,„,(i)+,o,. ~ E,„„(i)&&p,
2m g ex

One can expand the square root in powers of m ',
8(i) =m(1+ q,.)'~'

where

=m(1+-,'q, ——,'q',. + ~ ~ ~ ), (B6)

h (i}= (a; + b, )'~'

with

a. =m'+p-

b,. =Ir',. —p',. —e[n, II,. +P, m, A',„,(i)],
+ e'[A',„,(i)]'.

Now for any operators a and b, one has

(B8)

q, = (X-v ,„,.(i) —m') /m'.

When this expansion is used together with similar
A,

expansions in m ' for the operators S, and Q,. en-
tering (4.65), one finds that X~' has the same
form as i&~' through terms of order (v'/c )m,
(v'/c')A, '„, , (v'/c') (e'/r, ,), and (v/c) IX«, I.

It is possible to expand g(i) in powers of A,„,(i)
only, without expanding in powers of p,./m at the
same time. One may write

-8 .[P;, [P;»l.~(i)].].+ ", (B2) 1
(a+ b) ~ = d~(1 e "&~+&'&)g

2~m
(B9)

where the dots represent terms of order (v'/c')A', „,
and (v'/c') IX,,tI or higher. The first four terms
in (B2) are familiar. The double anticommutator
term combines with the p term in the expansion
of E, ,

E, =m+p,'/2m —p, /8m + ~ ~ ~,

to give a spin-independent interaction, responsible
for the leading relativistic correction to S-state
levels in one-electron atoms. Similarly, one finds

2

V" (i,j)= + V..(i,j)+ V,.(i,j)

and Feynman's operator calculus" can be used to
expand e ""'"in a power series in b. On compu-
tation one finds"

1
(a+ b)'~2 = a'~2+

2M» J,
)& Jt (use '"'be '" "+''' .

0
(B10)

With a = a;, b =b, we then get from (.B9}and (B10)

h(i) =z, + Mu ~se (' ')us@ ~ s"z]+''

+ v„(i,j)+ oI —,(v e 't
(B4) (B11)

(B5)

where V„, V„, and V„are the usual orbit-orbit,
spin-orbit and spin-spin interaction operators.
Thus h~ contains all the familiar fine-structure
operators, together with corrections of higher ar-
der in v/c.

The same statement holds for BC~', given by
(4.65). To verify this, it is convenient to "mecha-
nize" the formal definition (4.18) of S(i),"by not-
ing that S(i) may be thought of as the positive
square root of Xv.,„,(i):

8(i) =[Xv.«, (i)]'~'.

For X,„,= 0 and A', „& (b) = Ze/r;, replacement of b,
by -2ZnP;m/r, in (B11) gives the leading O(Znm)
correction to the zeroth-order approximation S(i}
=E, The expansion (B11},which has been used in
a study of the z'Q, corrections to the energy levels
of helium, ' may also prove useful in the calculation
of relativistic effects in many-electron atoms. It
is, roughly speaking, an expansion in powers of
mZnr; /Q, , which is likely to converge more ra-
pidly than an expansion in powers of Znr& /m.
Similar expansions can be given for all the opera-
tors which enter the definition of $C~".
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