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Independent-particle models for light negative atomic ions
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For the purposes of astrophysical, aeronomical, and laboratory application, we seek a precise independent-

particle model for electrons in negative atomic ions of the second and third period. The optimum-potential
model (OPM) of Talman et al. is first used to generate numerical potentials for eight of these ions. Results
for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the
OPM and HF electron affinities both depart significantly from experimental affinities. For this reason we

develop two analytic potentials whose inner energy levels are very close to the OPM and HF levels but
whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These
models are (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter

potential model of the Green, Sellin, Zachor type. The system 0 or e-O, which is important in upper
atmospheric physics is examined in some detail.

I. INTRODUCTION II(r) = lH (8""—I) + I 1
' (3)

Negative ions play important roles in astro-
physical, aeronomical, and laboratory pheno-
mena. '- For example, H is the major source of
opacity in the continuum of the sun and many
stars and plays a part in many stellar reactions.
The negative ions 0 and 0,- and others in the
earth's upper atmosphere have important effects
in determining the density of free electrons which
influence radio communications and other aero-
nomical phenomena. In the laboratory, negative
ions influence radiation from shock waves, the
shape of gaseous discharge pulses, and other ex-
perimental observations. Negative ions are used
in tandem Van de Graaff accelerators for multi-
plying the energy of the accelerated particles.
%hile the abundance of negative ions is usually
small compared to neutrals, the fact that they are
charged and that electron affinities are small
often amplifies their influence.

The independent-particle model (IPM) of elec-
trons in central potentials. within atoms provides
a simple atomic model for describing negative
ions. Here the physical results are all extracted
from a radial Schrodinger equation of the form

Q"(r) I+V(r)+I(I+ I)/r']Q(r) =E&f&(r),

where V(r) is the electron-atom potential. We use
units so that 2m=5= —,'e'=1, in which case radial
distances are in Bohr radii and the energy eigen-
values (E) are in rydberg units.

Green, Sellin, and Zachor' (GSZ) have intro-
duced an IPM which, for the case of an electron
sn a negative ion, takes on the form

V = -(2Z/r)Q(r),

where Q(r) is the two-parameter (H and d) screen-
ing function

In attempting to fix the GSZ parameters for
negative atomic ions we first considered the ap-
proach of Bass, Green, and Wood' (BGW) in which
the parameters of the analytic GSZ model were
determined by minimizing the expectation of the
Hartree-Fock Hamiltonian with respect to a Slater
determinant wave function constructed from one-
electron wave functions in a GSZ-type potential.
These parameters may be obtained from Table I
of Garvey et al. ' by extrapolating the parameters
for various isoelectronic sequences to the case
1U = Z+1. Unfortunately, the two parameters so
obtained did not always lead to the binding of the
last electron. It should be noted, however, that
the optimum potential. obtained by minimizing the
total energy is not necessarily the best IPM po-
tential for atomic-shell and optical-model calcula-
tions. This question has already been discussed
in comparative studies by Green and Kutcher'
and Talman, Ganas, and Green' (TGG). In this
regard negative atomic ions are of particular
interest since they provide extreme cases to
examine the question of the most appropriate po-
tential from the viewpoint of an IPM description
of an atomic system. In the case of negative ions
we do not have excited states or experimental data
on inner bound states, so the adjustment technique
of Ganas and Green" cannot be directly applied.
The precise Roothaan Hartree-Fock descriptions
of Clementi and Roetti" are available, but in such
a model each electron implicitly "sees" its own

unique potential. To overcome this problem we
have treated light negative ions by the numerical
optimized potential of Talman et al. '

II. OPTIMIZED-POTENTIAL MODEL

In this section an approach (to be referred to as
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the OPM) for constructing an average effective
potential that is closely related to the Hartree-
Fock method will be taken. " Unlike the BOW
analytic approach, here the Hartree-Fock energy
functional is minimized with respect to a numeri-
cal effective potential. The resulting wave func-
tions have been shown" to give results almost
the same as Hartree-Fock results for many physi-
cal quantities.

H(r, r')[V(r') —V„(r')Jdr' = Q(r),
0

where

(4)

H(r, r') = gn, &f&, (.x)G. , (r, r')Q, (r'), (5)

It was shown in Bef. 12 that for a closed-shell
atom the variationally optimized effective potential
V(r) satisfies an integral equation of the form

OO

Q(r) =- gn, n~ dw'P, (r)G, (x, r')g, (r')g ' ~ j dr" (, ' „~., P, (r"}&~(x").

In these equations, Q,.(r) is the reduced radial
wave function in shell i, to be determined self-
consistently, and n, is the occupation number of
shell i. The functions @,(r) satisfy the reduced
radial Schrodinger equation [Eq. (I)J. In Eq. (4),
Vy(r) is the static Hartree potentiai produced by
the electron charge distribution, and in Eqs. (5}
and (6) G, (r, r') is the Green's function for the
Schrodinger equation calculated at E =E, and pro-
jecting onto states orthogonal to Q,. We may write
the potential V~(x) in the form

V(r) = V, (r) —2Z/r, (I)
where 2Z/r -is the attractive potential arising
from the nucleus, and V~(r) physically represents
the interaction of the electron cloud with the in-
dividual electron allowing for electron static and
average exchange effects.

If the atom or ion has an open shell there are
extra terms in Q(r) which arise from constructing

I

the ground-state eigenfunctions of L' and S'. It
turns out from Hund's rules" that these terms
can be calculated fairly simply for the ground
state by forming the wave function with the largest
values of m~ and m„which is a single Slater
determinant.

It was shown in Bef. 12 that for an atom the
effective potential behaves like -2/r for large r;
i.e., at large r an electron moves in the potential
of the ion it leaves behind. For a negative ion,
since a neutral atom is left behind, the effective
potential should clearly approach zero more rapid-
ly than r '.

The above result can be demonstrated by arguing
that for large r, Eq. (4) is dominated by the terms
in H and Q for which i = v, where v refers to the
least bound valence electron. At large r, a factor
n„Q„(r) can then be divided out of Eq. (6) and the
integral operator G„(r, r') inverted by a differential
operator. The result is then

P„(r)[V(r) —Vs(r) J = -g N~P~(r) " ~

J
dr' ', ~„P&(r')$„(r').

max
(6)

At large r values, the term j=n dominates the sum on the right-hand side. It is then found that for large

V(r)-V„(r)=-0„" " dr' '. .., y„(r)'.
0 0 ., maxr r (9)

The term L = 0 gives rise to the term in 2/r-
mentioned above and in the negative-ion case is
canceled. Unless the valence state is an s state
the dominant term in Eq. (9) for a negative ion is
L =2, and this gives rise to an r potential. This
argument would be changed in detail but would re-
main valid in the open-shell case.

Using these procedures, numerical optimized
effective potentials have been calculated for the
negative. ions B, C, N, F, Si, P, S, and Cl.

It was apparently not possible to obtain results
for which the outer electron is bound for the ions
I,i-, Na-, and Al-, although it is possible that a
satisfactory starting approximation was not found.

The results for the total energies, electron
affinities, and least bound-particle eigenvalues
are given in Table I. Here the electron affinities
are calculated by subtracting the energies of the
corresponding atoms calculated in the OPM. " The
results are compared with the Hartree-Fock re-
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TABLE I. Total energies and electron affinities in rydbergs for negative ions calculated
in the OPM and the Hartree-Fock approximation. E, total energy; &, electron affinity; EH+,
Hartree-Fock total energy; &Hp, Hartree-Fock electron affinity; &~p, , observed electron
affinity. ( E„( is the magnitude of the valence-electron eigenvalue for the OPM.

Ion

B
C
N

0
F
Si
P
S
Cl

-49.0360
-75.4132

-108.6404
-149.5762
-198.9156
-577.7705
-681.3888
-795.0675
-919.1439

-0.0195
0.0402

-0.1560
-0.0387

0.0999
0.0697

-0.0376
0.0677
0.1870

@(HF)

-49.0384
—75.4176

-108.6438
-149.5790
-198.9187
-577.7789
-681.3973
-795.0 764
-191.1534

-0.0197
0.0404

-0.1580
-0.0397

0.1001
0.0 703

-0.0401
0.0667
0.1897

0.0206
0.0932

0.1075
0.2499
0.1018
0.0546
0.1527
0.2658

0.0505
0.1485

0.2540
0.3560
0.1196
0.1508
0.2111
0.2950

~ Beference 4.

suits of Clementi and Roetti, "with the electron
affinities calculated in the corresponding way.
Also shown are the magnitudes of the eigenvalue
~E„~ of the last electron in the OPM.

It is seen that neither the OPM nor the HF re-
sults reproduce the experimental electron affini-

ties. Differences in sign and factor of 2 diffe-
rences in magnitude are seen in comparisons of
~(expt) with e(OPM) and &(HF). Perhaps the use
of unrestricted Hartree-Fock wave functions would
be more successful in reducing the total negative-
ion energy; however, the use of such wave func-

TABLE II. Energy eigenvalues (in By) of negative atomic ions in the second period. For
each ion the first row gives the configuration-averaged Hartree-Fock values of Clementi
et a/. The other rows correspond to the various calculations of this work. The pptential
parameters d, H, m, and && are given, where applicable.

Ion

Li
OPM
AOP
AAO
GSZ

B
OPM
AOP
AAO

GSZ

C
OPM
AOP
AAO
GSZ

0
OPM
AOP
AAO
GSZ

F
OPM
AOP
AAO
GSZ

[Z = 3, &(expt) =0.0456]

1.8443 3.3567
1.8629 3.2446
2.2920 4.0289

5.588
5.588

[Z=6, s(expt) =0.0932

4.441
4.441

1.5066
1.5237
1.

2.9602
2.9012
3.24827065

[Z=8, &(expt) =0.1075]

0.8555
0.8517
0.8860

1.9159
1.8821
1.9607

1.788
1.788

[Z=9, &(expt) =0.2499]

0.6698
0.6708
0.774

1.6214
1.6011
1.8563

2.002
2.002

3.2227 4.4779

[Z=5, e(expt) =0.0206]

2.6757
3.9636

2.3702
3.7307

1.5447
3.0237

1.2867
1.5906

—4.6455

-14.888
-13.073
-12.669
-12.837
-12.783

-22.010
-19.795
-19.365
-19.490
-19.497

-40.396
-37.259
-36.934
-36.775
-36.757

-51.659
-48.04
-47.690
-47.611
-47.494

2s

-0.0291

-0.0456

-0.5114
-0.4495
-0.4318
-0.3890
-0.3907

-0.8061
-0.7524
-0.7326
-0.6631
-0.6657

-1.6265
-1.3416
-1.3110
-1.1381
-1.1408

-2.1489
1%733

-1.7019
-1.5802
-1.5814

-0.0319
-0.0505
-0.0519
-0.0206
-0.0206

-0.0972
-0.1485
-0.1515
-0.0932
-0.0932

-0.2585
-0.2540
-0.2539
-0.1076
-1.1075

-0.3617
-0.356
-0.3573
-0.2500
-0.2499

OPM, optimized potential method; AOP, analytic representation of optimized potential;
AAO, analytic optimized potential adjusted to experiment; GSZ, analytic IPM potential.
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tions would be outside the framework of a po-
tential model. It is, however, gratifying to see
that the OPM results are in substantial agreement
with the Hartree-Fock results. Indeed, the total
energy differences between the two methods are
comparable to those found in calculations for
atoms, " ranging from 50 ppm down to abou't 10
ppm as 8 increases from 4 to 17. Furthermore,
the agreement between the calculated electron
affinities in the HF and OPM methods is remark-
ably good. These results confirm the discussion
of TGG which suggests that the numerical OPM is
probably the best average" IPM representation
of Hartree-Fock levels.

Comparison of iE„.i for the OPM with e(expt)
also shows substantial differences all in the
direction of excessive binding if the magnitude is
to represent the removal energy or affinities. It
would be desirable to adapt the OPM numerical
potential for shell-type calculations in which iE„ i

= e(expt). Such a modification would also set the
stage for optical-model uses.

V,y(r) = 2(N —1)T(r)/r+ n(r'+r') ' ' (10)

T(r) =1 —1/[1+H(e « —1)]. (11)

The first term in Eq. (10) follows from the analy-
tic IPM of Green, Sellin, and Zachor. ' The func-
tion T(r) behaves like Hr/d at small r and ap-
proaches 1 at large x. 'The second term in Eq.
(10) is included to represent the r ' behavior in
the effective exchange potential derived in the
previous section. Overall, V„(r) approaches a
constant at r = 0 and behaves like (N -1)2/r+ nr '
for large r.

The parameter n in V„(r) was calculated from
the large x behavior of the numerical OPM po-
tentials. The other parameters II, d, and x~ were

III. PARAMETRIZED IPM POTENTIALS FAR NEGATIVE
IONS

We have found that the numerical OPM electron
cloud-electron potentials that were calculated in
Sec. II can be fitted by analytic potentials of the
form

TABLE III. Energy eigenvalues (in Ry) of negative atoxnic ions in the third period. See
caption to TABLE II.

Ion 1s 2s 2P 3s

Na
OPM
AOP
AAO
GSZ

A1
OPM
AOP
AAO
GSZ

[Z=ll, &(expt) =0.0401]

1.0142 2.1060

[Z=13, &(expt) =0.0338]

2.1187 6.3557

—80.663 —5.300 —2.742 -0.0250

—83.222 —6.242 —4.451 -0.0401

-116.645 —9.462 —6.079 -0.4410 -0.0268

-109.15 —8.313 —5.565 -0.4029 -0.0338

Si
OPM
AOP
AAO
GSZ

P
OPM
AOP
AAO
GSZ

[Z=14, e(expt) =0.1018]

1.8043 5.7928 10.26 3.5979
1.3357 4.0804 10.26 2.5674
2.1424 6.7362

[Z =15, e(expt) =0.0546]

1.5762 5.0041 3.927 2.765
1.4727 4.5907 3.927 7.566
1.5053 4.7156

-137.163
-130.730
-127.02
-129.48
-128.10

-159.401
-152.46
-150.34
-151.10
-150.84

-11.848
-10.109
—9.'798
-10.232
-10.147

-14.480
-12.559
-12.340
-12.325
-12.281

—8.050 -0.6409
—6.867 -0.5643
—6.615 -0.5595
—7.109 -0.5689
—6.999 -0.5712

-10.262 -0.8831
—8.925 -0.7224
—8.818 -0.7044
—8.834 -0.5882
—8.784 -0.5888

-0.0783
-0.1196
-0.1072
-0.1019
-0.1018

-0.1409
-0.1508
-0.1406
-0.0548
-0.0546

S
OPM
AOP
AAO
GSZ

'C1

OPM
-AOP
AAO
GSZ

1.1938 3.7996
1.2139 3.8467
1.4674 4.7189

4.152 1.7857
4.152 2.2813

[Z=17, e(expt) =0.2659J

1.0404 3.3809
1.0338 3.3710
1.3071 4.1853

3.457 1.3 729
3.457 1.4093

[Z=16, e(expt) =0.1527] -183.352
-175.92
-175.13
-175.07
-174.17

-209.010
-201.10
-200.83
-200.47
-201.08

-17.350
-15.256
-15.075
-14.886
-14.801

-20.458
-18.202
-18.003
-17.825
-17.969

-12.710
-11.226
-11.206
-11.022
-10.911

-15.391
-13.769
-13.758
-13.567
-13.758

-1.159
-0.9132
-0.8943
-0.8138
-0.8159

-1.466
1~ 132

-1.115
-1.074
-1.068

-0.2148-
-Q,2111
-0.2067
-0.1529
-0.1527

-0.2998
-0.2950
-0.2961
-0.2658
-0.2659
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adjusted to minimize the quantities

S= V z —V„r 'i &'.
0

(12)

Io-( opM
AOP
AAO
Gsz

4J
lD
DI-
x
~IO

I-
X
I-
O
CL

IO
«2

2 3 4 5
RADIAL DISTANCE

6 7

FIG. 1. Illustration for 0 of IPM potentials discussed
in this work. OPM represents the numerical optimum
potential; AOP is a four-parameter analytic approxima-
tion to OPM; AAO is an adjusted potential of the same
form which gives the experimental affinity; and GSZ is
a two-parameter potential which gives the experimental
affinity and reasonable 2s and 1s eigenvalues.

The factor r in Eq. (12) is one of many possible
weight functions that could be used. It was found
that of the weight functions 1, x, and x' this choice
generated the V„(r) which gave the minimum
total energies.

The parameters for the analytic-pote~al form
V„(r) a,re given in the third rows of each block in
Tables II and III. Also given are the energy eigen-
values. As expected these are very close to the
OPM results. 'The total energies obtained from
the AOP generally are 20-50 ppm greater than
those of OPM except for B and C . 'To be con-
sistent, the parameters should have been calculat-
ed as in Bef. 6 by the more complicated procedure
of minimizing the Hartree-Fock energy rather
than the quantity in Eq. (22). However, the
differences given are comparable to those found'
using the energy-minimization procedure.

The OPM effective potential for 0 is shown in
Fig. 1 together with its parametrized analytic ap-
proximation. Evidently there is good agreement
at all ~ values.

Our work to this point indicates that the elec-

tron affinities of negative ions do not agree with
the energy differences computed using HF, the
V(OPM) potential, or the four-parameter analytic
approximation V„(r) N. or do the electron affini-
ties equal the last particle eigenvalues. It must
be recognized, however, that the last electron in
a negative ion is in an extremely sensitive balance
between a large negative potential energy and a
large positive kinetic energy. Thus we are in a

'situation in which small residuals, including those
not encompassed by an independent-particle model,
can play a significant physical role. To obtain an
IPM potential which gives the last particle eigen-
value in agreement with the electron affinity, we
have utilized the analytic approximation to the
optimum potential consisting of Eqs. (10) and (11)
and adjusted the value of r~ (and in some cases d
and H as well. ) so that e„equals the electron af-
finity. The parameters so obtained are given in
the fourth row of the blocks in Tables II and III.
The changes in total energy obtained in this way
were quite substantial in several cases, e.g. , in
0 where it amounted to 1193 ppm.

For applications of interest the four-parameter
analytic model described above may not be the
most economical analytical IPM. We have there-
fore returned to the original two-parameter GSZ
model for negative ions [see Eqs. (2) and (3)] to
see if we can find reasonable parameter values
which produce agreement between the last elec-
tron eigenvalue and the affinity, yet incorporate
the inner features of the OPM. Here we have used
the search procedure of Ganas and Green" to ad-
just the two parameters of the GSZ potential to fit
the inner-state eigenvalues of the OPM and the
experimental affinity for the last el.ectron. We
could alternatively have used inner eigenvalues
of the Hartree-Fock results of Clementi and
Boetti,"which are quite close to those of the op-
timized potential. The results are given in the
fifth rows of Tables II and III. It is seen that the
two-parameter analytic model can indeed be ad-
justed to give exact affinities and reasonable
inner- state eigenvalues.

We are now in a position to take advantage of the
flexibility of the analytic GSZ potential to deal
with the problem ions such as Li, Na, and Al
whose last electron could not be bound with the
optimized potential. Parameters which give rea-
sonable properties are also given in Tables II and
III. Cases of unstable negative ions such as Be-
and N can also be accommodated by this approach.
For example, by interpolating the II value between
the neighboring negative ions and adjusting the d
value we find that H =4.25 and d= 2.90 gives ~E
=0 for Be, and H = 2.60 and d=1.20 gives ~E-„~ =0
for ¹ GSZ potentials with these parameters or
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with slightly smaller values of d should provide
reasonable representations of the e-Be and e-N
systems.

IV. DISCUSSION AND CONCLUSIONS

The relationship between the single-particle
eigenvalues and the ground-state energies of
negative ions is a matter of considerable interest.
As is well known, 4 fine-structure splittings of a
multielectron configuration. such as (2p)" will
stabilize particular angular-momentum states with
respect to the orbital center of gravity. Thus the
experimental affinity of the ground state should in
general be larger than the single-particle orbital
energy. The fact that the unadjusted OPM or
AOPM already have single-particle eigenvalues
which are larger than experimental affinities gives
further support to the adjustment process used in
the AAO and GSZ models. However, it should be
noted then that these adjusted potentials then em-
pirically include effects which go beyond the single-
particle model.

The magnitude of these effects are discussed by
Hotop and Lineberger. ' For example, for the
(2P)' state of F the 'S, state is not split. For the
(2p)' state of 0 the spin-orbit splitting between
the ground 'P, &, state and the excited 'Py/2 state
is small, =181 cm'=1.65&&10' Ry. For the (2p)4
iV the term splittings calculate to be of the order
of 1.4 eV for N('P —'D) and 3 eV for N('P —'S).
For. (2p)'C the multiplet splittings. are also ap-
proximately 1 eV. Thus one must expect that ad-
justments of the order of 1 eV or 0.1 Ry associat-
ed with multiplet splittings are incorporated in
the AAO and GSZ potentials.

From a more theoretical point of view the rela-
tionship of the single-particle eigenvalue and the
electron affinity must consider the detailed per-
turbation treatment used to go from the IPM to a
more accurate many-electron treatment. It must
be recognized, however, that the calculation of
atomic-electron affinities is a very difficult and
largely neglected subject. " The very weak bind-

ing of negative ions greatly enhances the impor-
tance of many otherwise small effects. For ex-
ample, Moser and Nesbet, "using Bethe-Goldstone
equations to calculate electron affinities of light
negative ions, find an overestimate of the sta-
bility when only one- and two-particle terms are
included. The three-particle terms which are all
positive in sign reduce these affinities, but they
are very numerous and costly to compute.

Sasaki and Yoshimine, "using the configuration-
interaction (CI) method, appear to obtain 94-95%
of the true correlation energy for second-period
ions. However, because of wave-function inac-
curacies their electron affinities turned out to be
only 83% of the true contribution. Nevertheless,
CI calculations using basis sets built up pro-
gressively look quite promising.

For the purposes of applications in which wave
functions in a reasonable potential are needed,
the adjusted analytic-potential method appears to
be a practical way of tuning the effective valence-
state potential to electron affinity inferred from
experiment or refined many-body calculations.

In such application it must be recognized that
the parameters of the AAO or GSZ potential would
be expected to have a slight state dependence which
may or may not be consequential. For example,
if these potentials are used as optical-model po-
tentials to calculate 100-eV electron-atom elastic
scattering such as carried out by Berg e$ al." and
Furness and McCarthy, " these differences should
be of minor consequence. It was in connection
with such calculations that this work was initiated.
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