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A coordinate transformation which exhibits the rotational invariance of the hydrogen atom in four-
dimensional Hilbert space is introduced. The coordinates are shown to be directly related to the spherical
polar and parabolic coordinates in position space. With the use of the transformation, the Schrddinger
equation for the hydrogen atom left-multiplied by 4r is transformed into one for a four-dimensional
harmonic oscillator. Solutions are obtained and related to the hydrogenic wave functions. Group-theoretical
implications of the transformation and its application to the hydrogen Stark problem are briefly discussed.

I. INTRODUCTION

The degeneracy of the bound states of the nonrel -

ativistic hydrogen atom is known to be linked with
its rotational invariance in four-dimensional Euc-
lidean space. Fock demonstrated this in his land-
mark paper® by making a stereographic projection
of the momentum space onto a four-dimensional
unit sphere. The momentum-space wave functions
are obtained from the solutions of the four-dimen-
sional Laplace equation. In the three-dimensional
space, the Schrddinger equation for the hydrogen
atom is separable in spherical polar and parabolic
coordinates. While its separability in the former
is related to the spherical symmetry of the cen-
tral Coulomb potential, its separability in the lat-
ter is attributed to the “hidden” symmetry which
is responsible for the degeneracy peculiar to the
potential. It should be noted that the Fock coordi-
nates are not canonical. They are projective mo-
mentum coordinates and do not seem to be directly
related to either the spherical polar or the para-
bolic coordinates in three-dimensional position
space. We have found a new coordinate transfor-
mation which not only exhibits the four-dimen-
sional rotational invariance of the hydrogenic sys-
tem but also relates divectly to the separable co-
ordinates mentioned above. In Sec. II, after being
introduced, the new four-dimensional coordinates
are used to transform the Schrodinger equation
for the hydrogen atom into one for a four-dimen-
sional harmonic oscillator. In solving the equa-
tion, we not only recover the energy spectrum and
the wave functions in spherical polar coordinates
but also obtain the hydrogenic wave functions as

a linear combination of the oscillator wave func-
tions in terms of products of Hermite polynomials.
In Sec. III, we discuss briefly its group-theoreti-
cal implications and its application to the Stark ef-
fect of the hydrogen atom.

II. THE HYDROGENIC OSCILLATOR
AND ITS SOLUTIONS

The new coordinates we use are given by
Y, =scosacosg ,
Yy,=scosasing ,
¥, = ssina cosy ,

Yy,=ssina siny .

These coordinates provide a parametrization of
the four-dimensional rotation group and corre-
spond to plane rotations in perpendicular spaces.?
The coordinates in Eq. (1) can be shown to satisfy
the commutation relations [ 9,, p; | =%5,;;, where
py;=-ird/3y;, i, j=1, 2, 3, 4. To reduce these
coordinates to the three-dimensional spherical
polar coordinates 7, 6, ¢, we set®

s=rt/2 2a=0, Bxy=g. (2)

From Egs. (1) and (2), we can establish the follow-
ing relationships among the various coordinates*:

Y=y2+yi+y2+y2=5%,

x=7sinbcosg =2(y,Y,£5,5,) ,

Yy =7sinfsing =2(y,¥,¥5,5,) ,
zZ=7cosf=y2+y2—y2_y2, (3)
E=r+z=2(y%+y2),

n=7r-z=2(y2+y2%),
@=arctan (9,9, F9,5,)/(3,5,25,5,) .

The two signs in Eq. (3) correspond to the two
phase relations in Eq. (2). :
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Multiplying the Schridinger equation (H —E)¥
=0, where H is the hydrogenic Hamiltonian, by
47 from the left and utilizing the above coordinate
transformation, we obtain the equation for a four-
dimensional harmonic oscillator as follows:

[-72/(2M)V? - 4Es® —4Ze?] ¥ =0 . (4)

The four-dimensional Laplacian is given by

4
- 92
V= (5)
- 92 3\ o -
Vise +(§) as K- (©)

The operator 4K? is the Casimir operator of the
group SO(4) and is given by®

4K2 = 2 (tana — cota) 2
T T a0 da
2 82
-sec?a ~cos’a — .
3ﬁz 87/2

Using the relations among the angular variables
given in Eq. (2), we find 4K?=4T.2 where 1, is the
angular-momentum operator. By equating —4FE
to z Mw? and 4Ze to Niw, where N =n,+n,+n,
+n,+2, and identifying the ground state n =1 of
the hydrogen atom as the zero-point oscillation
N =2 for the oscillator, we set N =2r and recover
the energy spectrum E = — p2 /(2 Mn?i?), where p
=Ze®*M. 1t also follows that the frequency of the
oscillator is given by w, =2p, /(Mn#%).° It can
easily be shown that the solution of Eq. (4) with
the Laplacian given by Eq. (6) are the hydrogenic
wave functions ¥,,,(T). The solutions of Eq. (4)
with the Laplacian given by Eq. (5) take the form

"ﬂlﬂzﬂ3ﬂ4=C exp(—pc sz/rl'ﬁz)QYIYIlflzflgll‘1 ’ (7)

where C is a normalization constant and

nnymomon, =H, (z,)H, 2(22)117:3(23)Hn4(24) . (8)
The functions H,(z;) are the Hermite polynomials
in which we have set the argument z; = (2p, /

ni)t! %y,. In applications such as the treatment of
the Stark effect, it is significant to note that the
hydrogenic wave functions ¥, can be expressed
as various combinations of the functions

®nin mny given in Eq. (8). We have worked out
the first few cases and they are given below:
(a=n%/p,)

1 D S?
Yi0= Tr a2 €xp (" 2 )¢100007

b, s2>

1
Yao= 15 75m g7 °XP (- 27

X(@52000 + P20200 = Paooz0 = Paooos) »

1 b, s?
Yan =157 o577 °*P (‘ 5%—)

X ((1)21010 - (I>20101 + iq’zouoi Z.11)2].()0].) ’ (9)

- 1 b, s*
W00 = 388v3r a2 exp(— 372 )

X (234000 + 30400 + P300s0 + P30004) 5

B 42 b, s?
Yoo e T avl exP( 372

x [ _4)34000 - 4)80400

+ P3040 = P30004
- 2(‘1’32200 - (p:;oozz)] .

III. SIGNIFICANCE OF THE TRANSFORMATION

Recently, there is a renewed interest in the
Stark effect of the hydrogen atom.””® Our result
will infuse further theoretical development of the
problem in two respects. In the first place, as a
result of the left-multiplying by 47, the Stark
potential eFz becomes 47veFz in Eq. (4) and takes
the form

H' =4eF[(¥7+y3)? - (v3+99)%] . (10)

It is separable in the two pairs of coordinates
¥,,¥,and ¥;,%,. By setting u®=y2+y2 and v2=y?
+%2, it can easily be shown that the hydrogen
Stark Hamiltonian takes the form of a pair of an-
harmonic oscillators in perpendicular spaces.
The anharmonic oscillator has been investigated
by Bender and Wu'® and its application to Stark
effect has been discussed by Benassi ef al.” in
terms of the squared parabolic coordinate defined
in Ref. 3.

Secondly, instead of the parabolic coordinates
which have been considered to be convenient for
perturbative calculations, our result provides an
alternative way for such calculations. In terms
of the coordinates given in Eq. (1), the evaluation
of the matrix element (n’l’m’|H’ |nlm) can be re-
duced to the evaluation of matrix elements of
v%, k=2 or 4 involving the oscillator wave func-
tions of the same frequency w =2p, /Mii. In order
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to see this, we define

e[ 3) )
) wl5).
lnli)=d>n((%)l/2y;)

=exp(——ph%ﬁ->H,,«%2—)a)1/2y¢) . (12)

Introducing the scaling dperator S; (1/m/2), we
have

S; (1/n2)®,((2p, /M2 2y, )=n"4® ((2p, /B> %,).

(13)
From Egs. (9) through (13), we then have

(n'n'i| y% |uni)
= (nn’ )-1/'4(1111” St (1/n"/2)y’:Si(l/n1’2)|n1i>
= (' )‘”“(n’li l Si(n'l/z/nl/z’)y’f |n14)

= (un’ )-1/42 (n'1i| Si(nulz/n1/2)lnn1i>
"’I
x{n"1i| yf |n1g) . (14)

The matrix element of the form

(n'1i| S,(n"*/2/n'/?)|n"1i) has been evaluated by
Englefield.!’ Further investigation and evaluation
of Eq. (14) in connection with the hydrogenic Stark
effect will be the subject of a future publication.
However, it can immediately be seen on the basis
of the form of H' given in Eq. (10) that all matrix
elements between wave functions symmetric in the
two pairs of variables y,, ¥, and y,, ¥, vanish.

As a concluding remark, it should be pointed
out that the solutions ¥, , onn, 0 Eq. (7) are the
basic functions in a four-dimensional Hilbert
space for realizing the ladder representations of
the Lie algebra L(2, 2) of the group U(2, 2) in
terms of the variables given in Eq. (1).!2 Its uni-
modular subgroup SU(2, 2) is the universal cover-
ing group of SO(4, 2), the dynamical group of the
nonrelativistic hydrogen atom.!®* For a fixed pair
of numbers N, =n, +n;* and Ny=nj+n,+1, these
solutions form an orthonormal set.
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