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Numerical results on the density fluctuations in liquid rubidium
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Numerical results for the dynamic structure factor S(qw) in liquid rubidium are presented based on a kinetic
theory presented in an earlier paper. The results are in quantitative agreement with those obtained from molecular
dynamics calculations and experiments. In the theory, difFerent dynamical processes such as single binary collisions
and nonlinear couplings to density and current fluctuations, are separated, and we investigate their relative
contributions to the relevant memory function, as well as their efFect on the shape of $(qw).

I. INTRODUCTION

In three recent papers, ' ' we presented a micro-
scopic kinetic theory to describe the self-motion
and the current fluctuations in monatomic classic-
al liquids. In the present paper we present nu-
merical results for the dynamical structure factor
S(q~) in liquid rubidium based on this theory, and
we compare our results with those obtained from
MD (molecular dynamics) calculations' and neu-
tron scattering experiments. '

Liquid rubidium has been extensively studied
during the past years through various ap-
proaches' "and its behavior is therefore rela-
tively well understood. The main purpose with
the present paper is, therefore, to test the ac-
curacy of the approximations introduced in papers
I and III and to compare with our earlier results
on this system. ~ Also, since the relevant memory
function in our theory is separated in a binary-
collision part and a part describing repeated cor-
related collisions, we are able to investigate how
the different dynamical processes, i.e., binary
collisions, nonlinear coupling to density fluctua- .

tions, etc., will influence the detailed shape of
S(q~).

The present calculations have been performed
for small and intermediate wave vectors, where
S(q~) show a pronounced structure due to collec-
tive effects. For larger-q values the dynamics
is to a large extent determined by the self-motion,
and is therefore less sensitive to the details of
our approximations. This fact is demonstrated
by our earlier results for S(q&v),"which gave very

0
good agreement with experiments for q&1.25 A ',
but gave rather large discrepancies for smaller-
q values.

II. BASIC FORMULAS

In this section we collect all the relevant formu-
las needed in our calculations and for their de-
rivation we refer to papers I and III. For the

dynamica, l structure factor we have

S (q~) = (I/v) ReF(q, z = —i~), (2.1)

(2.2)

Here F' denotes the self-part of F, and S(q) and

c(q) are the static structure factor and the direct
correlation function, respectively, n is the aver-
age density, P = (kzT) ' is the inverse tempera-
ture, and m denotes the atomic mass. The memo-
ry function I'"» which generalizes the ordinary
mean-field result, "describes the backflow around
any single atom" and is given by

I'„(qz) = I „(qz) —I"„(qz), (2.2}

where I'» and I'» are matrix elements, repre-
senting the longitudinal current of the memory
functions for the respective phase-space correla-
tion functions. In papers I and III we derived ex-
plicit expressions for these matrix elements in
terms of a binary-collision part and vaÃous mode-
mode coupling integrals. For I"» we have [see I:
(4.6)1

I"„(qz)+R;,(qz) + I"„(qz)R;,(qz)
1 -R;,(qz) —I"„(qz)(R;,(qz) +R;,(qz)]

(2.4)

Actually the derivation in I was performed for
q = 0 but it also works as well for q 4 0. More-
over, in (2.4) we have neglected the renormaliza-
tions of the coefficient before 8» from the longi-
tudinal modes, since in paper II this was found
to give a negligible numerical effect for short and
intermediate times at the present density. In
(2.4) I"„represents one binary-collision process
with a rapid time dependence and it is, as in

where F(qz), the Laplace transform of the inter-
mediate scattering function, is given by [see III:
(2.24) and (2.26)]

F'(qz) —(Pm/qz) I'„(qz) [zF'(qz) —1]
1+ [nc(q} —(Pmz/q')I'„(qz)] [zF'(qz) —1]

'
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paper II, approximated with a simple Gaussian
ansatz

is given by

F'(qt) = [F (qt}/F'(qt)]F(qt) . (2.10)
I",z, (qt) = (u', exp[- t'/r, '(q)] .

Here +0 is the Einstein frequency

&u', = "
Jf d r g(r)V'v (r),

(2.5)

(2 8)

1 "d'
+ 8„, 2 .y~'(q')[S(q') —1]y~'(q'),

(2.7)
where summation over repeated indices is im-
plied. Here y, (q} is given by

yp( q)= —
~

—
~

d r exp(-iq ~ r)'g(r)V Vzv(r)
Im~ 0

= q'"q'y.'(q') + (5 8 q"q")y.'(—q') . (2.8)

with v(r) and g(r) denoting the interatomic poten-
tial and the static pair distribution function, re-
spectively .The relaxation time r, (q}, obtained
from a short-time expansion, is given by [see I:
(Al. 11)]

~0+13 2~

q' 2 (nl
2Pm (3m ]

x dr[V V v(r))g(r)[V Vzv(r}]

In papers I and II we used the approximation
E =E instead of (2.10). However, as was dis-
cussed in III, that approximation cannot be used
when calculating S(q&u), since the mode-mode
integrals in I'» would vanish [see E|ls. (2.15)-
(2.20) below].

For R'„we have

R;,(qt) =—
f

2 . (q q')'c%')

( I2

ya(a')+(& «(q') ~, '
(Pm

x [F'(4-4', t) F'( l t-4', t)] -Fm't—)
(2.11)

x [E'(q -q', t) -F (q - q', t}]C, (tt't)

(2.12)

R gg and R22 contain the coupling to the longitudinal
and transverse current-correlation functions, re-
spectively, and are given by

R;,(qt)= —„Jl 2,
-.(q. q')* yA')+~

&
)«(4')

&Pm)

x [F'(q —q', t)F(q't)

—Fo(q-q', t)F (q't)], (2 8)

where +' is the free-particle expression of & and

The mode-mode integrals denoted by R' in (2.4)
contains the nonlinear coupling to the density and
current fluctuations. R«couples to the density
fluctuations and is given by

R;,(qt) = Jt, (q q')'[c(q')]'

R' (qt)= t 2,-[I—-(q q')'][yl%')]'~. '

x [E'(q —q', t) —F'(q —q', t)]C,(q't),

(2.13)

where C, and C, denote the longitudinal and trans-
verse current-correlation functions, respec-
tively, normalized to unity for t=o.

For I'» we have an expression similar to (2.4)
[see III: (3.33)]:

I'z (qz) +R' (qz) + I'„(qz)R,', (qz)
1 —R,', (qz) —I'„(qz) [R'„(qz) +R,', (qz)]

(2.14)

For the binary part I yy we again make a simple
Gaussian ansatz:

I';,(qt) = [~.' yl (q+) + (q'/p~)«(q}]

x exp[- t'/~l(q}] . (2.15)

FIG. 1. Relaxation times w+(q) (full curve) and & (q)
(dashed curve) versus q. The vertical axis is in units of
&p where 7'0—-3.212 ~10 sec is the time unit used also in
all subsequent figures. The wave vector is in units of A

The relaxation time r, (q) can again be determined
from a short-time expansion similar to v, (q) in
(2.7) and the result, which is related to the sixth
moment of S(q~), was given in III [Eq. (3.22)].
It turns out that v, and v, have approximately the
same overall magnitude, except that r, (q) has an
oscillatory q dependence as is shown in Fig. 1.
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These ogcillations reflect the initial static struc-
ture, which is even more pronounced in I'„(q, t = 0).
Actually, both 3, (q) and r, (q} should represent a
binary-collision time, and we do not expect this
to be very sensitive to the q value considered.
For this reason, we will take here 3, (q) = 3;(q),
which also lead to somewhat better numerical
results for S(q(d).

For the mode-mode integrals in (2.14) we have

[see III: (3.34)-(3.37)]
Wt

x [q q c(qq+q ~ (q q )c(q q')]

which is similar to (2.9}, except that we have an

additional exchange term in the coupling constant
and also that F' and F' have been replaced with

F and F, respectively. For Roy we have

d I 8 ta
ft' (qt) = q q q pz(qq')01 (2v)3 qi

x [q ~ q'c (q') + q ~ (q —q )c(q —q )]

x [F(q-q', t) —E (q-q', t)]—F(q't),

(2.17)

x [&(q -q', t)&(q't)

—F'(q -q', t)F'(q't)], (2.16)

where the coupling constant t" is given by

y, (q-q')+(q —q') (q —q') (n/Pm)c(q-q') -y, (q') —q q'(n'/Pm)c(q }'
(d0+ y,'(q).+ q'(n/Pm)c(q)

(2.18)

The couplings to the currents are given by

I

R„(ql) ——f, q=~q q q t~'(q'q )'(~ (qq')'

x [E(q-q', t) -&a(q-q', t)]C, (q't)

(2.19)

d'
ff33(qt) = ——Jt .q'q'(5 3 —q"q')t"(qq')t" (qq')

ditions for which Rahman carried out computer
simulations, ' using the effective pair potential
obtained by Price et al. ,"and also for which

Copley and Rowe' performed their experiments.
The static quantities that enter into the theory
were calculated with the values of v(r), g(r), and

S(q) supported by Rahman (private communica-
tion). For the dynamical correlation functions
entering in the mode-mode integrals we have used
the same values as in the earlier calculations of
4 (t) and I'(t), and we refer to paper II for more
details about this.

[z+r(z)]C (z) =1.
For I'(z) we then have [see I: (2.24)]

I'(z) =I"„(q=O,z).

(2.22)

(2.23)

This constitutes our basic formulation for the
calculation of S(q&u). The calculations have been
performed at a mass density of 1.503 gem ' and

a temperature of 319 K, which are the same con-

x [&(q —q', t) —& (q —q', t))C, (q't) .
(2.20)

To obtain results from (2.2) we also need an

expression for the self-part F'. We will here
use the Gaussian approximation

p) rt 1
F'(qt} =exp —

~

dt'(t —t')4 (t'), (2.21)
mP) .0

where 4(t} is the normalized velocity correlation
function given in terms of its corresponding
memory function by

HI. NUMERICAL RESULTS

For reference we show in Fig. 2 the results
for I'(t) obtained from Eqs. (2.4)-(2.13) and

(2.23) (full curve) together with the MD results
of Rahman' (dots). This figure should be com-
pared with the corresponding results in paper II.
The only difference is that the expression for Apo

is slightly modified by the appearance of F, given

by Eq. (2.10), instead of F in Eq. (2.9). The over-
all effect on the time dependence of I'(t) by this

change is small, and it just increases the height

of the tail around t= 2.5 somewhat.
In Fig. 3 we show our present results for S(q(v)

for small and intermediate wave vectors (full

curves) together with the MD (Ref. 4) and experi-
mental' (q= 1.25) results (dots). Comparing with

our earlier results in paper IV we see a large
improvement, in particular for smaller-q values
where the earlier results was not even qualita-
tively correct. The too-sharp peaks at the two
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lowest q values in Fig. 3 is mainly due to our
neglect of the coupling to temperature fluctua-
tions, which have a large effect at these q val-
ues." For the other three q values the present
results are more or less quantitatively correct.
Some of the remaining discrepancies are due to
our inability to reproduce the correct width of
the binary part of the memory functions as seen
in Fig. 2. If we correct for this defect by chang-
ing r, (q), the magnitude of the peaks in Fig. 3
is decreased somewhat and the peak-position is
slightly shifted towards larger frequencies. The
high-frequency shoulder found at q= 0.797 and
0.998 may be due to too strong oscillations in our
input E(qt). A similar structure was found also

O.o2—
q-0. 301 q=0.797

0.010

O.o1
I

O.oos

FIG. 2. Normalized memory function for the velocity
correlation function versus time. Present results gull
curve) and MD results of Rahman (dots). The time is ex-
pressed in units of Tp.

in our results for 4(&u). To some extent this
structure is also found at q = 1.25 and our results
show a more pronounced tendency of a side peak
than the experimental data of Copley and Rowe.

In Fig. 4 we show how S(q&u) varies when dif-
ferent dynamical couplings are introduced into
the memory functions. The dots are again the
MD and experimental results. The dashed curves
show the results for S(q&u) when only the binary
parts in the memory functions I'» and I' are kept,
i.e., all mode-mode integrals R«, R00 etc., are
set equal to zero. We see that the main features
of S(q&u) are reproduced with this approximation,
except that the central peak disappears more or
less completely for the lower-q values. Including
also the coupling to the density fluctuations via
BM and R~ into Eqs. (2.4) and (2.14), we obtain
the dotted curves in Fig. 4 and the results for
S(q&u) are now in very good agreement with the
MD and experimental values even for small fre-
quencies. Including also the longitudinal currents
via the mode integrals Roj and Rjy we obtain more
or less the final results shown in Fig. 3, i.e., the
coupling to the transverse current via R» is very
small and has no essential effect on S(qv). The
effect of the longitudinal currents is to sharpen
the side peak and they also make the high-fre-
quency shoulder at q = 0.797 and 0.998 more pro-
nounced. However, as stated above, this latter
effect is probably due to too much oscillations in
our input data for F(qt).

It should be noticed that for obtaining the results
shown in Fig. 4, the self-part ~ has been calcu-
lated with a I'(z) consistent with I'»(qz), i.e.,
the same contributions have been included in both
these functions and this is necessary to preserve
momentum conservation. If we were to neglect l
and I",, completely when calculating S(q~) we would
obtain the mean-field result of Nelkin and
Ranganathan. " This result gives side peaks in
S(q~) due to the mean-field term, but the reson-
ances are too sharp since only Landau damping is
included. As expected, the main damping mecha-
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FIG. 3. S(qco) versus co. The present theory is given
by the fu11 curves and the MD results of Rahman is given
by dots. At q = 1.25 A the dots denote the experimental
results of Copley and Rowe. S(qu) is expressed in units
of Tp and co in units of Tp'.

FIG. 4. S(qco) versus ~. The dots are the same as in
Fig. 3. The dashed curve show the results for S(qco)
when only sizgle binary collisions are included in the
memory functions F f& and F. The dotted curves show

S(q~) when the mode-mode couplixg terms Rpp and &pp are
also included in the memory functions.
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nism of the resonance is reproduced by including
only binary collisions, as is seen from Fig. 4.
For smaller-q values the time tail in the memory
functions has also a rather large effect on the
side peak, which can be understood since collec-
tive effects are more important at small-q val-
ues.

We will now consider the time dependence of
the memory function I'» more closely. The two
parts I'» and I'» in (2.3) have a rather similar
time dependence for all q values, and both look
more or less like I'(t) shown in Fig. 2, i.e., they
have an initial rapid decay followed by a long time
tail on the 10-20% level. Also, the different
parts of their tails look similar to the corres-
ponding results for I'(t) (see Fig. 2 in II).

Considering then I'» this function will in general
show more structure than the two separate parts
above. In Fig. 5 we show I'„(qt)/I'„(q, t = 0) (full
curves) for four different q values. Except for the
lowe st-q value where I'~» looks similar to I'(t), the
tail has more structure and gives also a relatively
larger contribution. The dashed curves in Fig. 5
show our previous results for P,'y taken from paper
IV. We see that there are large differences between
our present and earlier results, especially at small
times. The reason for this is that our earlier ap-
proximation for P,', did not reproduce the exact initial
mation for I'yy did not reproduce the exact initial
value I'»(q, t = 0), as is the case in the present

z + q'a(qz)
z'+ [q'/Pm S (q)] +zq'a (qz)

' (3.1)

where the generalized friction coefficient u is
essentially given by

a(qz) = [r(z) + I'„(qz)]/q'
= [(u', + I'„(q, t = 0)]/q'

OO t2
&&

I dt exp — zt+
~!(q)

(3.2)

considering in the last step only the contribution
from the binary part. For the smallest-q value
in Fig. 5 it is clear that the two curves have es-
sentially the same relaxation time 7,. We can
also take z =0 in this case, and we then see that
the viscosity depends sensitively on the value of
I'"„(q, t = 0). In our earlier results, this value is
25% too small in magnitude at q = 0.35 and this
gives a value for a(0, 0), which is a factor of two
larger compared with what is obtained with the
exact value of I'„(q, t = 0). This then explains why
our earlier results for S(q~) were strongly over-
damped for smaller-q values. For the inter-
mediate q values around q= 1 the frequency de-
pendence of a(qz) is also important, and this de-
pends on the whole time dependence for short
and intermediate times. We found earlier that
I "„gave a negative contribution to the damping
at the frequency of the resonance for q= 1 [see
Fig. 11(d) in IV], whi'le in the present case this
contribution is positive at this frequency. This
increased damping explains why the peak has
been broadened in the present case.

To investigate the time dependence of the dif-
ferent contributions to the tail of I'» we write
(2.4) as

I"„(qz)= I"„(qz)+R' (qz) + [I"„(qz)+ I"„(qz)]R',(qz)

treatment. These large discrepancies at short
times explains why our earlier results for S(q&u)
were rather bad for small and intermediate wave
vectors. For q& 1 we can write F(qz) in a genera-
lized hydrodynamic form [see IV: (2.7) and
(2.8)]

0.2 02—

- 0.2—

+ I"„(qz)R;,(qz) I"»(qz ) + I"„(qz)R;,(qz) I"„(qz)

= r;z (qz) + I"„„(qz)+ I"„,(qz )

2

t
+ I'1r (qz) + I"«(qz) (3.3)

FIG. 5. V~~(qt)//Vq~(q, t = 0) versus time. The full
curves show the results fr om the present theory, and the
dashed curves are the results from the earlier calcula-
tions in paper IV. The latter curves are normalized to
the exact value of I1~(q, t= 0) and the figures in the upper
left corner indicate the value at t = 0.

and correspondingly for I'» in (2.14). In Fig. 6
we show the different relative contributions to the
tails. The full curves show I'"„„=I „„-I"„„versus
time. The dashed curves show the time depen-
dence of I"'„„ the dashed-dot that of I », and the
dotted curves that of I'«. All curves in Fig. 6



2888 L. S JOGREN 22

0,1—

0.0

t) =0.34O

0.1—
qs0.797

~ A' Us As
~ M

-0.1—

9 = 0.991

- 0.1—

0.2—

I I

0.1—
/

0.0 / ~

//'
-01— J'

r
2 t

0.1—

00

-0.1—

' ~
~ ~ ~ ~~

FIG. 6. The different parts of the tail in Pfq defined via Eq. (3.3) and a corresponding equation for I'». The full

curves show I„„(qt), the dashed curves show I„&(qt), the dashed-dot curves show I'f, ( qt), and the dotted curves show

P', &(qt). All curves are normalized with respect to P~~(q, t= 0).

are normalized with respect to I'»(q, t =0). The
strong oscillations in the parts representing the

density and longitudinal current reQect of course
the strong density oscillations in +(qt). The de-
tailed time dependence is for short times sensitive
to our explicit choice of E in Eq. (2.10), and the

negative region around I, = 2 is probably overesti-
mated since this reflects the too high value of
I'(t) for the same times. For longer times, E
has decayed and does not affect the results. The
full curves in Fig. 6 should for longer times
(f & 3) be identical with the dashed ones in Fig. 5,
since they both represent the coupling to the

density fluctuations in the tail. The numerical
differences seen originate from different input

values for F(qt), where the dashed curves in Fig.
5 were obtained with Lovesey's" approximation
for F(qt) (cf. Fig. 2 in II}.

A large part of the contribution to the tail is for
all q values given by I'„„. The two contributions
I'„& and I'&, are also relatively large but there is
some cancellation between them. The coupling

to the currents have obviously a maximum for
intermediate q values. This behavior can be
understood from physical arguments. Every single
atom in the Quid is locally surrounded by a back-
flow built up of the surrounding atoms, and the

single atom plus its local backflow may be re-
ferred to as a quasiparticle. The dynamics of
the backflow is described by I yy and the single
particle motion by I'. For wave vectors in the
interval qg2 & q & q„where q, gives the position
of the first peak in S(q), the local structure of the

quasiparticle is resolved. For these wave vectors
one therefore expects a relatively strong coupling
to the local flow pattern built up of the currents
around the single atom. For smaller wave vec-
tors the average effect due to several quasi-
particles is probed, and the local currents around

different particles will to a large extent cancel
each other. In the other limit of larger-q values
the detailed flow pattern cannot be resolved, and

the dynamics are governed by fewer and fewer
particles, whereby the picture of a collective back-
Qow will be less valid. Eventually only the single
particle motion is important and in this limit I'y,
vanishes.

In Figs. 7(a} and 7(b) we have plotted the area
under I",,(qt), i.e., I'»(q, z =0), together with the

different contributions shown in Fig. 6. The dots
in Fig. 7(a) show I'»(q, z = 0) (cf. Fig. 9(b) in IV),
the open circles show I'„(q,z = 0), and the filled
squares I''„„(q,z =0). The total coupling to the
longitudinal currents I'„,(q, z = 0) +I'»(q, z = 0) is
shown by open squares. In Fig. 7(b) we show the

relative contributions to the area, and the dif-

ta) (b)

0
0

0.5—
~ ~

l(t

oa ) ih o I

FIG. 7. (a) -Fji(q, z= 0) (filled circles) versus q. Also
shown is -Vfis(q, z=o) (open circles), -V~(q, z=o) (filled,

squares), and -0,@,z=0) —P,', (q, z=o) (open squares).
The vertical axis is in units of 70 . (b) The normalized
contributions to P&'j (q, z= 0). The open circles and filled
squares correspond to those in (a). The crosses show

V„'&(q, z=0)/Zf~(q, z= 0), the pluses show the correspond-
ing contribution from P&&, and the filled triangles show
that from P~].
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ferent parts I'„, and I'» are shown separately
by crosses and pluses, respectively. The
filled triangles show the contribution from
I'«, while the other symbols refer to those in
Fig. V(a). The variation in the area of I'»(qt) with

q reflects the local static structure of the system,
which shows up in the initial value I'„(q, t = 0).
The same typical variation is found for I „"„, which
follows from the q dependence of the coupling con-
stants in (2.9) and (2.16). From Fig. 7 we also
see that the currents give a maximum contribution
around q= 0.8 but the effect of this on S(q~) is
relatively small. The large cancellation between
the longitudinal currents is clearly seen in Fig.
V(b).

IV. DISCUSSION

The results presented in this paper show that our
kinetic theory derived in papers I and III gives almost
quantitative agreement with MD and experimental
results both for the self-motion shown in Fig. 2
and for the collective density fluctuations shown
in Fig. 3. It is clear from Figs. 3 and 4 that at
the present density and temperature this agree-
ment can be obtained by just including the binary
part and the mode-mode term Boo in the memory
functions, and the same conclusion holds also for
the self-motion. This situation would, however,
change when we go to lower densities. Consider,
for instance, the diffusion constant. This shows
a characteristic density dependence relative to its
binary or Enskog value, as has been shown in
MD calculations by Alder et al."and by Levesque
and Verlet. " The enhancement over its binary
value at low and intermediate densities have been
found to come from the coupling to the vortex
flow introduced by R», (Ref. 20) which dominates
the tail at lower densities. It would therefore be
desirable to test the present theory also for lower
density systems, to see whether our approxima-
tirns for R„, Ayy and 8» can give quantitative
agreement also in that case.

The overall magnitude of the dominant terms
A~ and 8,', in the tail can be estimated to be pro-
portional to I/S(0) if S(0)« I [see III: (4.3)], i.e.,
inversely proportional to the compressibility. The
relatively large time tails in rubidium is, there-
fore, like the existence of the sharp side peaks

in S(q~), due to the relatively small compres-
sibility for this system. The corresponding physi-
cal picture is the so-called cage effect. Every
atom is, at high density, to some extent trapped
in a cage of surrounding atoms and this effect
will be more pronounced the lower the compres-
sibility is. Lowering the temperature of the sys-
tem, we therefore expect that the A« terms will
develop a larger and more long-lived tail, which
eventually gives a nearly constant plateau in the
memory functions. This will then correspond to
an amorphous solid. In the opposite limit of lower
density and higher temperature, the cage effect
will be reduced and the particles will be more
free to move, whereby the couplings to the cur-
rents become more important.

Consider argon, which has a higher compres-
sibility; we expect the tails to be reduced, at least
at high densities. This is confirmed by MD cal-
culations and it was also found in our previous
calculations in II. This implies that while rubidi-
um cannot be described by a memory function with

just a single relaxation time, ' this may be a better
approximation for argon. In this connection we
should also notice that the value S(q, ~ = 0) to a
large extent reflects the time dependence of the
tail, and cannot therefore be used to fix a relaxa-
tion time for the binary part.

The self-part +' has here, as before in IV, been
treated within the Gaussian approximation. It is
known that this gives systematic deviations from
the MD results" for intermediate q values. It
seems, however, possible to formulate a theory
also for this function within the present formula-
tion. It would then also be desirable to perform
a fully self-consistent calculation of the mode-
mode integrals and make a systematic investiga-
tion of the dependence of the results on the state
considered and also on the interatomic potential.
We hope to come back to these questions in future

publications.
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