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Collective modes in fluids and neutron scattering
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On the basis of a kinetic equation extensions have been obtained for the first time of the five
hydrodynamic modes of a dense fluid from the hydrodynamic to the kinetic regime, until they cease to
exist. An appreciable softening of the heat mode is found before it becomes a diffusionlike mode. These
modes dominate the neutron scattering of fluids.

The scattering of light by a classical fluid in
thermal equilibrium is usually discussed on the
basis of the hydrodynamic modes which are the
eigenvalues and eigenfunctions of the linearized
Navier-Stokes equations. Of these five modes only
the heat mode and the two sound modes are rele-
vant for the scattering function S(k, (u). The eigen-
values of these modes are zH =-Dg' for the heat
mode and z, =+ick —I'k for the sound modes, with

D~ the thermal diffusivity, c the sound velocity,
and I' the sound absorption of the fluid. The heat
mode leads to a central or Rayleigh line in S(k, (s)
with a height -z~' and a half-width -z» while the
sound modes lead to Brillouin lines at +ick, with
heights -(I'k') ' and half-widths -I'k'.

The scattering of neutrons, on the other hand, is
usually treated on the basis of either generalized
hydrodynamics using memory kernels, or kinetic
theory using the Boltzmann or an Enskog type
equation. " In particular, Furtado et al. ' have dis-
cussed neutron scattering using the generalized
Enskog equation for a dense fluid of hard spheres
that has been derived by many authors. In order
to compute the coherent and incoherent neutron-
scattering functions S(k, e) and S,(k, (u) and com-
parethesewith experiment, Furtado etal. approxi-
mate the collision operator occurring in the Enskog
equation and in addition assume a wave-vector-
(k-) dependent hard-sphere diameter. Here we
also start from the generalized Enskog equation
but approximate the collision operator only. For
explicit results one needs the mass ~ and the
diameter 0 of the particles, the number density n,
the temperature T(P =1/keT), and the theoretical
e(luilibrium radial distribution function g(x) of a
hard-sphere system. ' It is shown that for dense
fluids the Navier-Stokes equations can be used for
reduced wave vectors kg ~ 1, and that for 1 c kp

F30, the continuations of the hydrodynamic
modes still describe the main features of S(k, (d}

and S,(k, (u).
S(k, (d) and S,(k, &o) of a hard-sphere fluid are,

according to the generalized Enskog theory,

s(a, vtl =—s(a) Re . —.),
1 1

gEO —L )

S, (a, v)=—Be . ),1 1

where ( ) = fdv(Ia(v), with Q(v) the normal-
ized Maxwell velocity distribution function, v the
velocity of a, fluid particle, and S(k) the static
structure factor. The generalized Enskog operator
I i is

L i
= -R ' v +RUAT +M~i, .

Here ik v is the "free-streaming" part, X =g(a'),
A-„a binary collision operator

x lk(v) —k(v*)

+e *'""[k(v')-k(v *)]),

where o is a unit vector, 8(r) the unit step func-
tion, Av =v —v', v~ =v —+v ~ 00, and
v'~=v + 4v &cr. A, is the linearized Boltzmann
collision operator. The "mean-field" operator
A-„ in (3) is

A a(v)=B(a) f S(v'S)ivk v'a(v'), '

where &(k) =C(k) —AC, (k), nC(k) =1 —1/S(k), and

C, (k) is the low-density limit of C(k), the direct
correlation function. %e note that

limA»„= limA„- = 0.
k~o k~

In (2), 1~ = ik -v+nXA, where A =limB „A-„,
the Lorentz-Boltzmann operator. To calculate
S(k, &u) and S,(k, w) explicitly, we approximated A-„

in (3} in a Bhatnagar-Gross-Krook (BGK)-type
fashion. "' Thereto averages ( }are considered to
be innerproducts in a Hilbert space of functions of
v. One introduces a complete set of orthonormal
polynomials in v, (y;), that transforms A„- into an
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infinite matrix operator. The approximation con-
sists in taking into account exactly a finite part of
this matrix, while the remaining part is repre-
sented by a few matrix elements only. We have
used the following approximate expression &~~~'

for Ag, which is analogous to, but different from
that of Furtado et al. :

Zj(k) f~
0,5-

~V;&f;;(k)&V,
~

isi= j.

+[g,(k)y, +k. (k)P,]P,

+f g (k)y, +k (k)P,]P (6)

-0.5—

The number M and the polynomials y„.. . , y~ are
given below, P, projects orthogonal to p„.. . , p~,
P, projects onto functions of v that are even in n„
and v, (with k in the z direction), P =1 —P, . The
M'+4 functions f,, , g„k, are determined by the
requirements that A'„- ' reproduces exactly the
M &M part of the A„- matrix with respect to
y„.. . , p„and two diagonal and two off-diagonal
elements outside the M & M block, for which two
more polynomials are given below.

We note that (a) for k =0 and ~ (6) represents
the usual BGK approximations for A, and A, re-
spectively. (b) Using Lit"' for L;„(i.e. , A; replaced
by A'-„"') and Lf '"' for Ifv (A replaced by A'"'),
S(k, ~) and S,(k, a&) can be calculated explicitly. '
(c) The eigenvalues (z,.(k), zo(k)) and eigenfunetions
(g;(k, v), g,. (k, v)) of I.'„-"' and Lo'"' are obtained us-
ing the inverse-Laplace-transform method. " (d)
The contribution of the heat mode alone, S'"'(k, v)
to S(k, &o), is

S'"'(k, ~) =-S(k)Re.s i~ —z„(k) ' (7)

where M„(k) =(pl„(k, v)}(C „(k,v)} with 4 „the left
eigenfunction of I'„- ' that corresponds to the right
eigenfunction ~Jr„, (e) The contribution of the dif-
fusion mode alone, S,'o'(k, &u) to S, (k, u&), is given by
an expression similar to (7) with S(k) replaced by
1, z„(k) by zo(k), and M„(k) by Mo(k).

We have carried out explicit calculations on the
basis of Eq. (6) with M =5, and f... g„and k, de-
termined by (p,.A&"'y,.) =(y,A-y,.) with i,j =1, . . . , 5,
i=j=6, i=j=7, i=3, j=7, i=4, j=6, and

y„.. . , y, proportional to 1, v„Pmv'-3, v„, v„
v„v„and v, (Pmv' —5), respectively, i.e., the five
conserved quantities of A„a momentum flux and a
heat flux.

The eigenvalues z, (k) of L&™are plotted in Fig.
1 as a function of ko for a typical liquid density.
The validity of the Navier-Stokes expressions,
-D~k' for the heat mode and +iek —I'k' for the
sound modes, is restricted to wave vectors ko ~ 1.
%bile the sound modes show considerable struc-
ture for ko o 1 [both z.(k) and z (k) are real for

-
I 0-

FIG. 1. Eigenvalues z~ of Lg (drawn lines) and L ),
D

(dotted lines) as functions of ko for a hard-sphere fluid
at density ns t= 0.884, ts-—E/(v) . i stands for heat (H),
sound (+), shear (S), diffusion (D) and kinetic g) modes.
Positive values refer to imaginary parts, negative val-
ues to real parts.

5.7 & ko& 7.4], they have the characteristics of
strongly damped kinetic modes up to ko =10
where they cease to exist. The heat mode softens
for k0. ~1, almost vanishes at ko =7, and then
oscillates around the diffusion mode. lt ceases to
e- ist at ka =30, very much beyond the sound
modes. The cutoff wave vectors are of the order
of the inverse mean free path /

'
(l '= vM2xno'

=19.32 o ') just as at low densities. 7

The eigenvalues z, (k) of L- '"' are also plotted
in Fig. 1. Except for the diffusion mode there are
two strongly damped kinetic modes. The diffusion
mode continues smoothly beyond the Navier-Stokes
regime where zs(k) =-Dk', with D the self-dif-
fusion constant, until it ceases to exist at ko =30.
Deviations of zv(k) from -&k' grow as large as
30/o for ko = 30. Since L; approaches L; for large
k, S(k, ~) approaches S,(k, ur) and the eigenvalues
of I.„- approach those of I.„-: the heat mode to the
diffusion mode and the two sound modes to the two
kinetic modes of I-„-.

This behavior of the extended hydrodynamic
modes leads, for a hard-sphere fluid, to the fol-
lowing consetiuences for S(k, &u) and S,(k, &o):

(1) S(k, &o =0) as well as the half-width ~„(k),
defined by S(k, ~„)= ~s(k, 0), exhibit pronounced
oscillatory behavior as functions of ko (ef. Figs. 2
and 3). This behavior is directly related to that of
S'"'(k, &u), for the relative difference of S'"'(k, 0)
and S(k, 0) and that between ~„(k) and -z„(k) is only
a few percent for 0 & ko & 20 and not larger that

20%% even for ko =30. Since M„(k) in (7) varies
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FIG. 3. Half-width at half-height cuz of S(k, u) as func-
tion of ko. for hard spheres (drawn lines) and liquid ar-
gon (x) (a) and liquid rubidium (x, 0) (b). o., no. , and tz
are as in Fig. 2. Drawn lines are indistinguishable
from —z&(k) tz.

FIG. 2. S)k, 0)/S(k)t@ as.a function of ka at no ==0.884
(a) and 0.923 (b) for hard spheres (drawn lines) and liq-
uid argon (x) (a) and liquid rubidium (x, 0) (b). For ar-
gon a =8.46 ~, t@=0.084 ps, for rubidium o =4.44 A and
t@=0.070 ps. For rubidium, x and 0 refer to experi-
ments with different incident neutron energies (Ref. 9).
Drawn lines are indistinguishable from S (k, 0)/S(k)tz.

smoothly between 0.63 and 1.7 for 0&ka& 30, the
structure of S(k, 0)/S(k)-z„(k) ' and ~„(k)-z„(k)
is mainly determined by s„(k). Thus the central
line in S(k, to) around (v =0 is dominated by the con-
tribution of the heat mode and can be considered
as a Rayleigh line.

(2) The sound modes manifest themselves as
visible Brillouin lines in S(k, &o) only for
0 & k(T & 0.5

(3) S,(k, &u) is given by S,'D '(k, &o) within the same
accuracy as S(k, &u) was given by S'"'(k, ~). Since
MD(k) va, ries monotonically from 1 to 1.7 for
0 & ko & 30, S'o'(k, a&) is mainly determined byzD(k).

In Figs. 2 and 3 we compare the hard-sphere
prediction for S(k, 0) and ~„(k) with those obtained
from neutron-scattering experiments in liquid
argon' and liquid rubidium. ' Thereto the hard-
sphere diameter a was determined as the average
of those values of 0 for which the locations and the
heights of the first two maxima of S(k) coincide
with the corresponding quantities for hard spheres,

respectively. Owing to the good agreement in Figs.
2 and 3, we believe also that in real liquids the ex-
tended heat mode dominates the central line of
S(k, ~).

For liquid argon, Brillouin lines in S(k, e}are
visible until kcr = 1,' for liquid rubidium until
ko =4, and for hard spheres until ko =0.5. Thus,
while the existence of sound modes in the neutron-
scattering regime is a general feature, their vis-
ibility in S(k, ~) depends on the nature of the fluid.
For instance, using Navier-Stokes hydrodynamics
for argon, rubidium, and hard spheres up to
ko=1, differences in S(k, tu) can be accounted for
by differences in thermodynamic and transport
properties, the pronounced Brillouin lines of
rubidium arising from an abnormally large D~.

It has been noticed for liquid argon' that S,(k, &u}

is approximately represented by n Re[1/(i++ Dk2)]
for all ko & 16. On the basis of our theory we would
rather expect S,(k, ~) to be represented by
S,'o'(k, ~}. Present experiments agree with both
representations.

Thus it appears that not only can collective ex-
citations be defined in dense fluids for ka = 30
(or wavelengths X ~ —,„' o), the behavior of S(k, &)
and S,(k, &o) is dominated by these modes for all
k for which they exist.
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