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Kinetic theory of current fluctuations in simple classical liquids
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A theory for the memory function of the phase-space correlation function is presented, based on a general kinetic
approach. The memory function is separated into an essentially binary-collision part and a more collective tail
represented by a mode-mode coupling term, which includes recollisions to all orders. From the resulting expression
for the memory function we obtain calculable expressions for the longitudinal and transverse current correlation
functions.

I. INTRODUCTION

In a recent paper, ~ hereafter referred to as I,
we presented a microscopic kinetic theory for the
self-motion, represented by the velocity correla-
tion function C(t), in classical liquids. We also
presented rather extensive numerical results for
C(t) and its corresponding memory function I'(t) in
both liquid argon and rubidium, and we found a
very good agreement with existing molecular dy-
namics (MD) data.

The general idea adopted in I was to separate
the memory function of the phase-space correla-
tion function into one term describing single un-
correlated binary collisions between the self-par-
ticle and the surrounding medium, and a second
term describing repeated correlated collisions,
i.e., the so-called ring and repeated ring events.
The first term has a rapid time dependence rela-
ted to the duration of a binary collision, while the
second term represents collective processes with
a much slower time dependence. By summing re-
peated collisions to all orders we obtained an ex-
pression for I"(t) which gave the correct short-
and long-time behavior.

The purpose of the present paper is to extend
the formulation in I to the case of the current
Quctuations in order to obtain a calculable ex-
pression for the dynamical structure factor S(qe).
Our earlier treatment of this problem' ' was
rather incomplete in the sense that the binary-
collision part of the relevant memory function
was handled phenomenologically with two adjust-
able parameters, and also that the mode-mode
coupling term only included coupling to the density
Quctuations. This treatment gave also, in the
case of rubidium, rather large discrepancies
for intermediate and small wave vectors4 when
compared with MD results of Rahman. '

In the present formulation we still have to make
a simple ansatz for the binary part, but the par-

ameters can now be determined from a short-time
expansion. In the repeated collision term we can,
apart from the density Quctuations, also include
certain couplings to the currents.

Extensive theoretical studies of S(q~) have been
performed in recent years based either on a di-
rect microscopic approach, ' ' or on more pheno-
menological lines. "" The present formulation
is based on the kinetic-theory approach developed
by Mazenko" and others, ' '" "and is similar
to that given in I. In Sec. II we introduce the gen-
eral concepts and we also give our earlier ex-
pression for S(q&a) in terms of its self-part and

a certain memory function. Section III is then
devoted to finding an approximate expression for
this memory function. We also give a brief dis-
cussion of the validity of our approximations in
the small q and z limit in Sec. IV. Some rather
technical points are given in two appendices.

f,(lt)= P S(l-q, (t)},

f,(12t ) = Q 5(1 —q, (t)) 5(2 —q, (t)},
(2.1}

etc., where 1 = (r„p,) denotes a fixed point in
phase space, and the 5 function is over the six-
dimensional phase-space variables.

In the thermodynamic limit (N-~, V-~, N/V

II ~ BASIC DEFINITIONS AND GENERAL
FORMULATION

We consider a classical fluid comprised of N
particles in a volume V and in thermodynamic
equilibrium at the inverse temperature p =1!AT.
The position of the ith particle in the six-dimen-
sional phase space is denoted by q; (t )=(r, (t ),
p, (t)), and the particles are assumed to interact
through a pairwise additive potential. The thermal
Quctuations in the system are described through
the microscopic phase-space distribution functions
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= const}, we have the equilibrium statistical aver-
ages (2.10}

G can be expressed similarly to (2.4) as'"' '

G(12; 34) =( 5f,(12t }5f,(34t )),
(f,(lt )) =n4. (p,},
(f,(12t )& =n'4', (p, ) 4' (p.) g(r, —.r,)

where

4„(p) = (P/2 m)i) 'i'exp(-PP'/2m)

(2 2)

(2.3)

where

5f,(12t) = 5f,(12t)

drd2C12 IC ' 5, t .
(2.11}

is the Maxwellian distribution, n is the mean par-
ticle density, and g(r, —r,}denotes the static pair
distribution function.

In a dense system the local static structure in
the fluid has a strong influence on the dynamics,
and we introduce the relevant static correlation
functions expressed in terms of the fluctuations
5f=f —(f) of f„f„etc. We define

C(12) =( 5f,(1t )5f,(2t )),

C(12; 3) =(5f,(12t )5f, (3t )),

C(12;34)=( 5f,(12t )5f,(34t )),

(2.4)

+n'4„(p, )4„(p,)[g(r, —r,) —1]. (2.5)

The corresponding inverse function C ' to (2.5)
is defined through

dIC1TC i 2 =512

where the integration runs over the entire six-
dimensional phase space. It yields

(2 8)

C '(12) = 5(12)/n4„(p, ) —c(r, —r,), (2.7)

where c(&} is the direct correlation function, For
the higher-order correlation functions in (2.4) we

will introduce corresponding cluster functions as,
for instance, "' '

etc. These can also be expressed in terms of
the Maxwellian distribution and static distribution
functions as, for instance,

C(12) =n4„(pi) 5(12)

The last term in (2.11) describes the situation
where one of the two particles in 5f,(12t) is then

always in equilibrium with respect to the other
particle or possibly a third particle. The devia-
tion from this situation is represented by 5f,,
which describes the fluctuations of a two-particle
cluster.

The time evolution of the system is convenient-
ly expressed through generalization of (2.4) to
two different times:

C(lt; 2t') =(5f,(1t)5f,(2t')), (2.12)

(2.13)

It is well known that the phase-space correlation
function in (2.12) can be expressed in terms of a
corresponding memory function through the equa-
tion

«(i(r; pp. ) -f&p;() (t); pp;)&(i)r; p;p. )

+ dp;I' qz;p, p; C qz;p;p, =C q;p, p, . 2.14

The static part of the memory function 0 is given

etc. We will mostly work with its Fou»er-Laplace
transform, which is defined by

c(i(z;p,p,)=f p(r, r-, )

d t -t' exp -iq' r, -r,
0

&&exp[-z(t t')]C(l—t; 2t ') .

G(12; 34) = C (12; 34)

drd2C 12;I C ' C; 34

(2.8)

Q(q; p,p, ) = —(iq ~ p, /m)5(p, -p, )

+n4„(p,)(tq p, /m)c(q), (2.15)

to which corresponds an inverse function G ' de-
fined through

(fT (f2 G i(12;T2)G i~ 34)

= ~ [ 5(13)5(24) + 5(14)5(23)].

(2.9)

which gives the free-particle streaming term and

the mean-field term, where the direct correlation
function enters as an effective pair potential. We
can consider the functions in (2.14) as matrices in .

momentum space, and we expand in a complete set
of orthonormal Hermite polynomials H„(p). Equa-
tion (2.14) then takes the following form:
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z C „„(qz)—Q„z(q)C&, (qz) + I'„~(qz)C z „(qz) = C„„(q),

(2.16)

where summation over repeated indices is implied.
The matrix elements are defined as

C„„(qz)= J dp, d((, B (p)C(qz;.p p)H„(p ) (217)

()„.(q)= J dp, dp. p, (p)C(q;p p)F.(p)q, (p)

(2.16)

and similarly for I'„z. The Hermite polynomials
which explicitly will be used in this paper are
()) =0-6),

Hq(p} =(I,p, /p„p„/p„p„/p„(1/62~')(p'/p, '-I), z32~2(p2/p', ——', p'/p2}, p, p, /p2„p pd/p, ', p, p, /p', j,
(2.19)

where p, = (222/p)'~2 and the z direction is along

~ =q/e.
The five first components in (2.19) are related

to the conserved hydrodynamic variables density,
longitudinal and transverse currents, and tem-
perature, respectively. The other components
which do not correspond to conserved variables,
are related to the kinetic part of the stress ten-
sor.

We are basically concerned with the dynamical
structure factor S(q(d))wh, ich is measured in
neutron scattering experiments, and defined as

can be described in terms of the conserved hydro-
dynamic variables. Here, we will also neglect
the coupling to temperature fluctuations, and

from (2.22) we can then obtain the rather simple
expressions for the current correlation functions

)
C2 (qz)

1 —[(q'/pmz)nc(q) —I'd22(qz)] C; (qz)

(2.24)

S(q(2)) = 22
' ReF(q, z = —i(2)), (2.20)

)
C; (qz)

1+ I't2(qz )C; (qz)
(2.25)

In order to obtain an approximate expression for
C» from (2.16), we will first formally rewrite
this equation by separating out the self-motion
whereby we obtain' "'"

Cp. (qz) =C;k(qz}Cx p(q}

+ i(f(pm) '~'nc(q)C»(fz)C, „(qz)

-C'„(qz)1'„(qz) C„„(qz). (2.22)

Here,

F„„(qz)= I'x„(qz) —7'„„(qz) (2.23)

and C' and I" represent the self-parts of C and
I', respectively. Equation (2.22) still represents
an infinite matrix equation to be solved. How-
ever, since I'4 contains no part of the self-motion
and represents the collective backflow around any
single atom, ' we may assume that this function

where

zp(qz)= Jdp, dp, C(qz;pp)=C„(qz). (221)
where C, = C»/n denotes the longitudinal current-
correlation function and C, =C„ln denotes the
transverse correlation function. From (2.24) we
obtain the density correlation function F and

thereby S(qe) via the continuity equation, i.e.,

z[zF(qz) —S(q)]= —((I'/p222)C2 (qz) . (2.26)

Equations (2.24) and (2.25) give the correct short-
time behavior to the t ' term, i.e., the correct
fourth moment of S(q(2)) is reproduced. For small-
q values (2.24) is not valid since temperature
fluctuations will be important. Including these we
would obtain a 3X3 matrix instead of (2.24) and

we could then proceed along the lines proposed by
John and Forster" and Sj5din and SjOlander. "
For intermediate wave vectors covered by neutron
scattering experiments, we expect (2.24} to give
reliable results, and the problem is then restricted
to calculating the matrix element I'22(qz) together
with its corresponding self-part. Equation (2.25)
is valid also for small-q values where it gives a
diffusive behavior for C, with an approximate ex-
pression for the shear viscosity.
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HI. CALCULATION OF THE MEMORY FUNCTION

The derivation of expressions for r» and &22 is analogous to that presented for r» in I, and we can
therefore closely follow the general lines adopted in that paper.

A. General expression for the memory function

The formally exact expression for r is known' "' ' "'"' and can be written in matrix form as

1'„v(VZ)= —((/ V) fdl. d4433(-it( r )Gz(P )[V, V(r, —r ) Vr ]G(12;34e)[V, (r, —r ) Vz ]

xH„(p, )exp(tq r,), (3.1)

where v is the interaction potential. The four-
point function G(12t; 34t ') can be related to
C(12t; 34t ') and lower-order functions, "'b' "and
it describes the correlated motion of two disturb-
ances in the medium. Two particles move from
the positions (r„p,) and (r„p,) at time t' and the
same or possibly other particles are found at
(r„p,) and (r„p,) at time t. The initial value of
G(12t; 34t '

) at t = t' is just the function G(12; 34)
introduced in (2.8). If the motion of the two dis-
turbances are uncorrelated, we have

G(12t; 34t' ) = G (12t; 34t '
)

=—C (1t;3t ' )C (2t; 4t ')

+C(1t;4t')C(2t;3t'), (3.2)

—v, v(r, —r, ) (v~ —v~ )]

where the superscript "D" stands for disconnected.
The two terms in (3.2) reflect the symmetry of the
particles in 1 and 2.

We can write an exact equation for G(12; 34z)
analogous to (2.14) [Refs. 5, 15(b) and 17(b)] and
it has the form

zG(12; 344) -f 4242G[12;32)G(32; 344)

+ dId2 12;T2z G;34z =G 12;34

(3.3)

The static part 0 can formally be written as

G(12;34)=fd342 ilf, (12))0f,(22() G '((2;34),
(3.4)

where the dot over 5f, means time derivation.
The memory function I' in (3.3) contains explicitly
the correlated motion of three particles"'b' (see
also Appendix B).

To lowest order in the density we have

0(12; 34) = —[ (1/m)p, ~ v, + (1/m) p, .v„

I

which contains the free-particle flow term for the
two particles and the bare interaction between
them. For higher densities the static correlations
with other particles will-introduce an effective
potential (-1/p)lng instead of the bare one, and

among other terms also the ordinary mean-field
terms for the two particles appear. If we ignore

in (3.3) the equation describes essentially a
binary collision between two particles and each
one is moving in the mean field of the surrounding
medium. This approximation for G would be valid
only for short times, and corresponds in appro-
priate limits to the Boltzmann-Enskog expression
for I' in (3.1). The full dynamics for intermediate
and long times is a result of repeated correlated
binary collisions, and such events are included
through I' in (3.3).

The formal solution of (3.3} can be written

G=RG (3.6)

with the propagator

R = (z —0+ I') ' . (3 7)

~ =gp R&r gp +Rr1 1 1

=R& -R~ rR, (3.9}

where I', = I'- I'z. From (3.7) and (3.8) we have

I' =(R} ' —(Rz) '

From the full propagator R we will now separate
out a part R~ which represents one single binary-
collision process. Except for the static renormal-
izations contained in 0, we expect that rapid re-
arrangements among the neighboring particles can
affect the two-body dynamics appreciably. Such
rapid renormalizations will be represented by a
part of r denoted by r~ and we define R as

Rz = (z —Q+ I'z) (3.8)

The full R can be expressed as a sequence of such
binary collisions

x —,'[5(13)5(24) + 5(14) 5(23)], (3.5) = —(R ) '(R-R )(R) ' (3.10)
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Within a binary-collision time we have that R -R
is essentially zero and that afterwards when the
particles are separated R=R and R =R . Ac-
cording to (3.2) Rv contains, via C, the full motion
of the disconnected particles, while R~ is given
in terms of a correlation function which will be
denoted by Cs. If we neglect I's in (3.8), then Cz

is given by the mean-field expression for C. With

these replacements in (3.10}we can write (3.9} as

in (3.1) we rewrite

Rz(R]3D) 1 = RzGG 3(RzD)

= Rz G(G]3)-2(Rz())-1

= GRJ]t[(Rzdp) 1) t(G&} 1 (3.12)

R=Rs+R&(RJ]v) 2(R& Rzo)(R&) (3.11}
where Rzt(12; 34z) = -Rs(34; 12-z) and similarly
for [(R~) '] t. Furthermore, we have

The approximation in (3.11) implies that between
two binary collisions the two particles move inde-
pendent of each other. With the full R on the right-
hand side we include repeated collisions to all
orders.

To obtain G we multiply (3.11) with G from the
right, and to shield the bare interaction on the left

I

RD RBD (GD GBD}(GD)- 3 (3.13)

I"„(qz)= I'zl (qz)+ I"zl, (qz) (3.14)

with

The matrix element I'„can, after these transfor-
mations, be written as

r„(qz)=(dtmev)fdl. d4exp(-iq r)[4'(), v(r, —r)]G (12;34z)[q V, v(r, —r)]exp(iq r), (313)

where G~=R~G, and

~g

r,",(qz)= —f (24), r,',tt„(qq'z)ez„. .t(qq'z)r„, (qq'z) . . (3.16)

The matrices T and Ts contain information on which modes are excited in the fluid and also the strength of
the coupling. Formally, we have

Z/2

T, t, ,(qq'*)=(- — dl d4exp[-i(q —q') r]exp(-iq' r)ii(p)Ht(p)[R (12;324)] 'G()2;34*)

x [q.0„v(rR —r,)]exp(iq r, ) (3.17)

and similarly for Tz with G and (Rv) ' replaced by Gz and (R~} ', respectively. The matrix Tz is ob-
tained from the relation

T, „,(qq'. z) =T~„,( q, -. q-', -z} . (3.18)

The quantity 6 is defined by

ez, ,„(qq'z)=Cz'z(q-tt')C '(q') f dt e "[C„(q-q', t)C„,(q' t)-C, .(q-i7, t)C'„(q't)]
0

x C '(q-q')C, ,'(q'), (3.19)

where we have used the fact that C ', defined in
(2.7), has only diagonal elements. The factor con-
taining Cz comes from G~ in (3.13). For I'» we

have expressions similar to those in (3.15)-(3.17}
but with q =s replaced with q =x. The first term
in (3.14) has a fast time dependence and decays
within a binary-collision time. The initial value
of this term can be calculated exactly and is relat-
ed to the fourth moment of S(q(4)). The second term
representing repeated correlated collisions, starts

as t4, grows to a maximum, and then decays rath-
er slowly, due to the slowly decaying collective
motions in C.

In the recollision term in (3.16) the coupling be-
tween all kinds of modes enter in the integrand.
We will here assume that the dominant coupling
comes from the hydrodynamic modes, which can
persist for a rather long time for small and inter-
mediate wave vectors. As before we will also
neglect the temperature fluctuations. Our exper-
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ience from the self-motion treated in papers I
and II, indicate that this coupling together with the
nonhydrodynamic modes give a rather small con-
tribution to I ~. This approximation implies that
only the matrix elements Tpp y Tp y T p g and

T~q.„where n, p = 1 —3, have to be considered,
and some of their properties are analyzed in
Appendix B. In particular, it is shown that
T ]],,(qq'z) for small q and q' is related to the
matrix elements I'„,(qz) where A. =. 4-8, and such
elements have earlier been neglected. Conse-
quently, to be consistent with our earlier approxi-
mation leading to (2.24) and (2.25), we should also
neglect T [] , in .(3.16). The coupling to T„s „lik. e
that to the temperature, will also give contribu-
tions to I', which starts as t', compared with t'
for the other three elements above.

Our conclusions here concerning the relevant
couplings are only valid for short and intermed-
iate times, which are the most important for
interpreting neutron scattering experiments. Con-
sidering the long-time tails or equivalently the
nonanalytic dispersion relations for the hydrody-
namic modes, "the situation changes and the

B. The binary-collision term

The binary part I'» contains all the contribu-
tions to I» to order t '. Since we expect I'yy to
decay quite rapidly to zero we will make the an-
satz

I'~»(qt) =I"~»(q, t =0) exp[-t'l~', (q)], (3.20}

where the parameters can be determined from a
short-tine expansion of the formally exact ex-
pression (3.15). The details of this expansion is
given in Appendix A, and yields for the initial
value the well-known result

I'z (q, t =0) =(g)0+7~(q}+ (q'/pm)Nc(q) . (3.21}

For v, (q) we obtain, after making the superposi-
tion approximation for the static three-particle
distribution function,

small q, q' and ~ behavior of T is important. We
will come back to this question in Sec. IV in con-
nection with the shear viscosity.

r„(q, )=0)/r', (q)=(q'/Xgm)[n, '—Xr,'(q)] ~ (n/m')fgr[1 —exp(-iq r)][q'v v" (r)]g(r)[q v v"v(r)]

~ (n/Xm') 'q f drexq(- q r)g(r)(q v)'v(r)
~g

+~ 2, e ~,'(q'}[[s(q') —l1+[s(q-q') —11][r",(q') -r,"(q-q')la', (3.22)

(3.23)

r,' (q) = ——f g r exp(- 'q r)g(r)v v v(r)

where summation over repeated indices is im-
plied. Here,

drg r V'v r

sions similar to (3.21) and (3.22) (see Appendix
A).

C. The T matrix

In this section we will summarize soNe results
obtained in Appendix B for the matrix elements
Tpp I

' and Tp, y We find

=/t q'7". (q) [6+8-q q']r.'(q) . (3.24)

The validity of the superposition approximation
in the context of the calculation of moments has
been tested by Bansal and Bruns, " and they found
it to be very accurate. We may therefore expect
that (3.22) gives reliable values for v,'(q). The
Gaussian ansatz (3.20) may, however, introduce
some discrepancies in a narrow time interval,
similar to what was found in papers I and II. In
the limit of large-q values (3.22) reduces to the
corresponding result for the self-motion given in
paper I (see I: A11). For I'~» we have expres-

Too q(qq z} &l(pm)

xf(I ~ q' S(q-q')[S(qg } 1]

+ie(q-q')S(q')[S(q-q')-ll] .
(3.25}

This result is independent of z and it gives an in-
stantaneous coupling to the density fluctuations.
The component Tp y has a certain time depend-
ence which we cannot calculate exactly, as is ob-
vious from the formal expression (3.17). How-
ever, we can find an expression for the initial
value, given by
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T«.,(qq', t=O) =q nS(q-q')[y"~(q-q')+(q-q')"(q-q') (n/pm)c(q-q') —y~ (q')-q'"q' (n/pm)c(q')].

(3.26}

In arriving at (3.25) and (3.26) we have made certain approximations for the three-particle distribution
function as explained in Appendix B. We can also calculate exactly the whole time dependence of Tp

for q' = 0 and this gives

T,„.,(q, q'= 0, z) =nS(q)I'»(qz)q" .
I

(3.27)

This is an important result since the same memory function as we want to calculate appears in (3.27).
We notice that the approximate expression (3.26) is consistent with (3.27) at t= 0. Using (3.26) and (3.27)
we will make the following ansatz:

T,„,,(qq'z) =T,„,(qq', .t=0)/1»(q, t =0)1'»(qz) =nS(q-q')q t" (qq')I'»(qz), (3.28)

where t z is obtained from (3.26) and (3.21) as

yg g-Q')+(q —q') (q q') -(n/pm)c(Q-fi') —y; (g') —q' q' (n/pm)c(&')
(do+ y~%) + q'(n/P m) c(&)

(3.29)

For the binary part we have T«, =T«, , and also relations similar to (3.26) and (3.27}. This gives

To ,(qq'z. ) =nS(q-q')q t "z(qq')I'z, (qz) . (3.30)

From the defining expression (3.17} it is easy to prove that

T ao x(qq'z) = TO()('1(q) q —q' ) z } (3.31)

and we also have from (3.18)

T, , (qq'z) = —T,„.,(qq'z) . (3.32)

The merit with our ansatz (3.28) is that the q' and z dependence factorizes. and this enables us to obtain
a closed expression for I yy The assumption that the q' dependence in T only enters in the initial value
and not in the time dependence, was tested numerically in papers I and II for the case of self-motion, and
it was found to be quite accurate.

D. Expression for I'&&

Using the results of Sec. III C to calculate I" in (3.16) we obtain for I'„ in (3.14):

1 -Ro (qz) —I'z»(qz)[R,', (qz)+R', (qz)]
(3.33)

We see that I'» is completely determined by I'z, and certain mode-mode integrals denoted by R. R,', con-
tains the coupling to the density and is given by

where F was defined in (2.21) and Fz = Cz, /n. For R,', we have
"8")e(

R(i())=f, ',, , i' (i)i)')[q i7c(i)') ~ i (i)-i)')c(i) —i)')]()i(i) —i)', t) —)'(iPi)

—F'(q-q', t) F(q'zt)—
&t

Ry I and R,', contain the coupling to the longitudinal and transverse currents, respectively, and are given
by

(3.35)

g

pm (2))-)& [q q"(q' +q'(q q')c(q-q )][F(q q t}F(q t)-Fz(q-q', t)F ( z'
q)]t,

(3.34)
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~g

R,', (qt) = ——,q"q't "(qq')t "(qq')

x q' q' [F(q-q', t)C, (q t)-Fa(q-q', t)cf(q't)]
la

"(a &8
~ . . . Pm —F(q —q', ()—E(q'() ——F (q —q', ()—F (q t))' (3.36)

I

q'„(q(l=- —J, q~q (() q-q q )( '"(q'q')) ( q)q[ (q)—q', ))c,(q'() —E (q —q', ()c(q'(,)],

where C, and C, denote the longitudinal and trans-
verse current-current correlation functions, nor-
malized to unity for t= 0. The last term in (3.36)
comes from cross terms like Tz p Ap ppT&p z in
(3.16). In arriving at (3.35)-(3.37) we have used
relation (3.31) together with the substitution q'-q —q'. For 1 „we have a similar expression as
(3.33) except tliat I'a» is replaced by I s», and q = a
in the mode-mode terms is replaced by q~ =x. In
the coupling constant t in (3.29) we should, of
course, also replace I'„(q, t = 0} with I'»(q, t =0).

We notice that no couplings like C,C, or C,C,
enter in the mode-mode expressions, and this is
a consequence of the fact that we have neglected
T () , in (3.16.). The general structure of (3.33) is
essentially the same as the corresponding result
for the self-motion. The main difference is that
in the latter case the correct asymptotic behav-
ior for the corresponding generalized transport
coefficient was obtained by a simple modification
of the coefficient before the term corresponding
to R,',. In the case of the density and current fluc-
tuations considered here, the asymptotic behavior
is more complicated, and can not be reproduced
from our expression (3.33). We will consider this
point more closely in Sec. IV. In order to obtain
numerical results from (3.33)-(3.37) we have to
specify the functions F, including its two first
time derivatives, and C, which appear in the
mode-mode integrals. These functions are directly
related to Ra in (3.8), which describes a single
binary collision of two particles in the presence of
a medium, which introduces static and dynamic
renormalizations of the collision process. This
means that R~ should contain all fast processes
which decay within a binary-collision time. In
particular, we argue that the nonhydrodynamic
terms in the mode-mode integral (3.16) represent
fast processes, and should therefore actually
be included in R . Since Ca in (3.19) is the
disconnected part of R this implies that
these nonhydrodynamic couplings are also
included in the time dependence of F and
C~t. The difference between the full C and

c'„„(qt) = c'„'„(qt ) + c'„'„(qt ), (3.38}

where C'~ describes the motion of the atom origi-
nally involved in the binary collision and C'~ des-
cribes the motion of the surrounding atoms. Ob-
viously we have C' = C', where C' is the free-
particle expression for C, while C'~ essentially
describes the dynamics of a homogeneous (N -1)
particle system. Considering the transverse cur-
rent we have

c,(q ) —tc,'(I( )=tc;(qt) —c',(q )t
+ c',(qt) cf'(fit)— (3.39)

The two terms involving the self-motion have a
rapid time dependence, since the current of a
self-particle is not conserved. According to the
discussion above, such rapid processes should be
included in the binary part, and should not con-
tribute to the difference between C, and C~t. We
will therefore neglect this difference arising from
the self-motions, and this also implies that we
neglect the difference between C~t and C",~, since
there is a rather strong correlation between the
self and distinct parts. Consequently, we make
the approximation Cta= C, in (3.37}. With similar
arguments for the longitudinal currents in (3.35)
and (3.36) we will take aF a/st = sF/at and Ca = C,.

Ce appearing in (3.19) and (3.34)-(3.37) is
then, according to this argument, due to slowly
decaying hydrodynamic fluctuations. Our argu-
ment here is similar to that of Furtsdo et al."
and Mehaf'fey et al."who used a simple relaxation
time approach to incorporate the effects of all
nonhydrodynamic couplings into C~. However, we

will proceed in a slightly different way.
In our earlier treatment of the self-motion we

used the approximation C = C, and this gave very
good numerical results for the recollision term
for that case. Obviously we cannot use the same
approximation here since the mode-mode inte-
grals would vanish. We can separate C~ into its
self and distinct parts as



2874 L. S JOGRKN 22

The whole contribution to the mode-mode coupling
terms in (3.34)-(3.37) will with these approxi-
mations be due to differences between F and F.
Since F describes just one binary collision we
expect that it should decay faster than F.

Neglecting rz in (3.8) we obtain

F (gt) = F '(Qt), (3.40)

where F ' is the mean-field expression obtained

by Nelkin and Ranganathan. " This expression de-
cays more rapidly than F for short times, but it
has very sharp density oscillations which persist
for long times. We expect that these density os-
cillations, which are contained in F should be
strongly damped due to collisions among the dis-
tinct particles. We will here assume that the
time dependence of F" relative to F is the same
as their respective self-parts, i.e. , we make the
ansatz

F (iit) = [F'(gt)/F'((P)]F(fit) . (3.41)

P= H P H„P =1 —Q.
tzs 0

(4.1)

Multiplying (2.16), written in operator form, with
P and Q, respectively, we obtain two coupled
equations for the hydrodynamic and nonhydrody-
namic modes, respectively. Solving for the latter
we obtain a 5 x 5 matrix equation for the hydrody-

With this approximation together with the results
for the self-motion obtained in paper I, we can
obtain numerical results for S(q&e). More details
about this and results of numerical calculations
will be presented in a forthcoming paper.

IV. SMALL-q AND -z BEHAVIOR OF I'„„(qz)

The expressions for the longitudinal and trans-
verse current correlation functions in (2.24) and
(2.25) together with their respec'ive memory func-
tions given in Sec. GI D have been designed to give
accurate results for intermediate and large-q values,
which are the most relevant ones in neutron scattering
experiments. A la,rge part of the scattering ampli-
tude is given by the self-part F' (Ref. 25) and this
is the motivation for extracting this part from I'.
For smaller wave vectors where the concept of
self-motion is not well defined, we expect a gen-
eralized hydrodynamic description to be valid. It
can be shown' that our expressions for C, and C,
reduce to the hydrodynamic forms (with temper-
ature fluctuations excluded), in the limit of small-
q values, and we obtain approximate expressions
for the transport coefficients. These can be com-
pared with exact formal expressions for these
coefficients, which can be obtained from Eq. (2.16)
by introducing the hydrodynamic projection oper-
ator"

namic modes. Here we will restrict our attention
to the transverse case, which is the simplest to
analyze, and we obtain for C, [Refs. 15(b) and

26]:

C,(fiz) = 1/[z+ D,(I|z)], (4.2)

where

D,(az) =(2 ~(-n+ I) ~2)

-(2 ~(-n+ r)q[z —q(n r)q]-'q(-n+ r) ~2&

(4.3)
and (2 ~I' ~2&= I'„, etc. We should notice that n»
= 0 and also that the mean-field term in 0 van-
ishes in the last term in (4.3). The two terms in

(4.3) are often referred to as the direct and indi-
rect terms, respectively. From our expression
(2.25} we obtain an approximate expression for
D, which can be written as

D,(gz) = [C;(gz)] ' —z+ r~, (flz) . (4.4)

Similarly to (4.2), we can express here, C; in
terms of a function D; related to I' through an
expression similar to (4.3}. Comparing (4.3) and
(4.4) we then see that all contributions from r'
in the indirect term in (4.3) are neglected in (4.4}.
This assumes of course that C; can be treated
exactly, which in practice is not possible. The
direct term I » in (4.3}will vanish in a dilute gas
compared with the indirect term, where only the
kinetic contribution will remain. Our result (4.4)
will therefore, at low densities, only include the
contribution from the self-motion to the shear vis-
cosity. Even when we go to higher densities the
indirect term may give a large contribution to the
shear viscosity compared with I'». ' Similar ar-
guments as above also apply to the longitudinal
case.

Another point of great principal interest con-
cerns the nonanalytic behavior of the generalized
transport coefficients extensively studied by Pom-
eau, "Ernst and Dorfman, "Ernst et al."and De
Schepper et al."using either the phenomenolog-
ical mode-mode coupling theory" or a kinetic-
theory approach. The approximation (4.4) with an
expression similar to (3.33) for r» does not re-
cover the correct nonanalytic behavior for D, in
the small-q and -z limits. In fact, not only the
whole indirect term in (4.3}, but also additional
couplings via T,8 „in (3.16), has. to be included.

In the hydrodynamic region we have (2 ~(-n'+ I')Q
~q, where 0' denotes the free-particle term in
n. In the denominator we also have that (z —Qn Q)
~q and to order q' we therefore have

D,(qz) =(2~r ~2&

—(2 ~(-n + I')Q(QI Q) 'Q( n'+ r& (2&+o(~') .
(4.5)
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We now have to investigate the matrix elements
(2 II'I2), (2 IrQ, and QI'q which appear in (4.5}.
We therefore start by considering the T matrix
for small values of its arguments. From Appen-
dix B we find

T . (Ijg'z) = in(Pm) '~q', [S(&—g') —S(g')] (4.6)

and this is for small q and q' proportional to qq".
Similarly we have

term R is given by

1 dQ' T„...(ig', t=o)
2n (2 v} 2 &oa

x a, ,„,(&'z}

T„,.„(g(P, t =0}
2 t'd

(4.11)

T...,(~ z) = T...,(qP, t = 0)/r„(fi, t = 0)r„(qz)

x T„,, „(Q'z}, (4 9)

where n —5= 1-3. Here I' and T generalizes
rz and Tz in (3.15) and (3.16) and the former func-
tions include, except for the rapid binary part,
all the mode couplings which decay faster than
those kept in (4.9). On an asymptotic time scale
only the modes coupling via T ~., „will survive,
while all the other modes build up the coupling
constant Tc. From (B28}and (B29}and similar
relations for T~ we obtain

r.„(qz}= r„'„(Qz)+rc,(gz}R„„(gz}r„„(gz), (4.10}

which is a matrix equation for F. The mode-mode

and

T,,(ig'z) = T,„(g', t = 0)/(2&o,')r„,(flz) q (4.8)

for small q and q'. Notice that T. ..(fi, g' = 0, z)
ccq' and this gives terms of order q' in (4.5).
Both Tpp 2 and T, ~ 2 vanishes with q' and these
couplings will therefore give less singular con-
tributions to &2 II' I2) than T z, , which is finite in

this limit.
To calculate &2 I rQ and QI'Q we also have to con-

sider matrix elements Tpp Tp, and T,.„,
where v is a nonhydrodynamic mode. Since we
already have a factor q' in (4.5) coming from the
coupling constants in (4.6)-(4.8) we can in this
case take @=0. It is clear from Appendix B that
Tpp ~ = 0 if v is a nonhydrodynamic mode and also
Tp;„~q for q =0, while T ~.„ tends to a finite
constant for certain values of v &4. This means
that in the transverse case, the most singular
terms in I' come from couplings via the matrix
elements T ~. „for all v. When calculating the ma-
trix elements of I' in (4.5} we can therefore ex-
tract all other couplings in the mode-mode term,
and incorporate these into a generalized coupling
coefficient. This gives (cf. Sec. IV and Appendix

C inI)

r„„(qz)= r,'„(qz)

+ —,Tc, ,(&'z)n „„,(fig'z}
1

RQ = QR =R.
Formally, we can write (4.10) as

I'=(1 —I' R) 'r = [(I' ) ' —R] '.

(4.i3)

(4.14)

Using (4.13) and (4.14) we can now calculate the
various matrix elements in (4.5) and we find

qrq=[(qr Q}- R]-'

and

&2lrQ=&2Ir'Q(Qr Q) Qrq.
We also have

(4.15)

(4.16)

(2 Ir I2) = (2 Ir' I2}- &2 Ir'q(qr'q)-'qr'I2)

+&2 Irq(qrq) 'Qr I». (4.i 7}

Using (4.15)-(4.1't) we can now write (4.5) as

D,(qz) = &2 Ir I2)

-(2 I(-n'+ r')q(qr'q)-'q(-n'+ r') I2)

+ (2 In'Rn'I2)+ o(q'). (4.18)

We notice that the first term in (4.18) has exactly
the same structure as (4.5) except that I' is re-
placed with I' . This term will, therefore, for
instance, give the Boltzmann-Enskog contribution
to D,. For the mode-mode coupling term we have

&2 InDRn I2}=-(q'/pm)R«(I|z), (4.19)

where we have inserted the explicit form for A'.
From (3.19), (4.11}, and the result

T ...(Q = 0, 11' = 0, t = 0) /{2&vj' =n(6 „6„+6,6„)
(4.20)

which according to Appendix B, is nonzero only
for X, q =4-8. The terms in (4.10}with X or q = 4

couple to the matrix elements F„4 or I',„. For
these elements it can be shown that"' "

r, „(flz) = zE,„(gz)+ iQ J,„(gz), (4.i2)

where the functions E and J~ have definite limits
when q, z —0. This means that the terms with X

or q= 4 in (4.10) give contributions of a least order

q
' when inserted in (4.5}, and they can therefore

be neglected. Of course, for the special case p,

or v =2 in (4.10) we have I"2c,= I'„=-0 by symmetry.
The sum over X and q in (4.10}runs then only over
nonhydrodynamic states, i.e. , we have
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it is easy to show that (4.19}is identical with the
mode-mode coupling result of Ernst and Dorf-
man, ' which is believed to be exact. Considering
the longitudinal viscosity the situation is more
complicated since the couplings are more in-
volved. Not only T ~, „but also the other current
elements and the coupling to temperature will
contribute. We also have to consider the couplings
between I'g Iyy an'd T'44 which leads to a 3 x3
matrix equation.

V. DISCUSSION

We have here presented a microscopic kinetic
theory for the memory function of the phase-space
correlation function. The results for the relevant
matrix element F» given in (3.33)-(3.3't) can, to-
gether with the corresponding results for the
self-part given in paper I, be used to obtain nu-
merical results for S(q(v). We have calculated
S(q(v) for liquid rubidium and find very good agree-
ment with MD and experimental results. These
calculations will be presented in a forthcoming
paper.

As in the case of the self-motion we have separ-
ated the memory function into a binary part and a
more collective tail. Actually, in a dense system
the two-body collisions will be strongly influenced

by the presence of other atoms, and the binary
part therefore includes also all other rapid pro-
cesses in the system. In particular we argue that
the nonhydrodynamic couplings in the mode-mode
term (3.16) represent such fast processes and

should therefore be included into the binary part
of the memory function. It is clear that our simple
Gaussian ansatz for I'yy may be a rather rough ap-
proximation for the time dependence. However,
currently we do not see any possibility of improv-
ing this point. Fortunately, our calculations in-
dicate that S(q(v) is not very sensitive to this point.
In a hard-core system the binary part would be a
5 function in time, and in such a system aQ inter-
esting time dependence is therefore connected
with the tail. Strictly speaking our derivation here
is limited to continuous potentials, but we can al-
ways take the hard-core limit in our final expres-
sions, i.e., using a potential v(r) = z(o/r}" and let

n - . Except for the binary part a hard-core po-
tential will also modify the coupling constants,
i.e. , the T matrix. Due to (3.21}, which will still
be valid, the T matrix contains a 5 function, and

this implies that the initial value (3.26) diverges,
i.e. , the fourth moment y~

~ becomes infinitely

large. However, it should be noted that the coup-
ling constant t '~ in (3.29) still remains finite, and

this as well as c(q) therefore has a hard-core
limit which can be used in the mode-mode inte-
grals. The fourth moment y, a is very accurately
given in terms of the Einstein frequency &,' and

spherical Bessel functions. " In the hard-core
limit v,' diverges, but when calculating t ~ it

drops out, and this coupling constant is then ex-
pressed entirely in terms of spherical Bessel
functions.

For the tail we have here made essentially the

same approximations as in our earlier treatment
of the self-motion, i.e. , we have only considered
mode-mode contributions coupling via the matrix
elements T~., and To, In particular, this im-
plies that the correct asymptotic behavior of the

memory function is violated as demonstrated in

Sec. IV. However, including more matrix ele-
ments both in the solution of (2.22) and in the
mode-mode integral (3.16), which would be neces-
sary to recover the correct asymptotic behavior,
rapidly increases the complexity of the theory. In

contrast to the self-motion it does not, therefore,
seem possible to obtain a theory which has both

the correct short- and long-time behavior within

the present kinetic approach. However, for or-
dinary dense liquids the long-time tails do not

seem to play any significant quantitative role, but

the situation mould be different near the critical
point and possibly also for gases and two-dimen-
sional systems.

ACKNOWLEDGMENTS

The author would like to thank Professor Alf

Sjolander for many helpful discussions during the
development of this work, and for many valuable
comments on the manuscript. This work has been
supported by the Swedish Natural Science Research
Council.

APPENDIX A: SHORT-TIME EXPANSION OF I'&&(qt) AND I'22(qt)

(A1)

Gz=RzG is first expanded in powers of 1/z which according to (3.8) gives

In this Appendix we discuss the short-time or large-z expansion of I'P, and I'2z2 given by (3.15). For con-

venience we consider the quantity I ~ with o., P= 1-3, from which we immediately obtain the other two

functions, i.e. , from (3.1) and (3.15):

r„(I )=())/ v)fe( eeexv(-([. f )[v;v(v, —8)]G (1 ; e*)[x'xv( vp)[ve v(([,). x
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1 1 1G'= (z —f1+ r')-'G = —+ —,n+ —,[aa —r'(f =0)]+ ~G.
Z Z Z j

(A2)

Since G~ satisfies the continuity equation and the entire contribution to this comes from the free-particle
flow term, we have

(A3)

and this implies that the contribution from I'z(t= 0) in (A2} vanishes when inserted into (Al): From the

continuity equation we also have

2012;34 = — d ~d 2 —,~ V„+—
2 v„p 613 624+6(14 523 (A4)

From (A4) and the fact that the momentum dependence of G is Maxwellian, it follows that the I/z' term in

(A2} also vanishes when inserted in (Al}, which reflects the fact that I'
z is even in time. Using also that

GAG = QGA', where

II'(12' 34) = —A(34 12),

as is easily proved from (3.4), we obtain from (A2) and (A4)

r„(Zz)=[0/mev)I —fzl ze exp( —'Z r, )[v;v(F, —F,)]a(rm;x4)[v', v(F—T)]exv,(z,Z F)

(A5)

1 (1d1' ' 'd4
I pz V + Iiz' V lexp( z'fi F,)V„v(F, -'F } G(12;34)

"2

1 - 1
x —Z, v, e —[[, v, ]exv[iZ r)v,'v(F, - t) ~. ..I. '

"3
(A6)

G can be expressed in terms of static distribution functions from (2.8) and the evaluation of (A6) is then

straightforward. We find

I'z, (gz}= — (o06,+ y,"(il}+ ~ ~ zzc(ij}

1 ( (2le.z -]I ]r'(Z]+ ~ f~[r -exv(-zz[ «)Ifv v' (vS ]]xV[][v' v' (vZ 1]

2n+, iq" dr exp(-zf[ r)g(F) V. VzV"v(F)
Pm

n'+,
&

dF, dF, dFz(1 —exp[-zg. (r, -'F,)]+exp[-zf| (F, —F )] -exp[-ig. (F, —F,)$

x [V„' V" v(F, -F,))[g,(r,r,F,) -g(F, —F,}g(F,—r,}][V„V„"v(F, —F,)] + ~ ~,

(Ar)

which should be compared with Eq. (A8} in I. In (A I) summation over repeated indices is implied. &o, is
the Einstein frequency and y„~ is given by

r,"(Z) ——f zvexv( xl = )x( )v v' (v-] ez r[Z]v [z., -z '=''1 z''(1v). (A8)

For the triplet distribution g„which enters in the last term in (A'I) we will make the superposition ap-

proximation, and this gives
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rz (gz) = — (d25 + y~'(fl)+ q nc(Q)

( 2 e B)

( (d,'5 H
—

~
y~(Q)+ —, dr[1 —exp(-ig ~ r)][V V'v(F)]g(P)[VzV"v(f)]z' }Pm ' ~ Pm &

~ m'

+ 2 iq" dF exp(-iQ r)g(F)V VzV"v(r)2n

Pm

If we now approximate I zB(qt} by a simple Gaussian as

r„(qt) =q q'rz(qt)+ [5„-q q']re, (qt)

= q ™q'T2z2(g,t = 0) exp[-t '/r', (g) ]+ (5„—q'q') I'Hz (g, t = 0) exp [-t2/r2(g) ],
we find the large-. z expansion

I (4(qz) z ='[q'q'I »(q't , 0}=+(5 , -q q')I „(q,'t = 0)1

-z '[q q '2 r «(q, t =0)/r ', (q) +(5, —q q ') 2T 22(i t = 0}/& 4(q}1

and comparing this with (A9) we get immediately the initial values and the relaxation times in (A10).

(A9}

(A10)

(All).

APPENDIX B: CALCULATION OF THE T MATRIX

Here, we consider the properties of the T matrix defined in (3.17}, or rather the more general quantity

T„.„(qq'r) = —f dl d4 ex((- '(q —q') rJ exp(-lq r, )H,(p, )Hr(pr)

x[R (12;12z}] R(12;34z}G(34;34)[V„-v(r;—r4) V~-]H„(p;) exp(-iq r;), (B1)

which for v=1 reduces to (3.17). An immediate
consequence of (Bl) is that

T«,„(qq z) =T„.„(q,q -q, z} . (B2)

From (3.7) and the corresponding equation for the
disconnected part of R we find that

can be written

r d4 G(12; 34)V„v(r2 —r4)

44G 12;34)V„c r3-r4 . (BS)

(R') 'R =1+(fl —fl' —r + r'}R (B3) Inserting (B5) into (B4) we obtain

and we insert this into (Bl). From the term con-
taining the identity operator in (B3) we obtain an
instantaneous part of the T matrix given by

T'.&'.(qq'z) = —
~
{G.&(q -i')q "[S(i')—116&.

+G„(i')(q -q') [S(i-i') -ll5..)
T".,!„(qq' )=—fdl. . 44exp(-r(q —4') r, )

x exp(-iq' . r2)HH(p, )H2(p2)

&& G(12;34}[V„v(r2—r4} ~ V ]H„(p2)

gp4~ p H~ p Vp Hp p

For the special case v=1 we obtain

T t', H((qq'z) = in(Pm} ' "
"(q q's(q -q'}[s(i') —1]

(B6)

~
Wx exp(-iq r2). (B4)

This expression can be evaluated in terms of the
two- and three-particle distribution functions.
Since our knowledge of the latter function is lim-
ited we will use an approximation employed ear-
lier by Sjogren and Sjolander and Sjogren, ' which

+q .(i —i' }s(i')[s(i —i') —11j5-6e.

(B7)

and the instantaneous part couples then only to the
density fluctuations. From the last term in (B3)
we obtain
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T'„'.
,'„(qq'z) =—fdl d4 exp]-i(q —0') . r ] exp(-'0'. rz)H (p )Hz(p )

x [A(12;g) —0 (12; T2) —1'(12;TEz) + 1" (12;TRz)]R(TZ; 34z)

(B8)

T'J', „( qq', (= 0)= —f dl d4exp]-'(q —q') r]e p(-'q', IH.(p, )il, ('p, )

x G(34; 84)[V„-v(rf —r2) ~ V~-]H„(pf ) exp(iq ~
r& ),

which is obviously a very complicated quantity. %'e notice that T'~.'„=0 due to particle conservation. The
large-z expansion of (B8) gives the initial value of T',2.'„, and we obtain

x[012;TR) —0 (12;T2)]G(TZ;34)[V„v(r, —r4) v ] H„(p3) exp(iq rs).
We now need more explicit expressions for 0 and 0, where the former is defined in (3.4). Using the
fluctuation-dissipation theorem we find (cf. Appendix B in 1}

(B9)

(|if2(12t)5f2(34t)) = ——(1+Pi2)v„, v~ + —
pi + —(1+P34)v, ~ (v + —

p3 G(12;34),
224 J

(B10}

where the operator P,2 permutes 1 and 2. From (B10}and (3.4) together with corresponding results for
0 we can now write (B9}as

T"., ',.(qq'i=0)= ,jdl . .d4exp(-i(q-q') . ,] e p(-lq'. ,)H (0 )

X Hz(Pr)(G(12; 34)V; V,' (rz — 4)+ G (12;34) —V,' V,' Z(r, —rr))

x
(

V
n

—
p& I I

V
2,

— P4 I
V, H—„(ps) exp(iq r3),r.

'3 m '~ ~
'4 m &

~3"

where we have made some partial integrations, and also the approximation 0 GVv = -0 G p 'Vc. Insert-
ing the explicit expressions for G and G in (Bll) we obtain

1/2
T„.,'„(qq, t=0) =

[
yd'z(q')+ nc(q') dp4 gp) V,H,(p)t)„-]— H,(p}t)z V zH„(p)

n3 p
i/2

+ — dld2 exp(-iq' r]) exp[ i(q--q') . r2] —~ 5„6,

-exp[iq'. (rq —r2)]v~ H,(p, }5„~[g3(r]r2) —g(r, —r, }g(r])]V„v„v(r])

+[g(r2) —1] —v„v,',c(r])
~

x@23(p~)@2](p2)V,,H.(P1)+[c=f q "(q-q)],

(B12}

where the last term indicates that we should exchange o, t, and q' with (q -q'). The three-particle dis-
tribution function enters again in (B12) and as in Appendix A, we make the superposition approximation for
it. We also notice that the static correlation between r, and r2 in (B12) represented by g(r, —r2) is not
combined with any potential interaction between these points, and it has therefore only the effect of ex-
cluding a small volume in the integration over r& and r2. For this reason we will neglect this correlation
and make the approximation

gs(r, r2) -g(r& —r&)g(r&) = [g(r2) —1]g(r, ) . (B13)

We then obtain
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t~ tp
'T(~!„(qq', t=0}= yd'(q )+ nc(q')

1/2 1/2

dpi'„p S q')V~H, p 5~, — H, p 5, —S q-q —1 — 6„-6, V' H„p

+[c= &,q'-(q —q')] . (B14)

With v= 1 this gives for o =0 and f =u =1-3:

(B16)x R(TX; 34z)G(34; P4)[V,-v(r3 —r4 ) ~ V -] H„(pa ) exp(iq r3 }.
The terms containing I' and I' vanish, and the proof of this is analogous to that presented in I. The con-
servation of the total momentum gives

T„'.,[(qq', t=0) =nS(q-q')q (yg'I(q —q')+[((f -q') (q -q') /pm]nc(q —q') -yg (q') —(q' q' /t)m)nc(q')). (B15)

We will now consider T,",),„(q,q'=O, z), which from (B8), is given by

1/2
T,'...(q, q =p, z)=( —

) Jdl. . . dq'exP(-iq ) z[PQz(12; Td) —6 (12;II)—I'(12; Tdz)+I' (l2;134)]

dt
~ ~

P;(t) = — V, v(r, (t) —r, (t)) = — V„v(r, (t) —r„(t))=0
fX j=, , fA 0

for any k. From this we find that

dl d2d3 exp(-iq .r&)H, (p&}V„v(r& —r3)5f 3(123t)=0

(B17)

(B18)

holds for all times and hence

(B19)

The formally exact expression for I is given by"'""

T((3;ITz)= —Jd3. . .d6[V, v(r, —r ).V +V, v( z
—rz). V ]G((23;456*)

(B20)X[V„v(r4 —rs} ~ V~ + V, v(r, —r8) ~ V~ ]G (45;T2),

where G(123;456z) can be written as a linear combination of C(123;456z), C(123;45z) and C(123;4z). &Js-
ing (B19)with o =0 it then follows that

(B21)

and we also have a similar relation for I' since this conserves the total momentum for particle 2. The
evaluation of the remaining part of (B16) is most easily done by using the explicit expressionss""'

D(12 ' TI): I Pz V + P V 'll Z(r'I 2'4) ( V„—V, )) —,
' [!it(I')5(22)+ 5(13)5(21)l

+ d3d4d5 V„,v r& —r3 ~ V'~ + V&v r& —r3 ~ V~ 5 3 123t)5 & 45t) G 45;T2

and

d3C 12;3 ~ C (3T)+C 32) V„-v r& —r&) ~ V& —p -) (B22)

0 (12;1Y)=-(m p&
.Vv +m p& ~ VT ) 6[5(1T)5(22)+ 5(12)5(2T)]

-(1+P[&)V„~V~,n4 „(P[)(zP)[c(r& —r& )5(22}+ c(r[ —rf-)5(2T)] (B23)
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The free-particle terms in (822) and (823) cancel each other. The second term in (822) vanishes accord-
ing to (819), and the second term in (823) also vanishes when inserted in (816). Using the explicit expres-
sion for C (12;3) defined in (2.4) we find

i/2
T'4,', „.(il, q'=0, )=(— —

)Idldl d4e P(-iq;)[3(l'1)+eq„(P;)2(;-r )] [V;v(r, —rr)]

x G(12;34z)[v, v(rf —r4) V ]x H„(p,) exp(f'q r, ) =nS(q}I' (qz},

(824)
where we have used the fact that I' „(q =O, z) =0. The relation (824) is an exact consequence of (816). We
notice that although the expression (815) for the initial value was obtained via certain approximations it
agrees with (824) for q'=0, and this verifies our earlier approximations. For Tz we obtain the sam'e re-
lations for the instantaneous part in (86}and for the initial value in (814). We also obtain a relation like
(824) but with I' replaced by I'

We will also consider the matrix elements T ~.„since these appear in our analysis of the shear viscosity
in Sec. IV. It is clear from (86}that there is no instantaneous contribution in this case. Using (819) with
q =0 and taking o to be a current element, we obtain

(825)

Together with a similar relation for I'v and (822) and (823) we obtain

T,„(q= ,0~0= ,0)4= —( ) Jdl d4PPP&[V, V(r& —rr) ~ V ]G(12;34*)[V, ( 4
— 4) ~ Vq]H (P&).

(826)

(827}

With 0. =P =1 we have for instance

Tff „(q=0,q'=O, z) = n I5(q=O, z)+(-', ) f" ni' f( q= 0, z)

and similar relations for other combinations of (r and p. Again we find that our result (814) is consistent
with (827} for t=O.

We now make the following ansatz:

T, (f.„(qq z) =a ]).„(qq )I' (qz), (828)

where summation over X is implied, and we determine the coefficients a ~.„ from a large-z expansion.
This gives

a )).„(qq') = T f).„(qq', t=0)/2~]'L, (829)

where only X =4-6 gives a nonzero value as can be proved from (814}. We have also used the fact that

I'„„(q,t =0) =2(v205„„

for ~ =4-8.
(830)

L. Sjogren and A. Sjolander, J. Phys. C 12, 4369 (1979).
2L. Sjogren, J. Phys. C 13, 705 (1980), referred to as II.
L. Sjogren and A. Sjolander, Ann. Phys. (N.Y.) 110, 122
(1978).
L. Sjogren, Ann. Phys. (N.Y.) 110, 122 (1978);
110, 173 (1978); L. Sjogren and A. Sjolander, ibid.
110, 421 (1978).

L. Sjogren, Ann. Phys. (N. Y.) 113, 304 (1978).
A. Rahman, Phys. Rev. Lett. 32, 52 (1974); Phys. Rev.
A 901667 (1974).

W. Gotze and M. Lucke, Phys. Rev. A 11, 2173 (1975);
- J. Bosse, W. Gotze, and M. Lucke, ibid. 17, 434

(1978); 17, 447 (1978); 18, 1176 (1978).

P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev.
A 12, 1653 (1975).

~T. Munakata and A. Igarashi, Prog. Theor. Phys. 60, 45
(1978).
M. S. Jhon and D. Forster, Phys. Rev. A 12, 254
(1975).
F.Yoshida, Prog. Theor. Phys. 58, 1331 (1977);
F.Yoshida and S. Takeno, ibid. 58, 15 (1978); J. Phys.
C 11, 2895 (1978).
A. Zippelius and W. Gotze, Phys. Rev. A 17, 414
(1978).

' P. K. Kahol, R. Bansal, and K. N. Pathak, Phys. Rev.
A 14, 408 (1976); P. K. Kahol and D. K. Chaturwedi,



2882 L. S JOGREN 22

ibid. 18, 2717 (1978).
S. Sjodin and A. Sjolander, Phys. Rev. A 18, 1723
(1978).
(a) G. F. Mazenko, Phys. Rev. A 7, 209 (1973); (b)
ibid. 9, 360 (1974); (c) G. F. Mazenko and S. Yip, in
Modern Theoretical Chemistry, edited by B.J. Berne
(Plenum, New York, 1977), Vol. 6.
E. P. Crross, Ann. Phys. (N. Y.) 69, 42 (1972); J. Stat.
Phys. 11, 503 (1974); 15, 181 (1976).
(a) C. D. Boley, Ann. Phys. (N.Y.) 86, 91 (1974); Q)
Phys. Rev. A 11, 328 (1975).

' P. Resibois and J. L. Lebowitz, J. Stat. Phys. 12, 483
(1975).

9M. Lindenfeld, Phys. Rev. A 15, 1801 (1977).
M. H. Ernst and J.R. Dorfman, Physica (Utrecht) 61,
157 (1972); J. Stat. Phys. 12, 311 (1975).
R. Bansal and W. Bruns, Phys. Rev. A 18, 1637 (1978).
P. M. Furtado, G. F. Mazenko, and S. Yip, Phys. Rev.
A 14, 869 (1976).

~3J. R. Mehaffey, R. C. Desai, and R. Kapral, J. Chem.

Phys. 66, 1665 (1977).
~4M. Nelkin and S. Ranganathan, Phys. Rev. 164, 222

(1967).
K. E. Larsson, Phys. Chem. Liq. (in press).
(a) D. Forster and P. C. Martin, Phys. Rev. A 2, 1575
(1970); (b) D. Forster, Phys. Rev. A 9, 943 (1974).
Y. Pomeau, Phys. Rev. A 5, 2569 (1972); 7, 1134
(1973).
M. H. Ernst, E. H. Hauge, and J. M. J.Van Leeuwen,
Phys. Rev. A 4, 2055 (1971); J. Stat. Phys. 15, 7

(1976).
I. M. De Schepper, H. Van Beyren, and M. H. Ernst,
Physica (Utrecht) 75, 1 (1974); I. M. De Schepper and

M. H. Ernst, ibid. 98A, 189 (1979).
L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968);
K. Kawasaki, Ann. Phys. (N. Y.) 69, 1 (1970); M. H.
Ernst, E. H. Hauge, and J. M. J.Van Leeuwen, J. Stat.
Phys. 15, 23 (1976).
J.R. D. Copley and S. W. Lovesey, Rep. Prog. Phys.
38, 461 (1975).


