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Electrotlynanncal properties of two- imensional classical electron systems
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The electrodynamic properties of a classical one-component two-dimensional plasma are studied on the basis of a

self-consistent-field approximation including the short-range correlations between particles. The static screening, the

plasma dispersion relation for arbitrary wave number, and the dynamic structure factor are determined in a self-

consistent scheme. The results are compared with the earlier calculations based on the random-phase

approximation. Sizable differences are found revealing accurately the effects associated with correlations between

particles. Our results mark a definite improvement over those calculations.

I. INTRODUCTION

Recently, experimental and theoretical investi-
gations of a classical one-component two-dimen-
sional plasma have attracted considerable amount

of interst. " Electrons trapped on the liquid
helium surfaces form the cleanest example of a
strongly coupled classical two-dimensional system.
Experiences with this electron gas have been car-
ried out with electron densities between 104 and
10' cm ', corresponding to the Fermi temperature,

TF, between 10 ' and 10 ' K. Since the accessible
experimental range of temperature, T-1 K, is
much bigger than T~, this electron gas is in fact
a classical plasma.

The two-dimensional classical electron system
is characterized by the dimensionless plasma
parameter n = 2xne'/T' or the parameter I' =

=(xn)'"e'/T =(—,'a)'", where n is the density, T
the temperature in energy units, and e the effec-
tive electronic charge incorporating the effects of
the substrate. The first theoretical discussion in

such a classical system was given by Fetter within

the random-phase approximation (RPA). However,
the RPA is inadequate in treating this system since
the electron-correlation effects are quite impor-
tant. In order to include the short-range correla-
tions, several authors' ' have studied this system,
showing the necessity for improving the RPA.

The principal purpose of the present work is to
investigate some electrodynamic properties of the

two-dimensional classical electron system through

a self-consistent-field approximation'0 (SCFA}
which takes into account the short-range correla-
tion effects. This method, besides improving the

RPA, has the advantage ofbeing a dynamic one
contrasting other elaborate approaches applied to
this system.

In this paper we apply the SCFA to calculate the
screening density around a fixed charged impurity,
the plasma dispersion relation for arbitrary wave

number, and the dynamic structure factor for a

classical two-dimensional one-component plasma,
and compare the results with those of the earlier
theories.

In Sec. II we shall briefly present the SCFA. In
Sec. III the screening of a static impurity is
analyzed. In Sec. IV the plasma dispersion rela-
tion is presented. The dynamic structure factor
is calculated in Sec. V and a concluding remarks
of the results is given in Sec. VI.
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P(k) is the bare particle-particle interaction, n

is the density, T is the temperature in energy
units, and y, (k, &u) is the density-density response
function of the noninteracting electron system
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II. SELF-CONSISTENT-FIELD METHOD

Since in an earlier paper' we have discussed
the self-consistent-field approximation (SCFA) for
a classical two-dimensional electron system we

shall briefly write down the following set of equa-
tions which describes the SCFA:
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We notice that the expression for the density-
density response function in the random-phase
approximation' (RPA) or Debye-Huckel approxima-
tion is recovered if in Eq. (1) we neglect the local-
field corrections, i.e. , if we set G(k) =0.

III. SCREENING OF A FIXED CHARGED IMPURITY

As our first application of the SCFA we shall
study the effects of a static charged impurity,
located at the origin on the classical two-dimen-
sional electron system. We consider an electron
system placed at the interface between two semi-
infinite media with dielectric constants c, and e,
neutralized by a rigid uniform background of op-
posite charges. The electrodynamic response of
an external scalar potential (()),„,(k, m) arising from
a fixed-point charge Ze, may be characterized by
an induced particle density given by"

5n(k, (()) = —X(k, (())eo(t),„,(k, m), (7}

where
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and X(k, (o) is given by the self-consistent solution
of Eqs. (1), (2), and (3).

The inverse Fourier transform of Eq. (7) gives
the following expression for the screening density
at a distance R,

() ()() =-Ze' f dk J(k)())((k0), (9)

where e =e,[2(e, +e, ) ']'" is the renormalized
charge and J,(x) is the Bessel function of order
zero. From the density-density response function,
Eq. (1) in the static limit ~ =0, we may rewrite
Eq. (9) as

Howard" applied to the electrons in the inversion
layers problem, but with a modified screening con-
stant.

The induced total charge Q, is given by

Q=-e, dR5n R

kn5(k)
A'+kg 1 —G k

(12)

g(x) =(1/&2x)R(v 2 x) . (14)

which means that the charged impurity is com-
pletely screened at large distances.

Unfortunately, the screening-density expres-
sion, Eq. (10), has an undesirable feature, i.e. ,
it diverges logarithmically at R =0, yielding an
infinite induced charge density there. This div-
ergence arises because the linearized equation
of motion for the classical one-particle distribu-
tion function which is the starting point of this
approximation, is invalid near the charged im-
purity. In order to prevent this divergence, the
integral in Eq. (9) at R =0 is cut off due to the
quantum effects. " This is what happens in some
specific situations in classical plasmas'4 where
the semiclassical expressions including the 8-
dependent terms are taken into account to avoid
the divergences caused by large-angle collisions.
Then, this divergence can be avoided if the static
quantum density-density response function of the
system is taken into account in the classical limit,
instead of the strictly classical limit (K-O), that
ls,

X(k, 0) = -(n/T)t'(k/kr), (13)

where kr=(2mT/I')"' is the thermal wave vector
and

5n(R)
Zkn

dk
kJo(kR}

2w k+kn[1 —G(k}] ' (10}
As a result, the screening density may be written
as

where kn =2wne'/T is the two-dimensional analog
of the Debye screening constant.

In order to obtain the screening density results
in the RPA method we neglect all correlations,
i.e., putting G(k) =0 in Eq. (10). The, it takes the
form

2w k+kg[1 —G(k)]g(k/kr) '

(15)

which is finite even at R =0, since the asymptotic
behavior of the functions f and G yields the follow-
ing realtions
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where 00(x) and Yo(x) are Struve and Neumann
functions. This result was earlier obtained by
Chalupa' through the linearization of Poisson's
equation for the screening potential. It also cor-
responds to the semiclassical model of Stern and

Although Eq. (15) is finite at R =0 the numerical
results we obtained are extremely large. Never-
theless it is interesting to notice that the calcula-
tion very near the impurity center is not reliable
since the linear theory is not valid in this region.

For distances, far from the impurity center the
behavior of the integrand at small values of the
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wave vector k dominates the integral in Eq. (15).
Then, in this case the function f(k) and the local-
field correction G(k) can be written in the long-
wavelength approximation as'

g(k) =1,

G(k) = kG'(0) = ayk/kn,

where

y =-~ dkSk (16)
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This equation shows the existence of a critical
value for the plasma parameter n, =1/y; beyond

that the system becomes electrodynamically un-

stable. At the same a, we have earlier' found that
this system also becomes thermodynamically un-

stable. The nature of such an instability in a
three-dimensional classical plasma has been dis-
cussed by Totsuji and Ichimaru" on the basis of
the fluctuation analysis of the positive uniform
background. The critical value of the plasma
parameter n, may be interpreted with the point
at which the onset of the short-range order ap-
pears. For n ~ n„ the electronic motions be-
come more correlated and liquidlike behavior is
expected. On the other hand, as the plasma
parameter increases, the structure factor S(k)
[see, for instance, Eq. (8) from Ref. 6] will
diverge at k = k, such as

k+ks[1+G(k)] =0,

determining then another critical value e,. The
system will undergo a phase transition and
crystallization with lattice constant corresponding
to k, should take place. For electrons on liquid-
helium surfaces, Grimes and Adams" have ex-
perimentally observed that the fluid-solid transi-
tion occurs at e, =3.7 x10~. Our calculation,
however, is inadequate in obtaining this experi-
mental result because we are dealing with a
uniform and isotropic system.

It is interesting to notice that in the limit of
large B, we obtained an algebraic expression for

Then, in this limit Eq. (15}is rewritten as

Zkg d
kJo(kR)

2v k+ kg

where kn~ =k s/(1 —ay) is the renormalized Debye
screening constant. As we can see this expression
is formally identical to Eq. (lla) given by the RPA
approximation. By taking the asymptotic limit of
Eq. (lib) we get the following expression for the
induced density:

the screening density in contrast to the exponen-
tial form of the Debye-Huckel three-dimensional
version. Equation (15) has been evaluated numer-
ically as a function of 8 for various values of n.
In Fig. 1 our self-consistent results for n =1 and
z =20 are compared with those obtained from the
RPA. It is seen that the present results give
significant differences in the screening density
as the plasma parameter increases, showing the
presence of the short-range correlations in the
system.

IV. PLASMA DISPERSION RELATION

u&(k) = ~,(klk~)"'[1 —(~ —~ay)k/kD], (20)
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FIG. 1. Screening density 4n(R)/Zk& as a function of
Rkz. The RPA curve corresponds to that given earlier
(Ref. 3).

The SCFA is now used to describe a time-de-
pendent perturbation with frequency ~. The plas-
ma dispersion relation up(k) and the damping I'(k)
of the plasma oscillation are determined from the
poles of the density-density response function

)i(k, &u). We then have to find the solution

(u =(o(k)+iF(k)

from the equation

p(k, (u)—:1 —$(k)[1 —G(k)]}to(k, (u) =0 . (19)

For small damping, 1 (k) «&u(k) and in the long-
wavelength limit we get, after some rearrangement,
the following expressions
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F(k) = —(ww)'I'(kn/k —ny)'~

x exp[-(kn/2k+-' —-'ay)]&@(k),

wherey is givenby Eq. (16), and

(21)

the RPA. From Eq. (19) one can immediately find
that there are no real roots for

k&0.284[1 —G(k)].

(o, =(2wne'kn/m)'". (22)
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The present many-body approximation which
includes the short-range correlations between
particles gives a correction to the HPA results
by decreasing the coefficient of the k' ' term in
the plasma dispersion relation. This is one of
the major points given by the SCFA because it
takes into account the correlation effects which
are relevant in this system. The first attempt
to investigate correlations in such a two-dimen-
sional electron gas was recently made by Beck
and Kumar. ' Their results showed a decrease in
the coefficient of the k'" term of the order of X~,
the termal wavelength, which obviously vanishes
in the strictly classical limit (K-O).

In order to determine the plasma dispersion
relation at arbitrary k, Eq. (19) has been numer-
ically sblved for almost real roots. In Fig. 2 the
results for the real part of the plasmon modes for
n =1 and n =20 are shown in comparison with those
obtained earlier by Platzman and Tzoar" from

V. DYNAMIC STRUCTURE FACTOR

As another application of the SCFA we have
calculated the dynamic structure factor S(k, ~) for
the two-dimensional classical electron system.
As it is known, the dynamic structure factor is
the Fourier transform of the time-dependent den-
sity-density correlation function and plays the
central part in formulating a theory of many-body
systems. It is, through inelastic scattering ex-
periments, a directly observable quantity.

By the fluctuation-dissipation theorem, "the
dynamic structure factor for a two-dimensional
classical electron gas is given by

S(k, (ar) =-(T/nw(u) ImX(k, (u), (23)

which, in the SCFA takes the following form:

ImX, (k, ~}
wn~ [1—g(k) ReXO(k, &u}]'+[/(k}ImX,(k, ~}]' '

(24)

where P(k) = P(k) [1—G(k)] is the self-consistent
effective potential. We recall that in the RPA,
G(k} =0 and f(k) reduces to the bare particle-
particle interaction.

For a classical ideal electron gas, i.e. , g(k) =0,
the dynamic structure factor S'(k, &o) assumes, at
fixed k, a Gaussian form around v =0 given by

As can be seen from Fig. 2 the plasmon disper-
sion yields two different branches. The upper one
corresponds to the plasmon branch very closely
to the zero-temperature results where the
Coulomb interactions are the major contributions
to the system (cold plasma). The lower branch
is related to a soundlike mode with a phase veloc-
ity near the electron thermal velocity. In this
case the thermal energy contribution dominates the
electrostatic energy part (hot plasma).

0.2
S (k, &u) = — ImXO(k ~)

7FPl

2mT k
' P 2k2T (2')

O. I

0.05 o.io OI5 0.20 0.25

FIG. 2. Plot of the real part of the plasma dispersion
curves for two values of the plasma parameter o', in
units of ~p= (&7rn8 kg/m) . The RPA curve corresponds
to that given earlier (Qef. 17).

This behavior is significantly different for an
interacting classical electron system, where
S(k, ~) can assume large values as ™X,(k, &u) be-
comes large as

4 (k)[1 —G(k)] ReXO(k, &a&) =1,
corresponding to the zeros of F(k, &u), Eq. (19).

For k«kn the relevant contribution to S(k, &u)

arises from the collective modes of the plasma,
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FIG. 3. Plot of the dynamic structure factor S(k, ~)/co 0 vs Q7/cop for fixed values of k/kD at two values of the plasma
parameter e = 1.0 and e = 20. 0, and the RPA curve.
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acquiring a peak at the plasma frequency &u (k) .
Expanding Eq. (24) near &u =v(k) we get the Lor-
entzian form for S(k, v),

k I'(k)
( I ) 2 y [ @)]2 +F2/)P (26)

where m(k) and I'(k) are given by Eq. (20) and Eq.
(21), respectively.

In the limit k» k~ the classical electron plasma
behaves like a system of free individual particles
with S(k, u&) = S'(k, &o).

In Fig. 3 we plot S(k, u&) as a function of &u, for
several values of the wave number k, at a =1.0 and

z =20.0. For comparison we have also plotted the
RPA results. As it is seen at low densities, i.e. ,
small a, our results agree with those of the RPA.
We also can see that S(k, u&) is dominated by the
contribution of the collective mode for small k.
The plasma oscillation decreases with increasing
k. Unfortunately, there are no experiments
carried out for a two-dimensional classical elec-
tron system for confirmation of our results which
has been deduced from purely theoretical con-
siderations.

VI. CONCLUSIONS

In the present paper we have applied the self-
consistent-field approximation which includes the
short-range correlation effects, to investigate
the electrodynamic properties of a classical two-
dbpensional electron gas. The numerical results
for the screening density around a fixed charged
impurity in such a classical system were obtained

showing significative differences from those given
by the RPA. In particular, we found that the sys-
tem is electrodynamically unstable for the plasma
parameter n = a, 2 I/y. As mentioned earlier this
system becomes also thermodynamically unstable
at the same critical value of n. Far away the
charged impurity the screening density is formally
the same as obtained by the RPA with a renor-
malized Debye screening constant. It should be
stressed that none of the calculations is reliable
very close the impurity since the linear theories
are not valid in this region. Moreover, our results
for the plasma dispersion relation for a classical
two-dimensional plasma oscillations mark a de-
finite improvement over the expressions given by
earlier methods. It is interesting to notice that
our dispersion relation calculation includes for
the first time the effects of the short-range cor-
relation between the particles of this classical
system. Numerical calculations of the dynamic
structure factor were performed and the results
agree with those of the RPA at very low densities.

The plasma oscillation and the importance of
the collective excitation decreases with increasing
the wave number. As it was pointed out by
Grimes, "any experiment for a classical two-di-
mensional one-component plasma, that could mea-
sure the structure factor Would be very useful to
confirm the theoretical predictions.
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