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Shear-flow-induced distortion of the pair-correlation function
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Starting from the appropriate Smoluchowski equation, the pair-correlation function and the associated static
structure factor are calculated for a colloidal suspension which undergoes a shear flow. Terms nonlinear in the shear

rate are taken into account. The results obtained are in qualitative agreement with the elliptically distorted Debye-

Scherrer rings which have recently been observed by Clark and Ackerson.

Recently, Clark and Ackerson' observed, for
the first time, the shear-flow-induced distortion
of the pair-correlation function via its associated
structure factor S(k) in a physical system, viz. ,
in a suspension of interacting colloidal particles
(charged monodisperse polymer spheres). Light-
scattering techniques were used. Owing to the
shear, the Debye-Scherrer rings (which are
circles under equilibrium conditions) assume an
elliptical shape. It is the purpose of this note to
indicate that the experimental findings of' can be
derived from the appropriate Smoluchowski equa-
tion for the pair-correlation function. These ex-
perimental results are (i) a shear-rate-induced
shift of the maximum of the structure factor for a
fixed direction of the scattering wave vector k
and (ii) the surprising rotation of the principal
axes of the elliptical Debye-Scherrer rings versus
the principal axes of the (symmetric traceless)
shear-rate (velocity gradient) tensor. For the
latter effect it is of crucial importance that terms
nonlinear in the shear rate are taken into account
for the colloidal suspension. In connection with
the viscosity problem of simple liquids'~ terms
of this type are disregarded for good reasons.
Thus the colloidal suspensions studied in Ref. 1

not only are model system for simple liquids but
exhibit some additional interesting physical phe-
nomena.

It should be mentioned that the shear-Qow-in-
duced distortion of the orientational distribution
function of a Quid is revealed by the ensuing Qow
birefringence. In liquids and colloidal solutions
of nonspherical particles, this effect has been
studied for quite some time. "' Flow birefringence
of molecular gases' yields information on the
orientational distribution of the rotational angular
momenta. ' The velocity distribution function of
a heat-conducting gas has been analyzed' via the
resulting asymmetry of a Doppler profile. ' Gen-
erally speaking, experimental information on pair
cox relation and molecular distribution functions
is of interest for the physical understanding of
nonequilibrium phenomena and can provide a test

of the kinetic theories used to calculate transport
coefficients.

This article proceeds as follows. The Smoluch-
owski equation for the pair-correlation function g
of the interacting colloidal particles is stated for
the case where the liquid suspension undergoes a
shear flow. Then it is indicated how the deviation
of g from its equilibrium value can be determined
with the help of the moment method. In an ap-
proximation suitable for the present problem, this
deviation is characterized by a specific (2nd rank)
tensorial expansion function. The pertaining ten-
sorial expansion coefficient (anisotropy tensor)
obeys an inhomogeneous relaxation equation. The
stationary solution which contains terms nonlinear
in the shear rate is stated for a specific geome-
try. Then, the structure factor S(k) is calculated.
Its angular dependence and its dependence on the
magnitude of the wave vector k are discussed and
compared with the experimental results reported
in Ref. 1.

KINETIC EQUATION FOR THE PAIRWORRELATION
FUNCTION

The point of departure is the Smoluchowski
equation' for the pair-correlation function g which
depends on the time t and the relative position
vector & between two polymer spheres. With the

'help of the dimensionless position vector 5, de-
fined by T= rP, where r, is a reference length
which can be chosen conveniently (e.g. , average
distance between the colloidal particles), this
equation can be written as

—+ w, z„g+y„„(B„g)

8
I

8 y go

Greek indices refer to Cartesian components and
the summation convention is used. In (I) g,
=e "a' is the equilibrium pair-correlation func-
tion and so is the effective potential for the inter-
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acting polymer spheres. The relaxation time co-
efficient Tp is related to the diffusion coefficient
D=2hsT/$ (f is a friction coefficient) occurring
in the Smoluchowski equation by

MOMENT METHOD, REIAXATION EQUATIONS

Let y' = y'(5) be a set of orthonormalized func-
tions with f y'g, d'R = 0 and

27'p =Drp . (2)

The second and third terms in (1) describe the
change of g due to the presence of a flow field v

which is characterized by

v„v„=0, w„=-,'(vxv)„, y, „=-,'(v„v„+v„v„). (3)

The vorticity w„and the symmetric traceless
shear-rate tensor y„„are assumed to be (approx-
imately) constant. The quantity t. is the anti-
He rmitian operator

(' Ii) f=-w'ii. i ' &'ii = ow.

Then g can be written as

Q a8~J

with the expansion coefficients a' given by

a' = y'g d'R = y'gp d'R =-

(8)

8 ~ 8 (4)
Multiplication of (6) by y' and subsequent inte-

gration leads to the following set of coupled re-
laxation equations for the moments a'(t):

Notice that both the second and third terms of (1)
stem from the single term V„v„a/8R„(R„g).
(1), the velocity gradient tensor V„v„has been
decomposed into its symmetric part y„„and its
antisymmetric part involving se„. This decompo-
sition is not only a matter of mathematical conven-
ience; the physical effects associated with these
terms are rather different. More specifically,
the y„„term leads to a kind of alignment (prefer-
ential orientation) of the unit vector T = 5 between
a pair of particles whereas the w term induces a
rotation of P about an axis parallel to w. The
ansatz

where

('&li i') f( 'w')i."( H)&'R.

(10)

Notice that, in general, Eq. (10) stands for an in-
finite set of equations, which for practical pur-
poses, is approximated by a finite set.

Pa'
; +Q w„(i~w„~j)+y„„ i g, ' „' ii iij)„,

+ r, '(i, X
~j X) ~a~ = -y„„ i g, 'R„

g=go(I+ t) (6)

where P characterizes the deviation of g from its
equilibrium value g, leads to the following equa-
tion for t)i:

= -y.„R„„'. (6)
8

Clearly this is an inhomogeneous equation for g.
The inhomogeneity term vanishes for practically
noninteracting colloidal particles where g, =1.
In connection with the viscosity problem for sim-
ple liquids' ' the terms containing se„and y„„on
the left-hand side of (6) can be disregarded. At
least as far as the w term is concerned, this is
no longer true for the colloidal suspension to be
considered here.

Next, it is indicated how an approximate solution
of (6) can be obtained with the help of the moment
method which has previously been used success-
fully to obtain approximate solutions of kinetic
equations, e.g. , for molecular gases and li-
quids.

RELAXATION EQUATION FOR THE ANISOTROPY
TENSOR

The simplest approximation for the deviation of

g from g, is a single term description where just
one expansion function is taken into account which,
however, is chosen such that the inhomogeneity
term in (10) becomes extremal. This implies the
use of the 2nd rank tensorial expansion function

(12)

with the normalization factor z determined by

tc' =
—,', (h(R)

~
h(R)), h(R) =g, 'R

+yv+jav '

The tensorial expansion coefficient

(14)

a„„= cp„„gd'R= (15)

The centered asterisk refers to the symmetric
traceless part of a tensor, e.g. , a„*b„=,'(a„b„-
+a„b„)——,'e„b„5„„;I is the unit vector parallel to
7 and %. In this case, t)i is given by
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is referred to as the (2nd rank) anisotropy tensor
since it characterizes the (anisotropic) deviation
of g from the isotropic g, . Note, that the nor-
malization (13) has been chosen such that

aa 1——yb ——,eye+ v a = Ky,at

ab—+ya+ 7. 'b=0,
at

(20)

at
"" + 2(w xa) „„+cy„„eI „+r 'a„„=Ky„„.

The effective relaxation time 7' is given by

= r(& —, (p), ) I p(, ) ) )

cf. (10) and (11). The scalar coefficient

(15')

(16)

( &( v I p( '~')su'v = s( ~

Within the approximation (14), the relaxation
equation for a„„as it can be inferred from (10}is

—--,gya+ 7 c = 0.ac -j.
at

In this connection, it should be noticed that +ia
+ b and c are essentially the spherical components
a of a„„for m=+2 and m=0, respectively,
where the z axis is chosen as the reference axis.
The equations for the m = +1 components are not
coupled with the components which are taken into
account here. The solution of (20) for a station-
ary situation can be written as

a = K& n cos2y, b = —K& u sin2y,

C = 406 Q'y (21)

can also be expressed in terms qf an integral in-
volving g, and its derivatives with respect to R.
It should be mentioned that the influence of the
shear flow on the diffusion process which is de-
scribed by a term proportional to

has been disregarded in (1) and (6). Inclusion of
this term leads to a renormalization of the coef-
ficient o in (15') but does not affect the w term.

Formally, (15') is analogous to the equation
governing the alignment tensor which occurs in
connection with Qow birefringence in molecular
gases '"'" and in liquids or colloidal solutions
of nonspherical particles. '

Next, a special geometry is considered where
the tensorial Eq. (15'}can be reduced to three
equations for scalar functions.

SPECIAL GEOMETRY

For a linear velocity profile (planar Couette
flow) with 0 parallel to the x axis and its gradient
parallel to the y axis, one has

e = rye a = (1+e')' '[I + (1 ——' o')e'] ' .
The angle X is determined by

tan2X = 7'y=- e. (22)

This result can also be obtained from

a „=K1ygv y
(23}

the corresponding stationary solution of (15' ) in the
small shear-rate limit. The approximation (23},
however, is not appropriate for the colloidal sus-
pensions under consideration as will become ap-
parent from a comparison of the structure factor
with the light scattering observed in Ref. 1.

The ansatz (19) with (21}implies that one of the
principal axes of the tensor a„v is parallel to the
z axis; the other two are in the plane determined
by v and the direction of its gradient and they en-
close the angles 4m —g and —,

'
n —X with the x axis

(flow direction).
In the limit (e)' «1 which is always fulfilled in

simple liquids where the relaxation time v' is very
short, (21) and (22) reduce to

a= K~, b =c=0, g=0.

=y8 +8 w= —ay% y=x "r
QV fs V P y

ay
(is)

STRUCTURE FACTOR

The ansatz (5) with (12) and (14) implies that the
structure factor (spectral density)

where the e" ""are unit vectors. Insertion of the
ansatz

(19)

s(k)=f (g —1)e"'e'r

becomes

(24)

into (15') and comparison of the terms in front of
the various (linearly independent) tensors yields
three coupled equations for the coefficients a, b, c,
Viz. y

S= S, + a 'a„„(k„)S""ak„

a$
JSV gl V (25)
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where S, is the static structure factor for an equi-
librium situation and k is the unit vector parallel
to k. For the light-scattering experiments as in
Ref. 1, the relevant wave vector k is the dif-
ference between the wave vectors of incident and
scattered light.

For a„„t0, the Debye-Scherrer rings become
ellipses with their principal axes determined by
those of the tensor a„„. The strength of this el-
lipsoidal distortion is determined by the "magni-
tude" of a„„and by kBS,/8k.

In particular, for the special geometry consi-
dered in the previous section, where a„„is given
by (19) with (21) and (22), (25) leads to

S=Sp+ elk Q,
BSp

gk
(26)

Q= sin2(y —}t}sin'v + ,'&rico—s2X(cos'v ——,'),
where v and y are the polar angles of k.

Now (26) is discussed for (small-angle) scatter-
ing with the direction of the incident light, firstly,
parallel to the z axis (normal to the plane deter-
mined by v and its gradient) and, secondly, paral-
lel to the y direction. These cases correspond to
the experimental situations studied in Ref. 1. In
the first case one has v =—', v and (26) reduces to

the angle X can still be of measurable size, e.g.,
one has )i=5' (10') for a=7'y=0. 18 (0.36).

For incident light parallel to the y axis, k prac-
tically lies in the x-z plane (y =0). Thus the de-
viation of S from S, as it can be inferred from
(26) is considerably smaller in this case. This
fact has also been noticed in Ref. I.

Next, the dependence of S on k is studied for
fixed direction of k. Special attention is paid to
S in the vicinity of k=k, where S, assumes the
maximum value S . Insertion of the ansatz S,
=S + zSO(k —ko)' (with So =8 So/Bk at k=ko,

S=S,+ ~ak [ sin2(y - )t) ——' m cos2)t] . (27)
pk 12

The resulting Debye-Scherrer rings are ellipses
as observed in Ref. 1. Their principal axes en-
close the angles —,'m —X and —,

'
wX with the x axis.

The approximation (23) implies X=0. The ex-
perimental results of Ref. 1 indicate that one has
X 0. It should be possible to determine the re-
laxation time 7' from the observed values of X with
the help of relaxation (22). Notice that it is the
term involving w in (1), (6), or (15}which leads
to a rotation of the principal axes of a„„versus
those of y„„and thus to Xw0. In the limit of small
e (e'«I, a=1) where (27) is approximated by

S= S, + ek sin2(y- X),
BSp

gk

k =k,[1-eaQ(1+2eaQ) ']. (29)

The shift of the maximum of S (towards smalle~
values of k} has indeed been observed experimen-
tally. '

For v =-', m and with the approximation which led
from (26) to (28), (29) reduces to k = k,[1
—f sin2(y —}()]. In this case, k„ is shifted towards
smaller (larger) values as compared with k, for
p & )t (cp &)t). Notice that the shift of the maximum
of S essentially stems from the expression (12)
for the tensorial expansion function y„„and it al-
ready can be found in the small shear-rate limit
where the approximation (23) can be used.

CONCLUDING REMARKS

In this article, it has been demonstrated that
the shear-flow-induced distortion of the structure
factor as observed in colloidal suspensions can
be derived from the appropriate Smoluchowski
equation. In contradistinction to simple liquids,
terms nonlinear in the shear rate have to be taken
into consideration.

Finally, however, a few qualifying remarks are
in order. The result (26) is based in the approxi-
mation (14) for the deviation of g froin g, . In
principle, additional expansion functions and mo-
ments of two types have to be included. Firstly,
there are 2nd rank tensorial functions (orthogonal
to y„) which affect the radial dependence of g.
It is hoped that the resulting modifications of the
effective relaxation time and of the dependence of
S-S, on the magnitude of k are insignificant for
practical purposes. Secondly, expansion tensors
of higher rank have to be included in g. In par-
ticular, the term involving the shear-rate tensor
y„„on the left-hand side of (6) leads to a coupling
of a„„with a 4th rank anisotropy tensor and thus
additional terms contribute to (26) which are
nonlinear in e= 7y. For the suspensions studied
in Ref. 1 these contributions are negligible for
small values of e where (28) applies. This is no
longer true for suspensions with a crystal-like
structure. " There, higher rank anisotropy ten-
sors" play an important role.
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S,"&0} into (26) yields

S=S + —', S;(k —k, )(k —k, +2keaQ}.

This relation implies a shear-induced shift of the
maximum of S from k, to
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