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The local density of a nonuniform fluid is calculated from the first equation of the Born-Green-Yvon hierarchy by
modeling the pair correlation function. For that purpose, the mean force term is divided into two parts,
corresponding to the mutual repulsion of the fluid atoms and the their mutual attraction, respectively. In the
repulsive force term the interaction is approximated by a hard-sphere interaction and the pair correlation function is
taken locally as that of a homogeneous hard-sphere fluid at some average density determined by spatial coarse
graining. In the attractive force term the particles are taken to be uncorrelated. The formalism is applied to (a) the
free-liquid surface, (b) gas adsorption on a wall at low temperatures, and (c) a liquid in contact with a wall. In all
cases good agreement with existing computer simulations is obtained. An interesting feature arises for the free-liquid
surface, where the equation turns out to be an eigenvalue equation for the coexisting liquid density. For this case the

surface tension is also calculated.

I. INTRODUCTION

The local density of a fluid in equilibrium at an
interface is of considerable practical interest. It
is the purpose of this paper to show that the Born-
Green-Yvon equation is an excellent starting point
for a theoretical approach if physically reasonable
approximations for the pair correlation function
are made., Within the same approximations re-
sults for such different situations as (a) the free-
liquid surface, (b) gas adsorption on a wall at low
temperatures, and (c) a liquid in contact with a
wall, will be obtained. The agreement with com-
puter simulations is nearly within the accuracy
of the latter,

Most of the theories start either from the Born-
Green-Yvon equation,? or use a closure for the
Ornstein- Zernike equation,3=% or start from an
expression for the free-energy of the system.®~?
The references given here refer only to recent
works which are thought to be representative in
their field. A more complete list of theoretical
works and computer simulations can be found
elsewhere.’ We begin by shortly reviewing the
approximations and the results of the different
theoretical approaches.

Among the free-energy approaches the density-
functional theory® has received much attention.
The basic idea is that there exists a functional
of the local number density n(;), such that the
equilibrium n(x") minimizes Q. This concept has
been applied with success to the electron gas and
to liquid helium. For classical fluids an exact
expression for the function Q could also be con-
structed.!® The actual calculations®!! for three-
dimensional classical fluids, however, start from
an approximate functional. There, an approxima-
tion for the Helmholtz free-energy F is used,
where F is expressed as functional of the local

frge— energy density f (F), the local number delxsity
n(r), and the direct correlation function c(ry, r,),

F=F(f (),n(),c(r,Ty)) .

In the further treatment additional approximations
have tobe used. The direct correlation function was
taken to be that of a homogeneous fluid at some
intermediate local density ¢ (T, T'3) = Cpom(Ty, T9;%,)
with n, = [n(r,) +n(r,)] /2. The local free-energy
density, a not very well defined quantity, was as-
sumed to be the free-energy density of a homo-
geneous fluid at the local density £ (¥) =f (n ().
The free-energy of the homogeneous fluid was
calculated consistently with the direct correla-
tion function. Pointing out this consistency,
Ebner et al.% believed their approach to be
superior to other existing theories, a view which
seems open todiscussion. In any case, the as-
sumptions that ¢ and f depend on a local density
become dangerous if the local density is in the
liquid-vapor coexistence region or if it can be-
come higher than any bulk liquid density, which
happens in the case of low-temperature adsorption.
In the next step, the more rigorous concept then
required the calculation of C(F) for a homogeneous
fluid from the Percus-Yevick equation for a
variety of densities. In a simpler version addi-
tional approximations for ¢ were made. Finally

a prescribed form of the local density containing
several parameters was used, and by minimizing
the approximate functional these parameters were
determined. In discussing the results we will re-
strict ourselves to two cases. For the free-liquid
surface reasonable density profiles and surface
tensions were obtained. It must, however, be
noted that the coexisting liquid and vapor densities
could only be obtained by a double tangent con-
struction with respect to the free-energy of the
uniform states. This requires another evaluation
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of the Percus-Yevick equation for a variety of
states or a free-energy expression from outside
the theory. The other result concerns the film
formation of a gas adsorbed on a solid surface.!!
Simulations!? have shown that the density-func-
tional result is quite unlikely to be correct. Ex-
planations for that could be a bad choice of the
trial density function!? or that the fluid is already
in the liquid-gas coexistence region (for arguments
see Sec. III), so that the results describe some
metastable state, Summarizing, we want to say
that the approximate density-functional theory as
described above has increased our understanding
of nonuniform fluids. While several approxima-
tions have to be made, they seem to be physically
reasonable for many cases. In those cases, how-
ever, where incorrect results are predicted, it is
difficult to locate the source of error,

Within the framework of the density-functional
theory an exact relation, Eq. (12) of Ref. 10, has
been derived also, which relates the local density
to the direct correlation function in a similar form,
as does the Born-Green-Yvon equation with the
local density and the pair correlation function,33
That equation, however, does not yet seem to
have been evaluated for three-dimensional cases.
Moreover we will not call it a free-energy ap-
proach.

Other free-energy approaches are the modified
van der Waals theory of Davis et al,” and the
Singh- Abraham theory.? The former is similar
to the approximate density-functional theory in
concept, the main difference lying in the fact that
the approximate expression for the free-energy
contains the pair correlation function instead of
the direct correlation function. Furthermore, a
recent paper!? shows that the results obtained
from both theories for the free-liquid surface are
quite similar, The Singh- Abraham theory is some-
what different in that it uses several perturbation
schemes. An essential shortcoming of this ap-
proach is that the resulting equations are so com-
plicated that they can hardly be evaluated. To the
author’s knowledge only the density profile for a
free-liquid surface has been determined. This
was done under the restriction of using a pre-
scribed function with only one free-parameter.
Keeping in mind the long-lasting quarrel whether
a free-liquid surface shows a layered structure or
not, a one-parameter ansatz, however, anticipates
the result.

The use of the Ornstein- Zernike equation for
interface problems seems to be of limited success,
as till now no closure could be found that would
yield reasonable results for rather different physi-
cal situations. The case of hard spheres in con-
tact with a hard wall was investigated for different

closure relations,?~%1415 The Percus- Yevick and
hypernetted-chain closures yield density profiles
which are in considerable error close to the wall,
While for a hard wall this failure can be remedied
by using the generalized mean spherical closure!?
this cannot be done so easily for more realistic
wall-particle interactions. For the case of wall-
particle and particle-particle interactions of the
Lennard- Jones type a recent investigation® has
shown that the Percus-Yevick and the hypernetted-
chain closure predict density profiles with a much
too high first peak, if solutions can be obtained at
all. A more basic objection against using the
Ornstein- Zernike approach for fluid-wall problems
is the fact that the wall must be plane and cannot
be allowed to show any atomic structure. Finally
it should be mentioned that in an investigation of
the free-liquid surface,? the Percus- Yevick closure
led to a strongly layered density profile, which
contradicts the simulation results.®

The Born-Green—-Yvon (BGY) equation, which for
the case of a wall-particle potential u"(;) and a
particle-particle potential u(;) is written as!’

¥ lnn () =- Y @ (ry)
+ f n(ry) gy, To)[ - BV u@r,)]dT,,

1)

represents the condition of mechanical equilibrium
for the system and constitutes an exact relation
between the local number density n(;) and the pair
correlation function g (r,, Fz). The first term on
the right-hand side of Eq. (1) is the external force
and the second one is the mean intermolecular
force exerted on particle 1. In order to obtain an
equation for n(F) one has to approximate the pair
correlation function. This, however, is the only
approximation needed and in this respect the
Born-Green—Yvon approach is superior to the
free-energy theories. Previous works have ap-
plied this approach to the free-liquid surfacel- %
and to fluids in contact with a wall,%2%2

By using the BGY equation for the free-liquid
surface, in Refs, 18 and 19 an oscillating density
profile was found, while that obtained by Toxvaerd!
in monotonic. First, it is the present authors’
view that the approximations for the pair correla-
tion function in all three papers are rather artifi-
cial constructions. Second, a special feature of
the free-liquid surface should be pointed out. At a
given temperature a free-liquid surface can exist
only for one definite pair of coexisting densities,
which depend on the approximation used for the
pair correlation function. As in all three cases the
liquid density was prescribed from the very be-
ginning, the suspicion arises that in Refs. 18 and
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19 the BGY equation should have only the trivial
solution # =const and that the given density pro-
files are some artefacts. Toxvaerd circumvented
this problem by using a model pair correlation
function containing one free-parameter. Then by
prescribing the coexisting liquid density, a solu-
tion for the density profile could only be found for
one value of that free-parameter. An alternative
way would be to use a model for the pair correla-
tion function without free-parameters and to look
for those coexisting densities for which a solution
of the BGY equation can be found. This procedure
will be adopted in the present paper.

Considering the question of how to approximate
the pair correlation function g something can be
learned from simulation results?*2% and Fischer’s
work on fluids in contact with a wall.»?' For the
case of the hard-sphere fluid in contact with a hard
wall the BGY equation was solved in Ref. 2 by ap-
proximating the pair correlation function every-
where by its bulk form., The calculated density
profile was in reasonably good agreement with
computer simulations.?? On the other hand, Snoek
and Henderson?? have investigated the pair correla-
tion function very thoroughly by simulations.
Roughly speaking it can be saxd that g is similar
to its bulk form for any pairs (ri, rz) Approxi-
mating g by its limiting form far away from the
interface, is, however, not possible in the case of
the liquid-gas interface and highly questionable for
a low-density gas adsorbed on a wall. For these
cases it was thought?! that the pair correlation
function could be taken locally as that of a homo-
geneous fluid at some intermediate density n,4
=n(%(r;+7r,). Such an assumption, however,
contradicts strongly the findings of Refs. 22 and
23, where the pair correlation function in all
planes parallel to the surface was found to be
nearly the same, irrespective of whether the local
density there is high or not. slm11ar1y, taking g
locally at the density n,= z(n(rl) +n(r,)), which
is used in the free-energy approaches, is not
much better. Contrary to the statement of Davis, 3
the assumption about the density at which g should
be taken plays an important role. As an example,
we mention that continuing the calculations of Ref.
21 to higher densities, yields only one distinct peak
in the density profile which is inconsistent with
the simulation results of Ref. 23. Another objec-
tion is the fact that the densities n, or ng can be-
come much higher than any bulk densities.

In this paper we propose to take the pair cor-
relation function g locally as the pair correlation
function of a homogeneous fluid at an average den-
sity 7= (1/v)[ n(r)dr, where the averaging is done
over a volume v of molecular size. Such an
averaged density #, which can be viewed as re-

sulting from spatial coarse graining, is a smoothly
varying function that is likely to remain bounded

to physically possible bulk densities. For a dense
liquid in contact with a wall, 7 will everywhere be
close to the bulk fluid density, so that the approxi-
mation is reasonable in this case. In any case,
limiting values of the density are obtained proper-
ly.

A direct use of the approximation g =g ) is,
however, advisable only for a hard-sphere fluid,
where merely the value of g for two spheres in
contact is required. For a realistic interaction
between the fluid particles the computational effort
would become prohibitively large and, moreover,
it may happen that # lies in the liquid-gas co-
existence region. To overcome this problem we
take into account that realistic intermolecular in-
teractions consist of strong short-ranging repul-
sive forces and weak long-ranging attractive
forces. Already van der Waals argued that the
structure of a uniform liquid should essentially be
determined by the repulsive forces while the
attractive forces merely form a uniform back-
ground potential. For nonuniform fluids it cannot
be assumed that such a simple approximation
holds, but it is rather plausible that the pair cor-
relation function will be less important in the
mean attractive force exerted on one particle,
than in the mean repulsive force because of the
long-ranging nature of the attractive forces. In
this sense we split the intermolecular potential »
into a repulsive part #° and an attractive part u‘,
which by insertion into Eq. (1) yields the mean
repulsive and the mean attractive force on par-
ticle 1. Then, the attractive forces are treated in
the most simple way by neglecting any correla-
tions. In the mean repulsive force, the pair cor-
relation function is assumed to be that of a refer-
ence system of particles interacting through the
soft repulsive potential #°, Finally, the repulsive
interactions are replaced by hard-sphere interac-
tions and the pair correlation function is related
locally to that of a homogeneous hard-sphere fluid
at the average density n.

1. MATHEMATICAL FORMULATION
OF THE APPROXIMATIONS

We consider a fluid of spherical particles in
equilibrium at temperature 7, f=1/k7T. The
interaction between two fluid particles tand k
shall be u (r;,) =u;, with 7, = lr, - T,|, and the ex-
ternal potential is taken as u’(ri) the total poten-
tial energy U is assumed to be

U= Z: u"(;,) + g; U@y,

The Born-Green—Yvon equation for that system
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was given in Eq. (1).

For a realistic intermolecular potential # with
repulsive and attractive forces we start by splitting
the potential according to the prescription of
Weeks, Chandler, and Andersen,?

ur)=u'lr) +u'(), )
with

UW) — Uggn, fOT ¥ <7y,
0y) —
w'e) _{ 0, for r>7g, ®

where 7,,, is the distance of #y,,, the minimum of
the potential. Insertion of Eq. (2) into the mean
force term of Eq. (1) yields trivially,

f ng(- BV u)dT,= f ng (- BY ul)dr,

+ [ ngc B9utaz,, @

where the first term on the right-hand side is the
mean repulsive force and the second term con-
stitutes the mean attractive force.

According to the arguments of Sec. I, the cor-
relation in the mean attractive force will be neg-
lected, which means g=1. Hence, in this ap-
proximation we have

‘/‘”(;z)g(;p ;z)[ - 361"1(7'12)]‘1;2

—- 69, [ nGE e, dT,. )

For the treatment of the mean repulsive force
we first introduce a reference system that con-
sists of soft repulsive spheres interacting with the
potential #° and that additionally has the same local
density n(;) as the original system, which can be
achieved by some external potential. The first
approximation is to replace g by the pair correla-
tion function g of the reference system,

fng(— Bﬁ,u")d?,:fng"(_ BV uYdr,. (6)

This approximation, taken for itself, is thought

to be good at high average densities and to become
worse for the low-density low-temperature region;
there, however, a certain compensation with the
approximation of Eq. (5) may occur. At this stage
it is ugeful to introduce the background correla-
tion function ° of the reference system, which is
defined by

g0, T =exp [~ Bud(T;, Ty)] ¥°(Ty, Ty).

By using y° we can write

f”go(- Bamo)dr‘z:‘[”yo(a@_“o)d;z- ()

In a second step we replace the soft repulsive
spheres by hard spheres, denoting that potential
by «¥S, A temperature-dependent hard-sphere
diameter d is determined according to the pre-
scription of Barker and Henderson?®

S - e yar=o, ®

and the background correlation function y° is ap-
proximated in the sense of the blip expansion?! by
%8, Thus we get

f”yo(ﬁie-“o)d;z=f”yﬁs(axe_hxs)d;z- 9

Using the fact that the derivative of the hard-
sphere Boltzmann factor is the Dirac & function®
d _g,HS

- €

=60 —d)
o, 2 )

we obtain from Eq. (9):

> HS - - -
f”yﬂs(vie'h )dr2=fn(r2)g“s(r1, Ty} 712=d)

><<_—1:11>6('r12— d)dr,.
D)

10)

In this expression g B8 (r,, T,;7;,=d) denotes the
pair correlation function for hard spheres in con-
tact. One observes that this is the only value of
the pair correlation function needed.

The final approximation concerns the value of
the pair correlation function for hard spheres in
contact. Following the suggestion of Sec. I, we
take this value locally as that of a homogeneous
fluid at an average density 7,

([, Ty;7yy=d) =g Bou(ry=d;;n(x,, T)).
. (11)
The average density # is determined by

—_- -

AE, T =1—1) [ @ +7 47, (12)

where the averaging is done over a sphere of
diameter d centered at the point of contact ;c
=3(ry+ry).

Putting together all the approximations yields the
equation

Vilnn@E) =~ BV @) - 6Y, f n(rJul(rp)dT,
+[”(;z)g§§.(d;;)(-—71;;1)6(ru—d)d;z,
13)

where 7 is defined by Eq, (12) and g 28 (d;n) can
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readily be obtained from the Carnahan-Starling
equation.”® In this approximation to the BGY equa-
tion the only unknown function now is the local den-
sity n(;)-. So far, the equation is still quite general
and could also be used for the case of a nonplanar
wall or for the investigation of the surface of a
droplet, to give only two examples.

In the situations to be studied in this paper the
density will vary only in the z direction, In this
case only the z component of Eq. (13) survives,

J

Then it is convenient to introduce coordinates as
shown in Fig. 1. Now the second integral in Eq.
(13) can be written as?

+d -
—or f-a n(2y) & ho(d;n(2y, 2,)) 21,02,

Finally, by prescribing a boundary value n, for the
local density at z=«, Eq. (13) can be integrated
from z =« to a value z =2, to give

- e +d —
n(zo)=n,,exp(—ﬁua(zo)—f3u1(roz)[n(zz)—n,]drz +211f dz, f_‘ dzun(zz)g,‘;‘os_[d,n(z‘,zz)]zlz). (14)

This integral equation, which contains the external
potential #,, the limiting density n,, and the tem-
perature 7T as parameters can be solved numeri-
cally by iteration,

III. RESULTS AND DISCUSSION
A. Free-liquid surface

We have investigated the plane liquid-gas surface
for a Lennard-Jones fluid

ulr)=4e[ (0/7)12- (¢/7)¥] , (15)

neglecting any external forces #*=0, The co-
existing liquid and gas densities are denoted by
n, and n,, The density n; is taken as the boundary
value in Eq. (14); to agree with the literature we
assume that in this case the boundary value is
prescribed at 2=- «, The plane 2=0 is defined
as the Gibbs dividing surface

fo dz[n(z)—n,]+fmdz[n(z)—n,]=0. (16)

For solving Eq. (14) at a fixed temperature T,
we start with a guessed value of n,, an arbitrary

z

FIG. 1. The coordinates used for the case of plane in-
terfaces. The density varies along the z direction.

20

I

coordinate ¢ in the z direction and a guessed den-
sity profile n}, (¢), fulfilling the conditions n},(Z)
—const for {— o, As a first step we determine
the coordinate ¢, of the Gibbs dividing surface of
n}, and introduce z= ¢~ §,. Now we insert n},,
rescaled to the z coordinate, into the right-hand
side of Eq. (14) and thus obtain a profile nl, from
the left-hand side. In general, these two profiles
will be different and in the usual way we construct
another input profile by mixing n},'! = (1- x)ni,
+mm!,,. Before inserting the new profile into Eq.
(14) we again have to determine the Gibbs dividing
surface and to rescale the profile. For an arbi-
trarily prescribed liquid density n;,, however, the
best agreement which can be achieved between the
input and the output profile is of the kind

";ut (2 + A) =n{n(z) ’ (17)

which means that the density profile is shifted
either to higher- or lower-z values. Thus, for an
arbitrary value of n; no solution of the BGY equa-
tion besides the trivial one n(z)=n;, can be found.
By varying the liquid density we observe that the
shift A is a monotonically increasing function of n,,
In this way it was possible to find exactly one
density n; for which A=0. Hence, the integrated
BGY equation, Eq. (14), in its homogeneous form
u®=0, is an eigenvalue equation in the sense that
at a given temperature T only for one value of n,
=n,; a nontrivial solution exists. The coexisting
gas density n, is the limiting value of the eigen-
solution for z — «,

Once having obtained the density profile, it is
also possible to calculate the surface tension y
from!?

e e e o du 7l-323
By:%fdmfdrz’l(ﬁ)”(rz)g(rl’rz)ﬂd =,
T ar;, 7y

(18)

if the pair correlation function g(?,, ;z) is approxi-

‘mated in the same way as in Sec. II.
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FIG. 2. Density profiles for the free-liquid surface of
a Lennard-Jones fluid obtained at different tempera-
tures as eigensolutions of Eq. (14) with «*=0. The pro-
files can be compared with simulation results of Ref.
16.

The numerical integrations in Eq. (14) were per-
formed over an interval which was symmetric to
the .Gibbs dividing surface and extended over 12 to
16 molecular diameters, such that at its boundaries
the density profile practically had achieved the
limiting values n; and n . Because of long-ranging
contributions the intervals for numerical integra-
tion in Eq. (18) have to be even larger. In any
case, analytical corrections for long-ranging in-
teractions were added where necessary.

Calculations were performed at the reduced
temperatures k2 T/e =0.759, 0.918, 1,002, and
1.127. Figure 2 shows the density profiles for the
three temperatures for which computer simula-
tions!® are also available. Table I contains our
results for the coexisting densities, the surface
tension, and the surface thickness L, which is
defined as'®

-1
=~ m-n)(%2)" 19)
z=2()

where 2, is given by

nzg)=3 @ +n,).

A discussion of our results should start with the
coexisting densities, At %T/e=0.759 our liquid

TABLE I. The free-surface of a Lennard-dJones lig-
uid. The table gives as functions of the temperature, the
coexisting liquid and gas densities, the surface tension,
and the surface thickness.

kT /€ no3 ngo3 Yol/e L/o
0.759 0.740 0.003 0.84 1.41
0.918 0.662 0.012 0.57 1.99
1.002 0.619 0.021 0.45 2.37
1.127 0.548 0.041 0.27 3.20

density agrees approximately with that of Ref. 16,
but both these values are inconsistent with that
given by Hansen and Verlet.2" At %2T/e=1.127 the
liquid densities of Refs. 16 and 27 agree approxi-
mately, but ours is somewhat lower. Therefore,
when comparing our surface tension and thickness
with the results of Ref. 16 we expect better agree-
ment at lower temperatures, This is true for the
surface tension, where the difference increases
from 7% at the lowest temperature to 20% at the
highest temperature. This agreement is re-
markably good regarding the fact that the scat-
tering between different simulation resultsi®28 ig
considerably higher. The surface thickness ob-
tained by simulations depends on the number of
particles,® a fact which was explained by postu-
lating surface capillary waves.?® At kT/e=0.759
our value L/0=1.41 could be a lower bound to the
simulation results, thus giving the intrinsic sur-
face thickness. AtkT/e=1.127 our result is
somewhat higher than the simulation result for 255
particles, which may be caused by the different
liquid densities.

B. A gas in contact with a wall

Adsorption at low temperatures belongs to the
most challenging interface problems for the
theoretician. Below the critical temperature even
a gas of low bulk density is expected to form at the
solid surface several densely packed layers. The
questions are, how many layers are formed, how
densely are these layers packed and how does the
transition from the layered structure to the bulk
density behave. Approaching the coexisting bulk
gas density, these questions become increasingly
interesting.

For this type of problem only a few simulations
have been performed. We decided to make a com-
parison with the results of Rowley et al.,3 who did
sampling in the grand canonical ensemble for the
case of a Lennard-Jones gas in contact with a
plane 9-3 wall:

u*(2) = 533 %, [ (000/2)" - (0,6/2)"] , (20)

taking e,,/c =9.24 and 0,,/0=0.5621. At the tem-
perature kT/e =1.002 density profiles for the gas
were given at bulk densities up to no®=0,025173,
which is supposed to be close to the coexisting
density of the Lennard-Jones fluid. It shall be
mentioned that we obtained the bulk gas densities
from the activities of Ref. 30 by using the series
representation of the density in powers of the
activity.

We had to solve now the inhomogeneous form of
Eq. (14), u*=u*(z), for a prescribed limiting den-
sity n,. In order to ensure that our limiting den-
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sity n, does not lie in the liquid-gas coexistence
region, we performed a calculation for the free-
liquid surface at 27/e =1.002, which gave an
eigensolution with the coexisting density n,0 $
=0,0207, a value which is likely to be smaller
than the exact value of the Lennard-Jones fluid.??
Within the framework of our approximations for
g(r), however, this is the coexisting gas density

and no higher bulk gas densities should be possible.

Actually we were able, again by using iteration
algorithms, to find solutions for Eq. (14) for
limiting densities up to 7,0 $=0.0200. The con-
vergence of the iteration always became slower
with increasing bulk density but the difference be-
tween the input and the output density profile could
be made arbitrarily small, so that we can be sure
to have obtained the solution. The numerical in-
tegrations were performed in intervals up to 10
molecular diameters extending from the wall into
the gas. We failed in finding a solution for #,0 3
=0.025"73, as with any iteration step the transi-
tion zone between the layers and the bulk gas was
shifted away from the wall and the number of
layers increased steadily. It is from this experi-
ence that we believe that the density profiles found
by the approximate density-functional approach in
Ref. 11 could describe some metastable states.
Our density profiles for 7,0 3=0,01919 and
0.02000 are shown in Fig. 3. The lower density
corresponds to run 6 at £7/e=1.002 of Ref. 30.
We observe nearly quantitative agreement between
the simulation and our theory, the main difference
lying in the fact that our second and third peak are
somewhat smaller but broader. For a quantitative
comparison we calculated the excess number
coverage 6° and the layer coverages 6% according

T T T T T

adsorbed Lennard - Jones gas

5| KI/€=1002 _
— nyo® = 0.02000

& ——— o~ 0.0191 4

0.8

FIG. 3. Density profiles for a Lennard-Jones gas ad-
sorbed on a plane wall. The bulk gas densities are
close to the coexisting gas density, which in the frame-
work of our approximations was found to be 7,03
=0.0207. The lower density corresponds to the simula-
tion run 6 at 27T/€=1.002 of Ref. 30.

to the prescriptions of Ref. 30. We obtained 6°
=2.26, 61=0.86, and 62=0.72, while the corre-
sponding numbers of Ref. 30 are 1.960, 0.898,
and 0.675. Figure 3 is also interesting because
the profiles there belong to bulk densities which
are close to the coexisting gas density. With in-
creasing bulk density the first two layers adjacent
to the wall remain unchanged while the transition
zone between the third layer and the bulk gas ob-
viously tends to form a plateau, which gives a
certain insight into the onset of bulk condensation,
Our theoretical results are also in reasonable
agreement with recent experimental findings®
which showed three to four adsorbed gas layers at
the beginning of bulk condensation, Perhaps we
should still mention, that we do not yet have final
results for bulk densities 7,0 ® between 0.0200 and
0.0207 as the numerical treatment in that region
is tough.

C. A liquid in contact with a wall

Recently it was pointed out by simulation
workers®¥ 23 that the attractive forces between the
fluid atoms play an impor*ant role for the struc-
ture of a fluid in contact with a wall. In the frame-
work of our approximations this can be readily
understood, as in Eq. (13) the contribution of the
attractive forces can alternatively be regarded as
that of an additional external potential.

First we studied a Lennard-Jones and a hard-
sphere fluidin contact with a9 -3 wall under the same
conditions as it was done in the simulations of
Abraham and Singh.’? Thus, we used the tempera-
ture £ T/e=1, the bulk density 7,0 °*=0.65, and
the wall potential of Eq. (20) with ¢,,/e =1.877 and
0,s/0=0.7148; the hard-sphere diameter was
chosen to be 0. The iterative solution of Eq. (14)

T T T T T T T

np0” = 0.65
kl/e = 1.0

n(z)o®

2.0 hard sphere fluid 1
——= Lennard - Jones fluid

z/0

FIG. 4. Density profiles for a hard sphere and a
Lennard-Jones fluid in contact with a 9-3 wall. The pro-
files can be compared with simulation results in Ref. 32.



T T T ™ T

nbc’=o.es
kT/¢=1.0

1 2 3 4 /6 5

FIG. 5. Density profile for a Lennard-Jones liquid at
a rather high liquid density in ~ontact with a 9-3 wall.
The conditions here are the same as for one simulation
result shown in Fig. 9 of Ref. 23. ~

converged quickly for the hard spheres, but much
slower for the Lennard-Jones liquid, which may
be due to the fact that the bulk liquid density is
close to the coexisting liquid density. Our re-
sulting density profiles are given in Fig. 4 and
show the expected difference between the hard-

22 BORN-GREEN-YVON APPROACH TO THE LOCAL DENSITIES... 2843

sphere and the Lennard-Jones fluid. They are in
rather good agreement with the simulation re-
sults,3? much better than any of the solutions ob-
tained by closing the Ornstein- Zernike equation.®

In order to check the reliability of our approach
also at the highest liquid densities, we performed
a calculation for a Lennard-Jones liquid in contact
with a9-3 wall at the bulk liquid density ,0°=0.86.
The wall potential was given again by Eq. (20) with
€,4/e=2.208 and 0,,/0=0,7148, the temperature
was kT/e =1. Our density profile is shown in Fig.
5 and is again in good agreement with that in Fig.
9 of Ref. 23, which was obtained by simulations
for the same case.
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