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Statistical mechanics of stationary states. V. Fluctuations in systems with shear flow
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Long-wavelength thermal fluctuations in a fluid with a linear shear are investigated. Certain equal-time

correlations are found to have a long-range part. The dynamic structure factor is modified in such a way that the

Landau-Plazcek ratio no longer holds. A light-scattering experiment is proposed to test some of these results.

I. INTRODUCTION

In the previous papers in this series we de-

veloped a statistical mechanical theory of non-

equilibrium stationary states (NESS). In particu-
lar, we examined the fluctuations that occur in

NESS of simple fluids and discovered some in-

teresting modifications of the equilibrium fluctua-
tions. The formal properties of NESS correlation
functions were discussed in I.' In III we examined
the dynamic structure factor (density-density time
correlation function) for a fluid subject to a tem-
perature gradient but without a velocity gradient.
We found an asymmetry in the Brillouin com-
ponents of the light-scattering spectrum, which

was linked to the breaking of time reversal sym-
metry. 2'3 This asymmetry is pronounced for small
scattering angles (small-k vectors), and is neg-
ligible for large angles. It has been experimentally
observed by Beysens, Garrobos, and Zalcyer. 4

In this paper, we examine the question of fluc-
tuations in a system with a steady, linear, shear
flow. We shall show that the couplings to the dis-
sipative momentum flux induce fluctuations that,
for small k, differ significantly from the fluctua-
tions predicted on the basis of a local equilibrium
assumption. In particular, we evaluate below the

dynamic structure factor and the momentum auto-
correlation function. One interesting result is
that, although the symmetry of the two Brillouin
components of the spectrum is not affected now,

the Landau-Plazcek ratio between the Brillouin
and the Rayleigh components no longer holds. ' '
We link this finding to the appearance of long-
range correlations in the pair distribution function.
Another interesting result is that the nonequilib-
rium contributions to the correlation functions
arise solely from couplings to the shear part of
the velocity field and there is no contribution due
to the rotational part.

As in the previous papers, we consider time-
dependent correlation functions in nonequilibrium
steady states, (A, (t)A, )&&. We restrict our con-

siderations to k vectors that satisfy

0 (k«
where I- is a linear dimension of the system in

which the steady state exists, &, is the adiabatic
sound speed, and I', is the sound attenuation co-
efficient. These restrictions imply that sound

modes in the fluid with wave vector k decay over
a distance smaller than the size of the system
but are still only lightly damped. In this regime
we may neglect the boundaries of the system. It
turns out that the upper bound on k will also allow

us to neglect terms of order 1(k relative to terms
of order l,~k . In Sec. III we will discuss the re-
strictions on k in more detail in the context of a
proposal for a light-scattering experiment to test
our results.

A short report of the results concerning light
scattering was given in Ref. 8. Here, we expand
the treatment and consider also the interesting
changes in the momentum autocorrelation func-
tions.

In Sec. II we review the ideas involved in our
method. In Sec. III we compute the dynamic struc-
ture factor and discuss the implications of the re-
sult for the spectrum of light scattered from a
linear shear flow. Section IV deals with the mo-
mentum autocorrelation functions. We summarize
and discuss the results in Sec. V.

II. SUMMARY OF PREVIOUS RESULTS

We consider a classical simple fluid whose
macroscopic evolution is described by the equa-
tions of fluid mechanics. We start with the classi-
cal phase functions for the densities of the con-
served variables; number, energy, and momen-

tum: N(r, f), E(r, t), P(r, t). Denoting this set by
the symbol A(r, t), we write the equations of con-
tinuity:

A(r, t) =—V J(r, t), (2 I)

where J(r, t) is the set of microscopic fluxes. The
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set A is assumed to span the space of slow vari-
ables of the system. Associated with this set are
the conjugate thermodynamic variables denoted by
4(r, t), which are related to the local temperature,
chemical potential and velocity field. The set 4
appears in the definition of the local equilibrium
distribution function:

exp[ f4(r). A(r; X)dr]
Z fdXexp[ f4(r) A(r;X)dr] '

where X is the phase point.
In I' and IV' we derived the expression for the

NESS average of an arbitrary dynamical variable,
and, in particular, for correlation functions. To
linear order in the gradients of the conjugate
thermodynamic variables the equal- time correla-
tion of any of the conserved variables is

(A (r)A(r, ))„s——(A(r)A(r, ))

+ ArAry r2 4rm 4

dr LA(r, T)A(r&, T)Ir) ~ V4(r) .~
~

0

(2,3)

The unsubscripted angular brackets refer to an
equilibrium average where the uniform values of
the conjugate thermodynamic variables are given
by the values of 4 at the point r in the fluid and

A(r„ f) —=A(r„ t}—(A(r, }). The second term on the
right-hand side (RHS) of (2.3) comes from an ex-
pansion of local equilibrium around the total
equilibrium defined by 4 (r), This nonlocality cor-
rection can be shown to be very small~ and will be
ignored henceforth. The third term is a nonequilib-
rium effect arising from couplings to the total dis-
sipative current I~ defined by

dvk A

Ir= Jr —(JrAr) ~ (ArA—r) Ar- (Jr), (2.4)'
where, for example,

A~-=dr&A r&, v .
It is easy to verify that in simple fluids there

are only two dissipative currents —one associated
with the energy flux and the other with the mo-
mentum flux. The number flux is purely convec-
tive and has no irreversible part. Thus the third
term on the rhs of Eq. (2.3) has two contributions,
one from V4(r) =- VP(r) and one from V4(r}
=VP(r)v(r). We restrict our attention to systems
which are linearly displaced from equilibrium, in
which case we can consider systems with tempera-
ture gradients and no flow, and systems with no
temperature gradients with linear shears. The
former case was analyzed in III.~ The latter case
is analyzed in this paper. The steady-state condi-

tions for the systems considered here are

~Pz ——VP=O, ~.v=0, & v=0. (2.5)

and

—1'(k, r)= fd, e ''v''("A(r, )A(r„v)1 ).
The total dissipative momentum current is given
by

I..r=V (' E-r + " N, +P„ l. (2.7)
( pe „ ~ pn

Here, ~ is the total stress tensor, P& is the hydro-
static pressure, e ~s the average energy density,
and n is the average number density.

We have now reduced the problem of computing
nonequilibrium correlation functions to one of
computing equilibrium correlation functions. The
first term on the rhs of Eq. (2.6) is easily evalu-
ated using thermodynamics. The nonequilibrium
correction is more difficult since it involves a
time correlation function. We showed in Sec. III
of paper III of this series that the leading con-
tribution to I'(k, t) can be evaluated using linearized
hydrodynamics with the result that

I'(}t,t) = exp(M~t) I'(k) exp(M ~t), (2.6)

where I'(k) =- I'(k, 0); M~ is the k Fourier com-
ponent of the hydrodynamic matrix linearized
around equilibrium:

r
ik/m 0

—k~g„—k~tc, ikh/mn 0

ikX kX. —k'vi 0

—k~v 0

0 —k~v

(2.9)

where m is the particle mass, h the enthalpy den-
sity, n the number density,

To simplify our analysis we choose our frame of
reference so that the velocity vanishes at r. It is
also convenient to work in Fourier space; then Eq.
(2.3) becomes'

(A A ) =(A A ) —f d v'1'(k, r) rl)v,
0

(2.6)

where

—(A A ) -=fd, e"'" 'v'(A( )A(r, ))
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K — K —I,

v, -=(g+4~ q)/mn, v-=ri/mn,

X is the thermal conductivity, f the bulk viscosity,
q the shear viscosity, and I'I, the hydrostatic pres-
sure. M~ is the Hermitian conjugate of M~.

In order to compute the dynamic structure factor
(N«(t)N «)„z, and hence the light-scattering in-

tensity, we must generalize Eq. (2.3). In this
paper, we shall be interested in the total inten-
sities in each of the Lorentzians in the spectrum
and thus may use the regression hypothesis

&A«(f)A «)zz =z--""&A«A «)zz. - (2.10)

Other authors' have pointed out that this re-
gression equation is not correct and that there
should be additional terms on the rhs of (2.10) if

we wish to describe the detailed shape of the spec-
trum. In the case of the dynamic structure factor,
these additional terms contribute only to a small
renormalization of the sound attenuation coefficient
in e&a'. This renormalization induces small
changes in the shape of the Brillouin peaks of the
light-scattering spectrum. Since, in the regime
of interest, line shapes are too narrow to observe
experimentally, we will not bother to compute the

modifications of them here.

III. THE DYNAMIC STRUCTURE FACTOR

In order to evaluate the time-dependent density
autocorrelation function, the regression hypothe-

sis, Eq. (2.10), demands that we compute

(N«N «)„z, &E«N «)», and (P«N «)„z. However,
as we will discuss below, the contribution from
(P«N «)„z is much smaller than the contributions
from (N«N, )„z, and (E«N «)„z and can be ignored
for k's in the regime defined by Eq. (1.1}.

We now focus our attention on the calculation of

(N«N «)ffz, (E«N «)„z, and (E«E «)„z, starting
from Eqs. (2.5) and (2.8). Since these correlation
functions are scalars under rotation, we know

that the nonequilibrium correction term in Eq. (2.5)
must be the contraction of a second-rank tensor
with ~v. The only two second- rank tensors avail-
able to us are kk and the unit tensor 1. Thus, con-
sidering only the nonequilibrium term we may
write

P dt exp M~t) I' k) exp(M~t): &v
0

= p[nf (k)kk + n&(k)1]: Vv. (3.1)

The term containing n«(k) couples only to V v.
In steady states that are not far from equilibrium
V v=0 and therefore n«(k} need not be calculated.
The left-hand side (lhs) of Eq. (3.1) seems rather

complicated. ' It is a product of three 5x 5 matrices
and is a second-rank tensor. Its calculation can
be greatly simplified if we invoke the relevant
symmetries and the orders of magnitude. First,
we consider the structure of I'(k}.

A. The structure of I (k)

I (k)=&A«A «Izr) 0 0 X X X

0 0 XXX
0 0 XXX

(3 2)

Since 1 is an equal-time equilibrium correlation
function, it can be evaluated in the k —0 limit.
Since the equilibrium state is rotationally in-

variant, the upper left block of I'(k —0) is a unit

tensor in the indices that couple to ~v, so this
block contributes only to n&(k). The lower right
block of I'(k} is of the form &PPIz r). Using Eq.
(2.7}we may write this explicitly as

(PPI ) =(PPP) —(PPE)( ) I

—&PPN) " 1 —&PP)P«1 .
Pn

(3.3)

The subtracted terms couple to ~v as unit tensors
and thus contribute only to n2. Thus, only &PPr)
contributes to o, (k) and we evaluate this using
thermodynamic derivatives in an ensemble with a
mean velocity v,

Fif —(PiPf TI'S) &Pf TPS)=
pa,.

(TTS)

P
~ Pv,.Pv,.

Since

&r")„=mnv,v, ,

(3.4)

(3.5)

I'„ff, = (k z T ) n(5m, „f+)5f,s,5;,) . .

Finally, notice that M«does not couple N«(or
E~) to the transverse components of momentum,
P«or P«, so that the computation of (N«N «) „z,
(E«N «)„z, and (E«E «)„z involves only I,,*. The

corresponding values of o, (k} are

We will order the five conserved variables ac-
cording to A, = [N«, E«, P;, P«, P;], and choose the

x direction to coincide with that of k. As N„E„
and Ip are even subject to time reversal, whereas
the components of P«are odd, I'(k) is block di-

agonal:

X X 0 0 0

X X 0 0 0
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and

'"(k)=2(k, r) eef e((e ")'~(e i )~'
0

cf (k)=2(k T)eeee f d((e )"~'(e )" '
0

(3.7a)

(3.7b)

(A„(—t)A «)„e=(A«(t)A «) )((e. (3.10)

we obtain the final result

Using Eqs. (3.8), (3.9), a,nd (3.10) we can evaluate
(N«(t)N, )» easily. Performing the Fourier trans-
form according to the definition

S =- dte tk)2 (N«(t)N «)»
v

eP(k)=2(k T)em f d((e" ')(e" '),
0

The matrix e-~' was computed in III2 and is given
in the Appendix of this paper. The integrals in
Eqs. (3.7) are straightforward and lead to the
following results:

2k rn ~c I" k 2k TnI', k
mc,' c ~'+ (I'rk')' mc,'

1 —e 1 —e

(te —kc, )'+ (r,k')' (le +kc,)'+ (rp ) 2)2'

(3.11)
where

(N«N «)» (N«N «) 1 n k22T kk: V
V V 2 k2I' mc02

kk:—
2k2I', '

c0
(3.12)

and

(E«N «)» (E«N „) 1 h k«T""
V V 2 k2I', mc02

(3.8a)

(3.8b)

(E«E «)» (E«E «) 1 h k«T--

B. The dynamic structure factor

The calculation of the time-dependent density
autocorrelation function is accomplished ac-
cording to Eq. (2.10):

(N (t)N «)»= (e «)NJ2(N N «)Ne

+ (e"«')„,(E,N, )„,. (3.8)

This equation holds only for t& 0. The extension
to negative times is done on the basis of the sta-
tionarity of the time correlation functions in the
NESS that was proved in paper I,' Sec. IV, which
implies that

(3.8c)

where c0 is the adiabatic sound speed, I", is the
sound attenuation coefficient, h is the enthalpy
density, n is the number density, and m is the
mass of a particle.

The dissipative contribution to (P«N «)» can
be computed in the same way as we have computed
(N«N «)» and (E,N, )». In place of the integrals
of Eq. (3.7) we would then have f«"dt(e"«')~, e&
&(e"«')2,*„. Evaluating this integral we find that
the largest terms are proportional to 1/kc, . Thus
(P«N «)» is smaller by a factor of c()/k I', than
the NN, EE, and EN nonequilibrium corrections
and may be neglected for k's given by Eq. (1.1).

co 9 (v0

4k2I', ay &c0
(3.13)

with the plus sign for k"' and the minus sign for
2k'2'. The resulting spectra are shown in Fig. 2.

The Brillouin components associated with k" ' are
diminished compared to the equilibrium spectrum,

and I'~ is the thermal diffusion constant. The
quantity e contains the nonequilibrium contribution
to the structure factor.

We recall that Eq. (3.11) is correct for the total
intensities of the Brillouin peaks but does not con-
tain the changes in line shapes due to a renormal-
ization of I',. We emphasize that these latter ef-
fects are not experimentally accessible.

Because of our choice of v(r) in writing Eq.
(2.6), our result for S,„ is valid for a point in the
fluid that is at rest. S,„ is transformed to a
moving point in the fluid by replacing (d by m

+k v, where v is the velocity of the fluid at the
point where S~„ is required.

To demonstrate the effects of a velocity gradient
on the spectrum of scattered light, we envision
scattering a laser beam from a dilute gas with a
steady, approximately linear, shear. Such a
shear can be achieved by rotating the outer of
two concentric cylinders with the fluid contained
between them. The light-scattering geometry is
depicted in Fig. 1. The velocity v is parallel to
the x axis and the velocity gradient ~v is in the y
direction. The incident beam is in the positive z
direction. We choose two scatterjng angles that
share a small polar angle but differ iI1 their azi-
muthal angles (in the v-Vv plane) by 90 . The k
vectors k"' and k~' lie in the v-Vv plane and have
k k ky ky k

I I ky I
Wix v y y ) I x I I y I

~

this geometry, the only contribution to & arises
from
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Scat tered
Beams

Velocity
Field

the velocity difference between the two cylinders
we can express & in terms of the Reynold's num-
ber

vpL 7 vpL
v ~ r S

(3 16)

where L is the difference between the radii of the
two cylinders. Writing Eq. (3.13) in terms of R
gives

3 R
I
e

I
=—,4,pL2. (3.16)

Beam

FIG. 1. Geometry for scattering light from a linear
shear. The velocity v is parallel to the x axis and the
velocity gradient v p is in the y direction. The incident
beam is in the positive z direction. We choose two
scattering angles that share a small polar an le but
differ in their azimuthal angles On the v-Ov p],ane)

by 90 . The k vectors k and k lie in the v vv

plane and have k, ' = -k ' ', k ' = k ' '
1

k
= 1k„~ '1.&i 2

X X ~ 3t 3) a X

I', =,'-[(y —1)/P+ p] v= jv,
where v is the kinematic viscosity. Letting vp be

(3.14)

whereas those associated with k"' are enhanced.
Notice that the Rayleigh peak is not affected. As

a result, the Landau-Placzek ratio between the .

intensities of the Rayleigh and Brillouin com-
ponents no longer holds. This ratio becomes k

dependent and will change according to the scat-
tering geometry. This finding indicates that the
pair distribution function has a long-range part,
as is discussed in Sec. V.

Under what conditions can we expect a shear to
produce observable changes in the light-scattering
spectrum? We will examine this question for the
case of a dilute gas. It will be clear from the dis-
cussion that the effect will be less pronounced for
dense fluids than for dilute gases. For a dilute
atomic gas y—= cp/c„=-', and the Prandtl number P
=v/r, =-', ; tius

(3.17)

with A at least 3 in order to justify ignoring
boundary effects. In a dilute monoatomic gas

I', =a(kaT/m)' l, (3.18)

where l is the mean-free path and a = 1. The
adiabatic sound speed is given by

cp ——(ykaT/m) / (3.19)

Thus the lower bound on k is

~
(

//l) ///'.

The upper bound on k is given by

c,k & k~1', B,

(3.20)

(3.21)

where B should be at least 10 in order to ensure
the validity of ignoring 1/k terms relative to 1/ka

terms as we have done. This gives

Since laminar flow cannot-be maintained in th
ii

ln 1S

geometry much above R =10 and since L must
be a macroscopic length, we may have difficulty
choosing a k that satisfies Eq. (1.1) and makes

I
p I,

say, 10%
The domain of k vectors for which the theory is

valid is bounded from below by considerations of
the dimensions of the system. It is bounded from
above by the constraint that the modes we are ob-
serving be weakly damped. Since here k refers to
the wave vector of sound modes whose deca
length is cp/2k I', we must have2

ecay

A(cp/2k2I', ) - L/2,

20-

—16-

8 kCo kCo

(3.22)

Notice that this bound also ensures the validity of
a hydrodynamic treatment. Combining Eqs. (3.16),
(3.20), and (3.22) we find an upper bound for e:

0 0
Frequency Shift

FIG. 2. A schematic spectrum of light scattered from
a fluid with a linear shear. In panel I kk: ~«/cp) is
positive whereas in panel II it is negative. The dashed
line marks the height of the Brillouin components in the
same system at equilibrium. Notice that the Landau-
Placzek ratio no longer holds.

(3.23)

L =0.06 cm, R =10'
7

k=800 cm ', l =1x10 cm.
(3.24)

By letting all the inequalities become equalities we
can obtain le I- 0.1 by choosing
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Unfortunately these parameters correspond to a
gas pressure of roughly ~ atmospheric pressure,
at scattering angles less than 1, and tangential
velocities of the cylinder walls on the same order
as thermal velocities. Thus, the experiment may
be better suited to computer simulation than physi-
cal realization.

i Bv4 Bvg
(4.2)

we may effect the contraction of l and Vv to ob-
tain

V V

—2(k t'let f et(e"')„(e" 'letke
0

(4 3)
Since (e"')«couples two vectors, it must be a
second-rank tensor. Since the only two second-

IV. EQUAL-TIME MOMENTUM AUTOCORRELATION
FUNCTION

In this section we compute (P, P,)», the equal-
time momentum autocorrelation function, in the
rest frame of the fluid. In the case of the correc-
tions to the NN and NE static correlation function,
we found contributions due only to sound modes in
the fluid. This is evidenced by the factor I/k«I',
in the dissipative terms. In the case of (PP)»
the correction term will be due to both sound
modes and shear modes. Since (PP)» is a
second-rank tensor, we will encounter greater
difficulties in determining the tensorial form of
the correction terms. Apart from this, however,
the computation is analogous to the one presented
in Sec. III for the static NN and EN correlation
functions.

We showed in Sec. III that the upper left 2 x 2
block of I can be ignored since it produces terms
proportional to ~ v which vanish in the steady
state. Thus, when we apply Eqs. (2.6) and (2.8) to
the computation of (PP)ss~ only the momentum-
momentum entries of I' and (e"«') will enter the
calculation. This allows us to simplify the notation
by using lower case letters to indicate momentum
components:

(P'P )&& (P'P )
"

(ee&) I,kk(ee'&) Bv
V

=
V ~ ' '~' ~a

0

(4.1)
All k dependences have been suppressed and sum-
mation over repeated indices is implied. The sym-
metry of I'",«[ cf. Eq. (3.6)j under interchange of
l and P implies that only the symmetric part of
Vv survives contraction with 1. Defining the
shear tensor

rank tensors available to us are kk and 1, we can
write (e"'),, in the form

(e"«')„=A(t) ' ' +B(t)5„. (4.4)

In the Appendix we show that

A(t)- '(e"-+e~ ')- -e « "'

B(t) =e ' (4.5)

—k~Tmn ) kk kk". S
S

(kk S+S kk —S-kkkk:k)).k~v

(4.6)

Using the identity Ax (Bx C)=A CB-A BC, we
may rewrite Eq. (4.6) in the form

(PP) =k«Tmn(1

kx
k v

kk. S.kk

(kx kxk)xk). (4.7)

V. DISCUSSION

We have shown in this paper that laminar shear
flow in a fluid induces interesting changes in the
fluctuations of the hydrodynamic variables. The
static correlation functions that are strongly af-
fected are the scalars (N«N «)„e, (N, E «)», and
(E«E «)» and the second-rank tensor (P«P «)».
This is in contrast with our observation that in a
fluid with a heat flux it is the vector static cor-
relation func tio ns such as (P«N «)„s that are
strongly affected. The conclusion is that, when
the product of the time reversal signatures of two
variables is the same as the signature of the dis-
sipative flux, then the correlation function of those
variables is signif icantly changed.

The nonequilibrium contributions to the static
correlation functions have a. I/k«dependence.
This is, of course, equivalent to a 1/r dependence
in physical space, which is an indication of a long-
range order. We remind the reader, however,
that our theory is limited at the present time by
Eq. (1.1). Thus the 1/k dependence cannot be
taken as a divergence for k —0 and the 1/r de-
pendence is valid for intermediate distances. This

where $, =a ikcp —k~I'„and v is the kinematic
viscosity. Combining Eqs. (4.3)-(4.5), performing
the integrations, and keeping only terms of order
1/k«, we obtain the following result for the mo-
mentum autocorrelation function:

(PP)kt)t (PP)
V V
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growth of the correlation length has particularly
interesting implications for the properties of the
light-scattering spectrum. As was found above,
the total scattering intensity becomes k dependent
and the Landau-Placzek ratio does not hold. To
see the relation of this to the correlation length,
we recall that the total scattering intensity is
proportional to (N, N «)„z. In equilibrium this
quantity is given by

STEADY —STATE
V ELOC IT Y F IEL0

(N, N, ) = p +p' I [g "'(r —r') —1]

xe" '" ' d(r —r'),
where g '2'(r- r') is the pair correlation function.
For a small k we can expand the exponent in a
Taylor series to obtain

(N N ) = p+ p
' [g"'(r —r') —1]

x [1——,'k2(r —r')2] d(r —r'),
where the linear term in the expansion is dropped
by symmetry. If the correlation length is small,
the k-dependent term contributes a negligible cor-
rection and the static correlation function is k in-
dependent (i.e., purely thermodynamic).

This example can be generalized; as long as
the correlation length is small, static correlations
may be computed in the k =0 limit, which yields a
purely thermodynamic quantity. This conclusion
pertains inparticular to the static correlations of
the heat and sound modes, respectively, which de-
termine the ratio of intensities of the Brillouin and
Rayleigh peaks in an equilibrium system. This is
why in an equilibrium system the Landau-Placzek
ratio (c&/c„—1) is purely thermodynamic and has
no k dependence.

Once the correlation length grows, however, the
above argument breaks down, the k dependence of
the static correlation functions becomes important
and the Landau-Placzek ratio does not hold.

What are the physical processes underlying the
long-range behavior of these correlation func-
tions? To understand these processes it is easiest
to think in terms of the eigenmodes of the hydro-
dynamic equations linearized around equilibrium.
For each wave vector there are five modes: two
longitudinal-momentum (sound) modes, two trans-
verse-momentum (shear) modes, and one heat
mode. We will see that the presence of a velocity
gradient modifies the intensities of the fluctuating
sound modes and shear modes.

First, consider thermally generated sound.
Figure 3 shows a small box in the fluid fixed with
respect to the laboratory frame in which we will
estimate the intensity of sound propagating through
various faces of the box. Let us first assume that

FIG. 3. Propagation of sound waves (wavy lines)
across the faces of a small box in a linear shear.

the fluid is in local equilibrium and then see how
the velocity gradient perturbs this. In local
equilibrium, the intensity of sound entering each
face Of the box is given by the sound velocity at
that face times the local sound intensity. Since
the fluid has a homogeneous temperature (neg-
lecting a small quadratic temperature profile)
the local sound intensity is uniform. However,
the local sound velocity is a sum of the equilibrium
velocity c, and the local velocity v(r).

Sound waves entering the lower-right and upper-
left faces of the box have a higher speed than cp,
whereas those leaving the same faces of the box
have a lower speed than cp, The effect of this is
that the sound intensity in the box is constantly in-
creasing over its equilibrium value. The balance
between this increase which is proportional to
kk: V'v and the return to equilibrium at the rate
2k I, determine the nonequilibrium intensity of
sound in the box with wave vector k. If we con-
sidered sound going between the other two faces
of the box, the opposite effect would have resulted
and the sound intensity would be less than in
equilibrium. It is the (1/k I', )kk:&v behavior in
the random sound intensity which induces similar
behavior in the correlation functions (NN)»,
(NE)„z, (EE)„z, and (P'P*)„z.

Notice that it is the sound modes which carry
momentum in the same direction as the dissipative
momentum flux (proportional to v) which are en-
hanced. Conversely, sound modes which carry
momentum in the opposite direction are depleted.
Thus, we find that the long-wavelength thermally
generated sound positively renormalizes the vis-
cosity of the system, This is a general property
of all of the physical processes underlying the 1/
k~ behavior of static correlations in nonequilibrium
systems. In the momentum conducting steady state
these processes enhance the viscosity of the sys-
tem and in the heat conducting steady state they
enhance the thermal conductivity of the system.
In systems of dimensionality greater than two this
renormalization is very small.



2816 MACHTA, OPPEN HEIM, AND PROCACCIA 22

To understand the I/k~ behavior of the fluctuating
transverse momentum, consider Fig. 4. The dots
represent lines of vorticity directed out of the
page, whereas the crosses represent lines of
vorticity going into the page. The whole array
represents a thermally excited shear mode whose
wave vector is 45 to both the velocity and the
velocity gradient. Now, imagine how this pattern
is affected by the velocity field. Since the vorticity
is perpendicular to the velocity, it is merely con-
vected along and so after a time 4t the array has
been changed from that of Fig. 4(a) to that of Fig.
4(b). This causes a change in the wave vector k

but, most importantly, it causes an increase in
the amplitude of the shear mode because the dots
and crosses on their respective lines have been
moved closer together. The Kelvin circulation
theorem tells us that the line integral of the veloc-
ity around each dot and cross is constant except
for the reduction due to viscosity. Thus, as the
dots and crosses move together, the velocity per-
turbation perpendicular to )t is amplified. The
balance between this amplification and the decay
of transverse momentum back to equilibrium pro-
duces the I/k~v k (k S k) k contribution in (PP).
Again, this process positively renormalizes the
shear viscosity of the system. This amplification
of shear modes was first discussed by Orr in a
1907 paper. '~ These same processes near walls
cause the slipping length in fluids to have a weak
divergence. "

We have suggested an experiment to test our
predictions. The idea is to scatter light from a
steady state system with a linear shear and ob-
serve the spectrum associated with the wave vec-
tors that have different orientations with respect
to the velocity field and its gradient. The predic-
tion is that the ratio of the intensities of the Ray-
leigh and Brillouin components will be different

TRANSVERSE
MOMENTUM MODE

STEADY- STATE
VELOCITY FIELD

FIG. 4. Evolution of a transverse momentum mode
in a linear shear. Dots represent lines of vorticity
directed out of the plane, while crosses represent
vorticity lines into the plane.

for the two wave vectors. We find that the onset
of turbulence constrains the experiment to small
shears arid thus a significant effect can be seen
only in a dilute gas.

The findings with respect to the light-scattering
spectrum are related to our investigation of the
fluctuation-dissipation theorem in NESS. In IV
we argued that the total dissipation associated
with a small perturbation of a NESS relates to the
local equilibrium part of the appropriate correla-
tion function, and not to the true NESS correlation
function. In the context of light scattering, this
statement means that the total scattering amplitude
should be independent of the new, dissipative
terms found above for the dynamic structure fac-
tor. Examining Eqs. (3.11) and (3.12), we see that
this is indeed the case. The total scattering is
proportional to the integral of S~„over all k and

The contributions to e have a quadrupole form
in k space and thus their integral vanishes as is
predicted by the modified fluctuation-dissipation
relation.

Note added in proof. Some of the results pre-
sented here have appeared in a paper by Onuki. '4
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APPENDIX

In Appendix A of III we computed e-"~' Here we rewrite that result for the couplings between N~, E~, and
pg ~

(et+'+e'-'))t„/m+2etr'X, h/mn, X,(e"+e'-' —2e'r')/m, c,(et+' —e' ')/m-
Ap 1

exp(M'c) =
&

It„h(e~" + et-' —2etr')/mn, X,h(e ~+e'-')/mn+2It e~r'/m, coh(e "—e~-')/mn
0

c X„(e~"—et-') c It, (e~ a —e~-'), c~(e +'+ e&-')

(Az)

where

g, (k) = a ikc, —k~I',

and

F, r(k) = —k~ 1'r,
(A2)

and

I ~-=X nCp

r, -=,-'[(c,/c. —1)I,+ v, ] .
(A3)

with
We also need the tensor forrp of the momentum-

momentum couplings in e-"&'. In terms of P~, P~~,
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elk t

'(e-" + e' ')-0
0 e-k vt 0

2

0

e-k vt2

and I' ~k with x =k, we find

(A4)

(A5)

where
2

/(t) & (ef ~t / eg I) e-a vk

and 5,&, we must be able to write this in the form

e, ,
'

= A(t)k, k, /. k2 +B(t)6.. .

with v the kinematic shear viscosity. Since the
only two second-rank tensors available are k,.k~

and
2

(A6)
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