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Near-threshold behavior of the ground-state binding energies of the few-atom systems of *He
and other bosons in two and three dimensions
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The results of accurate variational calculations for the ground-state binding energies of several N-boson
systems in two and three dimensions are reported; the systems specifically considered are small (N =2, 3,
4, and 5) clusters of ‘He atoms interacting through pairwise Lennard-Jones potentials. Evidence is found
strongly suggesting each set of systems have a common functional relationship linking the binding energies
and the De Boer quantum constant near threshold for self-binding. These calculations also confirm the
existence of a unique threshold value of the interaction strength for all N-boson systems in 2D. In addition,
the linear relation between the binding energies of helium clusters present in 3D holds true in 2D as well.

I. INTRODUCTION

The binding energies of the ground states of
small clusters of bosons in two dimensions were
recently evaluated by Bruch and Tjon,* and by
Cabral and Bruch.? Both studies were motivated,
in large part, by available experimental data®
which indicated that at low temperatures rare-gas
adatoms on the surface of exfoliated graphite be-
have as two-dimensional systems (2D). The im-
mediate revelations from the theoretical investi-
gations included the nonappearance of two special
effects which occur in systems of three bosons
interacting in three dimensions through pairwise
potentials, and strong evidence that pairwise-in-
teracting N-boson systems in two dimensions all
have the same strength threshold for self-binding.
However, Bruch and his collaborators encountered
considerable difficulty in handling the more realis-
tic Lennard-Jones potential. They were restricted
to simple separable potentials in their integral-
equation calculations and to a one-parameter Jas-
trow function for their variational method. Bruch
et al. thus suggested that their work be repeated
with more realistic potentials and more accurate
methods and that the study be extended to cover
four- and five-body clusters. This challenge was
partially taken up by Tjon himself and more com-
pletely and simultaneously by us. Tjon’s integral-
equation calculations,* in which he used a local
two-term Gaussian and Yamaguchi-type separable
potentials, reaffirmed the correctness of Bruch’s
conjecture on the coincidence of two-dimensional
strength thresholds. In addition, Tjon discovered
that there exists a linear relationship between
tetramer and trimer binding energies in two di-
mensions analogous to that in three dimensions;
on that account, he has surmised a binding energy
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of 0.32K for the “He tetramer in two dimensions.
The work we report here both complements and
supersedes the efforts of Tjon and Bruch. We
have computed variationally the ground-state bind-
ing energies of N(=2, 3, 4, and 5)-boson systems
not only in two dimensions but also in three di-
mensions. We have used the Lennard-Jones (12—
6) potential
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with € and o, the strength and range constants,
respectively, having the DeBoer and Michels val-
ues chosen by Cabral and Bruch.? Our variational
calculations were based on the (ATMS) Amalgama-
tion of the Two-nucleon correlation into the Multi-
ple Scattering process and quadratures techniques
which we developed originally for use in nuclear
physics® and subsequently tested in a number of
applications in molecular physics.® The reduced
dimensionality for the work in two dimensions
poses no new problems as we shall discuss in

Sec. II. Thus the results mentioned in Sec. III can
be regarded as the most accurate to date.

II. THE ATMS METHOD AND THE N-BOSON SYSTEM

The Hamiltonian for the ground state of each of
the two- and three-dimensional systems (3D) con-
sidered can be represented by
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where

v+ =75 3)

cosb (ijk) = S
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where M is the mass of each particle in the clust-
er, n is the dimensionality of space, 7,; is the dis-
tance between the ith and jth particles, and 6(4jk)
is the angle formed by the 7th, jth and kth particles
with the jth particle being the vertex. In the sums,
(#7) runs over all particle pairs while (4jk) runs
over all combinations of three particles. V() is
the interparticle potential.

To construct the wave functions of these two- and
three -dimensional systems we apply the ATMS
method. With it, the wave function of a general
few-body system is given by a product of two-body
correlation functions through which multiple scat-
tering processes are represented. For the helium
molecules, their wave functions are determined by
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where 8, E,, and 7, are variational parameters,

N is the number of particles in the system, and C
and o (D and 7) are determined by smooth continu-
ity of X(¢) at r=7,. We take 7, to be 1.5 8. This
choice, which conveniently reduces the number of
variational parameters by one, is motivated by the
following consideration: 8 behaves like a range
parameter and it can be expected that asymptotic
behavior in the radial functions should have begun

Using the wave functions thus constructed, we
calculate the energy expectation value of each sys-
tem which, from Ritz’s variational principle,
forms an upper bound on the eigenvalue of the
Hamiltonian. The integral we evaluate is
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where the £®’s are obtained from an orthogonal
transformation of the particle coordinates x * (¢
=1,...,N; k=1,...,n) with the center-of-mass
coordinates excluded and ¥ normalized. We take
as the transformed coordinates
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i=1,...,(N=1), k=1,...,n.

For the four- and five-body systems, the integral
in Eq. (5) is changed to the form

= (T e e, Q0

i=1 el
through a second transformation of variables
EW=Ktamr(® -3), i=1,...,(N=1),
k=1,...,n, ' (8)

where K is an adjustable parameter, which we
vary over a fixed range of values. Then we calcu-
late the integral using the quasirandom-number
method which we developed in Ref. 5, the mesh
points of the T),‘“s being distributed with the use
of quasirandom numbers. The convergence of the
integral is good and, as discussed in Ref. 6,
should yield answers accurate to within 0.5% of the
exact values.

For the three-body systems, the integral for the
energy expectation value is written in terms of the
interparticle coordinates as
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for two-dimensional particles and as
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where 6(x,y,z)=1 when the three lengths x, y, and z form a triangle and zero otherwise for three-di-
mensional particles. Simpson’s rule is used in performing these integrations.



Table of ground-state binding energies for two- and three-dimensional dimers, trimers, tetramers, and pentamers of bosons in units of €. The
Quantum constant, 7

values in parentheses indicate powers of ten.

TABLE I.
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a5 ~ FIG. 1. The ground-state binding energies of few-
N bl L boson systems interacting through pairwise Lennard-
S 1 g 8 “Jones (12, 6) potentials plotted against the constant 7.
L] & The labeling numerals denote the few-atom systems;
the dashed lines are the 2D results, the full curves the
FEEs aa 3D. Both sets of lines are drawn through points obtained
Ll l b1 3 from the entries on Table I.
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III. RESULTS AND DISCUSSION
- §|<‘ 'c;'? c’f 'cf Table I and Fig. 1 illustrate the general results
3 § ;Jé' E g which we extracted for the ground-state binding
6o~ - energies of four small boson clusters matched
against the quantum constant 7 defined by’
~ ~ 2 2
N iiT 73 n=n*/meo?. 12)
. n
S| AR =& The De Boer quantum parameter is 271*/ 2. Table
- © - .
II shows the optimum values of the parameters
e o involved in the wave functions and those in the
w | TTY T9 transformation of variables of the four- and five-
= B33 S8 atom systems. It is worthwhile pointing out that
N = =™ the variation in optimum K values reflects changes
in the size of the bosonic systems.

o~

- | 3% S5 TABLE II. Table of optimum values of the varia-

e j ‘°_°( 3 : tional parameters for the four- and five-atom systems.
50 000 sampling points were used in the integrals from
which these values are derived. The parameter 0 is

- ?o"&l‘ Eol‘&l‘ related to E, by E, = —16°.
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°| @ % : "N° Four-atom systems n B 6 K

0.18 2.0 0.20 1.0

- ﬁ? E‘-if 0.19 24 0.16 1.2

;‘( § ;;-' 2D 0.20 2.4 0.10 1.2

= = 0.21 3.0 0.08 1.5

0.22 3.2  0.04 1.5

~ ~ 0.19 14 0.14 1.5

|1 T 3D 0.20 1.4 0.10 1.5

S| 2 < 0.21 1.6 0.08 1.7

i [=2]
Five-atom systems

. g ZE‘; . g fé; 0.21 2.8 0.09 1.2

= O LX) 0.22 3.2 0.06 1.2
o888 oggs8 2D

§ 284 g 284 0.23 3.4 0.03 1.5

AFHBHAN ABRHBX 0.24 3.8 0.01 1.7

3D 0.21 1.6 0.16 1.5

IS = 0.22 1.6 0.08 1.5




22 NEAR-THRESHOLD BEHAVIOR OF THE GROUND-STATE... 31

It is clear for each pair of systems considered
that the 2D cluster is more tightly bound near the
threshold for self-binding. This is not an artifact
of the variational calculations. It has already been
shown in the exact numerical calculations of Siddon
and Schick® that the two-boson system in 2D is
bound at a smaller strength constant than in 3D for
a given potential. It is also a well-known fact that
any attractive square-well potential has at least
one bound state in 2D but requires a critical depth
for a given range in order to repeat that in 3D.°
However, as the strength of the interaction in-
creases, the binding energy of each 3D cluster
soon overtakes its counterpart in 2D; the point of
equality occurs closer and closer to threshold as
the number of atoms is increased. It is known!®
that the critical values of 7 for self-binding in the
N-boson system as N— « are 1" (2D)=0.271 and
n7 (3D)=0.461, respectively, so it is obvious that
beyond some finite value of N (from the trends in-
dicated in Fig. 1, this is no more than 20), 3D
clusters will be bound first and also more strong-
ly at a given value of 1. It also appears from Fig.
1 that near threshold the members of each set of
clusters exhibit a similar functional relationship
between the energy and 7. In 2D, the clusters
seem to observe the exponential rule first derived
by Bagchi'! for two adatoms, viz.,

Ey=Cyexp[-By/(nY -n)], (13)
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FIG. 2. Plot of the ground-state binding energies of
few-boson systems in 2D against . The functional
forms of ordinate and abscissa were selected to expose
the exponential relationship between E and 7 in each

system and to confirm the unique value of 7., here
chosen to be 0.271.
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FIG. 3. Plot of the ground-state binding energies of
few-boson systems in 3Dagainst 1. The functional forms

of ordinate and abscissa were selected to reveal the
effective-range-~theory relation between E and 7 that is
observed by each system,

where C; and B, are constants; in 3D, the rule,
from effective-range theory, is'?

Ey=Ky(1/7% -1/7)?, (14)

with Ky a constant.

To confirm these features as well as Cabral and
Bruch’s conjecture that 7% (2D)=77(2D) for all N,
we have plotted in Fig. 2, InE/¢ against (n, -7)™,
taking 7,=0.271 for the four clusters in 2D. The
unerring linearity of the curves through the points
is convincing proof that Eq. (13) and perhaps the
Cabral-Bruch hypothesis as well are indeed true.
The veracity of Eq. (14) is indicated in Fig. 3
where the threshold behavior for 3D clusters is
plotted. In this case the straight lines do not con-
verge on the same point on the abscissa; in 3D,
few-boson systems obey the same effective-range
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FIG. 4. Plot of E, and Ej for bosons in 2D, The
straight line represents the linear relation suggested
by Tjon with E;/E3=2.9 (Ref. 4).
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FIG. 5. Plot of E; against E, for bosons in 2D. The
straight line has a slope of 1.9.

relation as for two bosons but they do not possess
a common interaction strength for self-binding
just to occur. The linear relation between ground-
state binding energies of “He tetramer and trimer
observed in 3D (Ref. 6) is also seen to hold here
in 2D (see Fig. 4). The single point lying far off
the straight line indicates that either the linear
relationship breaks down for small values of 7 or
the variational method is inaccurate there. The
linear characteristic extends to the pentamer and
tetramer binding energies as well (see Fig. 5).

We can extract further confirmation of a unique
threshold value of 17 for 2D systems from the pass-
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age of both linear curves through the origins of
their axes. It can also be surmised that E,~1.9
E,. We realize that these conclusions are based
on variational calculations with the Lennard-Jones
potential only. However, in our work on 3D sys-
tems of *He,® we have found little difference be-
tween the results from various potential forms

and thus there is no reason to expect that the pres-
ent results will be contradicted when other func-
tional forms of the interaction are used.

To conclude, we reiterate that there appears to
be a unique value for the threshold strength con-
stant of the pairwise interaction for systems of
bosons in 2D. No such uniqueness exists in 3D.
The linear relationships between the ground-state
binding energies of consecutive clusters of bosons

found in 3D are also observed in 2D.
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