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Approximate solutions of some nonlinear diffusion equations
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Approximate analytic solutions are given for several equations obtained from a similarity analysis of the nonlinear
diffusion equation p, —(7 (Dgp ) = 0, where the diffusion coefficient D is of the form D -p" . The solution technique
is also demonstrated for a case where D is inhomogeneous as well as nonlinear (D-r~p", where r is the radial
coordinate). The approach is general, algebraically simple, and flexible enough to allow applications to many related
problems. The analytic predictions are compared to previous numerical results for some cases and shown to yield

good agreement.

I. INTRODUCTION

The importance of the fundamental diffusion
equation (where D is the diffusion constant)

p, -~'(D&p)=o

is obvious, its applications covering almost every
field of physics. The linear diffusion equation,
where the diffusion coefficient D is constant, has
been studied for a very long time and the analysis
has become very powerful and sophisticated. In

many important situations the diffusion equation
becomes nonlinear and/or inhomogeneous. One

very topical example of this is found in fusion
plasma physics where the diffusion equations
governing particle-and heat-flow are highly non-
linear and for some transport models the diffus-
ion coefficients are inhomogeneous as well. '

However, the interest in nonlinear diffusion
equations is comparatively recent and much analy-
sis remains to be done in order to obtain a good
understanding of the corresponding solutions. An

important tool in investigating the linear diffusion
equation has been provided by similarity methods. '
Recently several authors have studied various non-
linear diffusion equations using this approach (for
references see Ref. 3). However, one of the
problems connected with the use of similarity
analysis is that, although a partial differential
equation is converted into an ordinary differential
equation, the resulting equation may still not be
solvable, except by numerical methods. In a re-
cent paper, ' tuck obtains approximate analytic
solutions for a special class of such similarity
equations. However, this technique, although
very accurate, is rather complicated and further-
more is not easily extendable to other cases of
similar ity equations.

The purpose of the present work is to present
a unified approach to the problem of finding ap-
proximate similarity solutions to the nonlinear
diffusion equation under different forms of boun-

dary conditions or restrictions on the solutions,
e.g. , in the form of conservation laws. The analy-
sis employs an integral method, originating from
boundary layer theory, and also recently applied
to a similarity problem involving electric field
penetration in a plasma. " The integral approach
in its simplest form, as used in Ref. 5, gives a
rough but correct picture of the solution. 'The

simplicity of the approach makes it possible to
apply it to a variety of similarity problems and
we will, in the present paper, demonstrate its
possibilities in connection with several different
similarity problems associated with the nonlinear
diffusion equation. However, we will also show
that it is possible to recursively extend the ap-
proximation in a very simple manner. The im-
proved approximation is shown for several ex-
plicit cases to yield very good agreement with
numerical results.

p, —(p"p, ), = 0, (2)

where subscripts denotes differentiation with re-
spect to time t and space x. Using similarity
methods, Eq. (2) will be reduced to ordinary dif-
ferential equations, the explicit form depending
on boundary conditions or on restrictions in the
form of conservation laws. For easy reference
and to introduce the proper nomenclature, we re-
view the main features of the similarity method.
More details and other applications can be found,
e.g. , in the inspiring review by Lonngren. '

The similarity approach makes use of the in-
variance properties of a partial differential equa-
tion under various transformation groups, the
simplest one being the linear group G:

II. SELF-SIMILAR EQUATIONS

We will consider in the first paragraphs the one-
dimensional nonlinear, but homogeneous, dif-
fusion equation
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p-p=a'p,
x-x=a x,
t-t=cP' t,

(3)

P 1
n+2

and Eq. (9) can be written

(12)

g1 p g2(( ((( 1 ) (p((p ) 0 (4)

implying that Eq. (2) is constant conformally in-
variant under the transformation group G; i.e. ,
Eq. (2) is transformed into

where a is an arbitrary positive constant, and n,
P, and y are constants to be determined by the in-
variance properties of the equation under study,
including boundary conditions. Performing the
transformation defined by Eq. (3), Eq. (2) be-
comes

(0"0'') + (54 +4)=0

which is exactly integrable to

0 = eo(1- e'/$0)"",

where

$2 2 Pfl
n

00 —0 2 +2)

(13)

(14)

(15)

p(x, t) x
I( ~= Irt

From Eq. (6) we obtain

(7)

2—-1 (8)

In order to completely specify the similarity
variables an additional relation between n/y and

P/y is needed. This will be provided by boundary
conditions or conservation laws. In terms of the
similarity variables, Eq. (2) becomes

(4"& } + P, 1 P
y n y

(9)

where prime denotes differentiation with respect
to $.

III. SOLUTIONS OF THE SELF4IMILAR EQUATIONS

We will now present exact or approximate solu-
tions of Eq. (9) under differefit conditions.

(i) As our first application we give the solution
of Eqs. (2) and (9) corresponding to the conser-
vation law

f
+a

p(x, t)dx =const = Q .
~a

(10)

Equation (10} implies that

n P—+—=0
y y

l.e ~ ~

(P"p-„—}-„=o,
provided

y —c(=2P —(n+1)a. (6)

Furthermore, the invariants of the transformation
group can be shown to constitute the similarity
variables. These are given by

and B(x,y) denotes the beta function. ' This solu-
tion was first given by Ames; see Ref. 2.

(ii} Another important situation is that the dif-
fusing quantity is kept constant at the left boundary,
x=0, i.e. ,

p(0, t) =const =p, , (16)

which requires n/y=0 or P/y= &. Equation (9)
then becomes

(17)

An exact analytic solution as in case (i) is not
possible. Approximate solutions have been given

by Tuck, ' using nonlinear diffusion coefficients
which possess explicit solutions and approximate
the diffusion coefficient D- p". The solution of
Eq. (17) is then obtained by connecting approxima-
tions in different regions. The agreement with
numerical results is good, but the analysis is
rather lengthy and is not easily extendable to other
cases. In the present work we will give a more
direct approximation, using a flexible integral
method originating in boundary layer theory and

previously used in a similarity context by Ahmadi
et al.' For that purpose we write Eq. (17) as

(y"")"= --.'(n+ 1)(y'.
Asymptotically as $ -0 we have

(y"")"——.'(n+1)[y,',

(18)

The simplest form of approximation, as used in

Ref. 6, is to assume the following for (I((t'):

( )
&t,(1 —5/50)'~'"'", 5 ~ (o (20)

implying

jgn+ &)

(,((( (.((.("((( (-.( "„'(; (-..(--
(19)
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1.o

hand, Eq. (24) is inapplicable when n becomes
too small. The requirement that Q, as given by
Eq. (24), has a minimum less than zero can be
shown to be (n+ 2)/(n+ 1) & —. Thus for n& n„
~ 1, the approximation given by Eq. (24) should
be a good one. For smaller n the recursive meth-
od could be carried further to provide a power
series representation of the solution in terms of
the unknown f (0) or $0 which is determined ap-
proximately from Eq. (22). For example for n=0
we obtain

e/e =1--'&+~&'-~&'+ ~"
The exact solution in this case is the complemen-
tary error function

Q/Q, =erfc(2$)

1 1 1=1 —~~+ 2~ ~ 60~( +

FIG. 1. Solutions of Eq. (17) for n =1. Exact solution
(—), first approximation [Eq. (20)] (-~ -~ -), and extend-
ed approximation [Eq. (24)] (-—).

That is, the recursive procedure yields a good
approximation of the exact solution. However,
the convergence properties of the power series
are not favorable for small n, and we have found

it more convenient in these cases to use a slightly
different approach based on the exact solution for
n= 0. By substituting y = P" '", Eq. (18) can be
written in the form

where the unknown $0 is determined by inserting
the trial function Eq. (20),into Eq. (17) and in-
tegrating. Thus we obtain [assuming p'($0) =0]

i (y"")'=-
1 J &y A "1 'f =eS&,

(21)

which directly gives us the characteristic decay
length in g, viz. ,

y
—

$y
ff /6l + )y

Asymptotically as $ -0 we have

'~/ 1 1t -n/ (n+1)
y yn+1

with the solution

0+2 2 0+1
p(

-0 0+11 1

(25)

(26)

(27)

n+2
~0

( + 1)2 40' (22)
Equation (27) indicates that a trial function can be

chosen in the form

Equation (20) with (0 given by Eq. (22) provides
a rough but qualitatively correct picture of the
solution of Eq. (17); see Fig. 1.

However, we can also in a very simple manner
recursively improve the approximation by using
the full asymptotic expansion, Eq. (19), together
with the identification

(22+1)boffo'= -1/$o,

c.e. ,
y-n ~3 1/(n+1)

0(1)= 4, (1 ——+
&o 12 &0

(23)

(24)

For n=1, the approximate solution given by Eq.
(24) is compared with numerical results from Ref.
V. The agreement is very good. On the other

P = y, [erfc(X&)]'~ '""', (28)

where the parameter A. is to be determined as be-
fore by inserting Eq. (28) into Eq. (18) and inte-
grating. This yields

(n+ 1)g„" [erfc(z)]'~'""'dz .
4 0

(29)

2 3n+2
8(n+ 1)

(30)

We emphasize that for n =0, Eq. (29) yields &=-,'
and we obtain the exact solution p =$0erfc(—,$).
For small values of n, the integral in Eq. (29) can
be approximated by a series expansion around
n=0. Taking into account only the two first terms
in this expansion we find
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which together with Eq. (28) represent the ap-
proximate solution.

(iii) We next consider the case of constant flow
at&=0, i.e.,

r(0, t) = -p"(0, t)p„'(0, t) =const.=I', .

where

(n+ 1)I„
(38)

I„= [exp(-z') —nz zerfc(z)]' '""'dz, (39)
0

This requires (n+ 1)(2/y —p/y=o, implying that

n+1P=

and Eq. (9) becomes

(31)

As before, a trial solution is sought in the form

which together with the flow condition

z yn+1~nX
n+i

give the following expressions for X and $0:

(n y I}f2+1 1/(2+2)
r,

(n+ 1}I',

(40)

(41)

(42)

(32a} Taking into account only the two first terms in a
series expansion of Eq. (39), we obtain

and $0 is determined by integrating Eq. (31}. This
yields

n+ 1)' ' 1-n -,)(1/(5+2)
2(n+2} '

J~
(43)

n+2
~0

( y1)2 YOt

which together with the flow condition

pn+&

(n+I)[, '

(32b)

(33}

Note that, for n =0, Eqs. (37) and (41)-(43) re-
duce to the exact solution

~- I /&I 3/&

[(n y 2)I 2]n/ «+»n+2
0

( pl)2 0

(34)

yields expressions for $0 and (t)0 in terms of I'0,
V1Z ~ y

(t, = [(n+ 2)I']'/'""'

(iv) Finally we investigate the case of a second
fixed boundary on which p(z, t) vanishes, i.e. ,
p(L, t) =0 for all t. This implies P/y=0 and the
similarity approach reduces to a separation of
variables; i.e. , we can write p(x, t) =(t)(x)v(t}
and separate the diffusion equation to read

An improved solution is obtained from the asymp-
totic equation

(35)

which implies

dv
dt

where w is the separation constant. The time
evolution is easily determined [v(0) = 1]:

(I+nt/r) '+, n(10
v(t) =

e x(p-t/ )r, n = 0

(44)

(45)

tn ~
1/ (2+1 )

6(n+2} '
$ )

(36)

( cn) - &2g2 1 / (ff +1)
4=41 {g,d

8

= C 0[exp(-X g ) —)(1/(( t' erfc(Xt')]'/ ' (37)

In order to determine the unknown parameter A,

we integrate Eq. (35) using Eq. (37). This yields

Using the same procedure as in the previous case
we can improve our approach for small values of
n. Solving Eq. (35) in the limit t' -0 indicates
that the trial solution can be sought in the form

(y"y')'+ ~y = o (46)

where Q and A. are normalized with respect to Q,
= Q(0) and L, and consequently )(= (rL 2(t)0)

' We.
consider only solutions even in x, Thus the boun-
dary conditions are (t) (0) = 1, Q '(0) = 0, (t) (1)= 0.
Equation (46) can be integrated once to yield

x/a
y-n (1 y2%)1/2

(n+ 2)
(47}

but the remaining quadrature can not in general
be carried out analytically. However, for special
values of n, explicit solutions exist in terms of
elliptic functions, as follows.

and the space-dependent part satisfies the equation
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(a) n=2

x= 1/v. 2E arcsin(1 —p )' ', ~ —F arcsin(1 —Q )' ',

vL-'y;= 2E —, -F—, =1.39.

(b) n=1

~3 —1+ y (2+ ~3)'"+2x 3' 'E arccos~~+1—f '

2&~16~~3
[I'(-'2)] '= 0. 88.

(C) 22=-- 2

33 1+M/ (2+W3) /

1 v3 —1 (2+ W)'/2
7L '$0= F arccos &3+1 '

(1 y3)1/2

~+1 —Q

I.O—

= 0.17,
I

where F and E denote incomplete elliptic functions
of the first and second kind. ' We emphasize that
even when Eq. (47) does admit analytic solutions,
the result is rather complicated. Therefore simple
analytic approximations will be important for all
values of n. Following the approach taken in the
previous paragraphs we choose the approximating
functions from the asymptotic behavior for small
x and consistent with the boundary conditions.
The simplest possible choice is

08- y(x) (1 x2)1/ (3+I)

and by integration we determine w as

(48)

0.6-
7L Q" = B —,o= 4 2 ~+1 ~ (49)

0,4-

0.2-

The exact solutions and the approximations given
by Eq. (48) are compared in Fig. 2. The agree-
ment is surprisingly, good, especially when con-
sidering the simplicity of the approximating func-
tions and the range of n.

However, as in the previous sections, we can
very simply extend the approximation to yield very
good agreement. An improved approximating
function is

P(x)=(1 —o x' n~')' '""' (50)

0.2 0. i 0.6 0.8 I.O

FIG. 2. Solutions of Eq. (46) for n=-z and n=2. Ex-
act solutions (—), first approximations [Eq. (48)] (—-),
and extended approximation [Eq. (50)] (- ~ —.-).

1 n+2
a, + 2a2 =—(n+ 1)B —,

2 'n+1 (51)

Since Q(1)=0 we must have 1 —o', —a2=0. By in-
serting Eq. (50) into the equation for Q and inte-
grating we obtain
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where we have used the recursive approximation
1 1

P(x)dx= (1-x }' ""'dx= ~B —,
0 2 m+1]

The third relation between a» 0.» and A. is ob-
tained also using the first moment of Eq. (46);
i.e. , we multiply Eq. (46) with x before integrat-
ing, cf. Ref. 2. Again we approximate recur-
sively

where T is the ion temperature, r is the radial
coordinate, the plasma density has been assumed
constant, and the thermal conductivity K is of the
form

Z=Z ~"T~
0 (ss)

where the powers y and n depend on the operating
regime. ' 'The proper boundary conditions for Eq.
(54}are

f j / (P+l) 1 Pl + 1x P(x)dx= x(1 -x')'i '""'dx =—
2 n+2

This yields

A. (n + 1)
Ql+ 3@2—

2
(s2)

T(a) =0, T(0) = T„T'(0)=0, (56)

where a is the radius of the plasma cylinder. The
similarity solution of Eq. (54) is equivalent to that
obtained by separation of variables. If the latter
approach is used we write T as

and we can solve for a„n„and ~:

n+1 1 n+2I n+1
2 2 ' a+1] g+2

T(r, t) = P(r) p, (t) .
Equation (54} then separates into

(57)

1 n+2i n+1
2 ' n+1j n+2

(1 n+2 n+1
I2 ' n+1 n+2

, n+1 1 (1 n+2&"- .+2
—

2 Bi(2 ~ .+1)

(53)

(1+nt/T)-", n~O
g t)=

exp(-t/&), n=O.
(59)

(58)

where the separation constant is -1/r. The equa-
tion for p is easily solved [p(0) = 1]:

B(1 n+2 n+1
(2 ' n+1 n+2

The improved approximations are also compared
with the exact solutions for some values of n in
Fig. 2. The agreement is very good. As further
illustration we compare the corresponding eigen-
values.

1 d 2 y+l ndP 12g +1 +lPN + y 0 (60)

We will restrict the analysis to values of n & -1.
Note that for -1&n& 0, p(t) goes to zero for fi-
nite t= &/In I . The space-dependent equation can
be written

l
2

exact
0.17
0.41
0.89
1.39

first approx.
0.13
0.33
0.79
1.26

second approx.
0.18
0.42
0.90
1.39

(61)

where

We introduce the normalization P/T(0) -Q, r/a
r The-n E. q. (60) can be written

i+ ~y=o,1 d „„dpi
r dr dr)

2 Ty~X - 2' n (62)
IV. A NONLINEAR AND INHOMOGENEOUS

DIFFUSION EQUATION

In order to further demonstrate the flexibility
of the approach we will apply it to a particular
set of nonlinear and inhomogeneous diffusion
equations, which is of special interest for fusion
plasma physics in connection with torodial de-
vices. For example, assuming thermal conduc-
tion to be the dominating loss mechanism, the
energy equation for the plasma ions can be writ-
ten as'

and the corresponding boundary conditions are
$(0)=1, P'(0)=0, and P(l)=0. We emphasize
the scaling for the ion energy confinement time
r inherent in Eq. (62)

2-r
Z

-~
0 p ~ (62)

r"" (y" ")- ——(n+1)r',dr 2
(64)

Proceeding as before we have asymptotically for
small z

(54)
implying the following trial function

(1 2-l')1/ (tt+I) (65)
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We point out that the power 1/(n+ 1) in Eq. (65) is
exactly what is required to make the outgoing heat
flux at r=1 nonzero and finite. The same remark
is valid for case (iv) in Sec. III.

The separation constant is now determined ap-
proximately by integrating Eq. (61). This yields

2
ne

CD i t g~ Tj/2I2
0

(ii) v «&' ' (collisionless r-egime)

07/2 n,
CZ t. Zt. ~, /2

0

(66)

(69)

j.
g-1 (1 2-y)(/ (n+l)d

2(2 -y)
n+1 1 n+2

2(2 —y)' 2 —y
' n+1 (66)

A comparison with the exact solution for n=y=p
is made in Fig. 3. The profiles show rough but
good agreement. Again the approximation can be
extended to yield even better agreement. For
example, take the case of y=p. The extended ap-
proximation is then

(1 (z P (z r4)1/ (++1)

From the zero- and first-order moments and using
the recursive approximation for the integrals of Q

and rP, we obtain

n+1, 1 n+2 1 n+1"
4 ., 2 ' n+1 2 n+2

X(n+1), 1 n+2( n+1
4 2' n+I& n+2

1 n+2 t n+ 1
n, =-—(n+1) ,'B —, —8, 2 ' n+1] n+2

where we have assumed that the current density
has the constant value I, over the cross section
of the plasma.

From the previous results we obtain the follow-
ing ion-temperature profiles and the characteris-
tic decay times of the ion temperature.

(i)

g g T&/2I2—0.6 iO 0

Z.n m'. 'e21nhc
g

g7/2/ & /2T& /2I 2

p 9 i0 0
Z.n ~~/2e21nA&4 '

t g

In a tokamak experiment the energy containment
time rs is usually defined as rs = & ((n, T,. +n, T,))/
VI, where n, , and T, , denote densities and tem-

For n=p, we obtain fIt) =1--',r'+, r' as an ap-
proximation of the zero-order Bessel function.
As seen from Fig. 3 the agreement is very good.

As an application of the obtained results we con-
sider the problem of the ion temperature diffusion
in Tokamak plasmas. Assuming thermal con-
duction to be the dominant loss mechanism, the
proper equation governing the evolution of the ion
temperature T, is Eq. (54). According to neo-
classical transport theory the thermal conduc-
tivity can be approximated as'

I.O

0.8

0.6

p', q' 0.7(1 + 0.43v)
~3/2+ q3«~~/2+ 0 2t

(67)

where p, =(2m,.T,.c'/e'B2~)'/' is the ion Larmor
radius in the toroidal magnetic field (BJ, q
=rB /RB~ is the safety factor (B, is the poloidal
magnetic field), r, =3m,' /'T,' /'/4. n'/'n z(e.' .lnA is
the ion collision time (n, is the electron density
and Inh the Coloumb logarithm), e =rlR the in-
verse aspect ratio (R the major radius), and v

=Rq/v(r, . [where v, =(2T,/m, )'/' is the ion ther-
mal velocity].

Equation (67) is reduced to simpler forms in dif-
ferent regions, as shown in the following examples.

(i) v»1 (collision dominated region)

0.4

0.2

0.2 Q.4 0.6 0.8 I.Q

FIG. 3. Solutions of Eq. (61) for n=O=p. Exact solu-
tion (—), first approximation [Eq. (65)] (-—), and ex-
tended approximation (- ~ —~-).
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peratures of ions and electrons respectively, V

is the loop voltage, and I is the total plasma cur-
rent. Brackets ( ) denotes integration over the
plasma volume. For cases where T,= T, and the
total energy loss is dominated by ion thermal
conduction, one has rs —27's where (7s, is .the ion
energy containment time}.

We consider two specific applications. For Jet
the following data could be relevant'. a=125 cm,
R=296 cm, B~ =30 kG, plasma current=2. 6 MA,
1nA=15, and (i) T« 200 eV,—n, =10" cm ', Z,
=6; (ii) T« 1keV—, n, =2x10" cm ', Z, =1. The
corresponding characteristic decay times are ~cD
=0.2 s and 7'cL= 2 s, respectively. For Alcator
discharges in the collision dominated regime, "
a= 9 cm, R = 57. 5 cm, B~ = 71.1 ko, I,= 1.5

kAcm 2 ~ —7x 10~4 cm 3 1~0=554 eV
lnA=16, and we obtain 7~D=50 ms, which is to
be compared with half the value of the total energy
confinement time &E

—12 ms reported in Ref. 10.
Thus, ion thermal conductivity is an important
but not dominating energy loss mechanism for
these types of Alcator discharges. This conclusion
is also supported by the fact that for Alcator,
&& -n„which is not consistent with the n, depen-

dence of Eq. (10). Anomalous transport processes
have been involved to explain the enhanced trans-
port in this case. ""

V. CONCLUSION

The method of self-similar solutions of partial
differential equations has been applied to nonlinear
diffusion equations under different boundary con-
ditions or restrictions. By employing a particular
class of transformation the problem is reduced to
an ordinary differential equation, which is solved
by using an integral method originating from boun-
dary layer theory. It has been shown that the
flexibility of the procedure makes it possible to
recursively improve the approximation in a simple
manner. The solution technique is also demon-
strated for a case of an inhomogeneous diffusion
equation. The approximate analytic solutions are
compared with numerical results and show very
good agreement. We conclude that the present
method offers a convenient way for finding ap-
proximate solutions of nonlinear diffusion equa-
tions, and we believe that it can be used as a pow-
erful tool for studies of various physical model
equations.
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