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van der Waals contribution to the surface and anchoring energies of nematic liquid crystals
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Using a continuum theory, analytical expressions are derived for the van der Waals contribution to the surface and
anchoring energies of nematic liquid crystals. The results depend on an effective molecular separation parameter d,
whose experimental determination is critically discussed. For liquid crystals in contact with a solid of refractive
index n„it is found that a planar alignment is favored for small n, and a homeotropic alignment for large n, .
Between n, = 1.35 and 2.5, the van der Waals contribution dy to the anchoring energy changes by several erg/cm',
which is of the same order as the total anchoring energy, so that the general trend is expected to survive in the
presence of other than dispersive contributions. Around n, = 1.5, dy is small, and other than dispersive
contributions are likely to dominate the anchoring energy.

I. INTRODUCTION

At an interface or a surface the director in a
liquid crystal usually has a well-defined angle
with respect to the surface. This angle is de-
termined by the anisotropic part 4y of the sur-
face or interface energy. &p is typically of the order
of several erg/cm'which amounts to afew percent
of the isotropic part. This explains the difficulty
in calculating &y from microscopic models. Ay
appears as a small difference of two large num-
bers. At present very little is known about the
microscopic mechanisms responsible for the sur-
face anchoring energy.

Excellent reviews of the various techniques to
obtain specific anchoring conditions and their rele-
vance with regard to optical display devices and
scientific experiments are due to Guyon and Ur-
bach' and Hailer. ' An earlier study by Creagh
and Kmetz' related the anchoring energy to a
critical surface tension. Haller4 was unable to
confirm the simple classification scheme of
Creagh and Kmetz. ' In a more microscopic pic-
ture it is necessary to separate the different
contributions to the anchoring energy. Usually
the total interaction is split into steric, polar,
and dispersive (van der Waals) parts. Proust
and Ter Minassian-Saraga' have attempted to
separate experimentally the polar and dispersive
contribution in MBBA 4-methoxybenzylidene-4'-
butylaniline in contact with an HMAB hexadecyletri-
methyleammonium bromide-covered glass surface.

Of the three interactions (steric, polar, and

dispersive) the one which is easiest to calculate
theoretically is the dispersive energy. The
dispersive energy and also its anisotropy can
be obtained' from the dielectric functions
e(to) of the liquid crystal and the solid. Fortu-
nately, it is not necessary to use a detailed
&(&o). The van der Waals forces are controlled by

the dominant uv absorption which can be approxi-
mated by a simple oscillator model.

Okano and Murakami' have computed the disper-
sive contribution &y to the anchoring energy for
P -azoxyanisole (PAA) using a detailed model die le c-
tric function for the glass and for PAA, respectively.
Their numbers result from an intricate numeri-
cal calculation. We approach the problem in a
different spirit. Since in general the dispersive
contribution 4y is only a fraction of the total
anchoring energy, it is of limited interest to know

4y for a particular liquid-crystal-solid combina-
tion. What is more interesting is the relationship
between ~y and the dielectric properties of li-
quid crystal and solid, respectively.

II. GENERAL FORMALISM

We investigate the van der Waals interaction
between two semi-infinite planar media (1) and

(3), separated by a planer slab of vacuum (2).
The geometry is shown in Fig. &. The width of
the vacuum gap is denoted by d, and the dielec-
tric tensors of the two media by &"' and &"', re-
spectively. The form of q"' and q"' will be spe-
cified later. Media (1) and (3) can be isotropic
or anisotropic, in the latter case with an arbi-
trary orientation with respect to the coordinate
frame (x, y, z) =(1,2, 3). We always assume to
be in the nonr etarded limit 2mcd /~„«1,where
&o» (k = 1, 3) represents the characteristic absorp-

nX

(vacuum )

FIG. l. Geometry for the calculation of the free en-
ergy of interaction.
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tion frequency of medium (k).
The free energy of interaction F is determined

by the quantum-electrodynamical zero-point fluc-
tuations. ' For the above geometry it has been

calculated under different specific assumptions
for e"' and &&3& (Ref. 8). Using the surface-mode
method, ' we have extended these calculations
and obtain the following general expression (k = 1):

1 2% 00

d&0 dp dp p in[1 —4&1&(&0, &f&)4&3&(&d, p)e 23'],
(2v) o o n

(2.1)

where
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and we assume that the anisotropy is small

g~ (0) &(~ (0)
RV (2.7)
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so that the free energy can be expanded. To first
order in the 4q'~' we have

(2.3)vi(s,'23' cos&t& +@2'23' sing) .
In (2.1) we have replaced the sum over Mat-

subara frequencies by an integral (low-temperature
approximation), and in (2.3) the minus sign is for
k =1 and the plus sign is for k =3. The co depen-
dence of 4'~' is via the dielectric tensor,

where
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We now write &,'~&' in the following general form:
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Inserting these expansions into (2.1), and per-
forming the integration over &t&, we then obtain

characterizing g"' and g"' through simple model
dielectric functions

E =Eo+El,

where
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where co~o represents the dominant uv absorption
band of medium (k). We first consider the spe-
cial case where media (1) and (3) consist of the
same material; i.e. ,

(1) (s)
Q~v =A

v =Qf vq

~n") =~a")-=~a

t OO

x dxx g(l) ~(3& g
o o o

(2.14) For this case, F, and F, can be evaluated in full
detail, and we obtain

As the van der Waals forces are controlled by
the dominant uv absorption, we now proceed by

Q0 Rv
o

64 DPI&2 &&d2 (o& +2)3&2 o ~ (2.18)



278 J. BERNASCONI, S. STRASSLER, AND H. R. ZELLER 22

[2(2v —1)]! a, 3(v- i)~ 2v'[(2v —1)!]' 4(n„+2) e'(z(d) =1+
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and
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&n =3 (n" —n'),
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In terms of the quantities n„,4n, and M, the
liquid crystal is then characterized by
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We notice that the sums in (2.19) and (2.21), re-
spectively, are accurately approximated by their
first term. Even if o.,„~,the error is only
about 11% for both g0 and g, .

In the general case, where the two media (1)
and (3) are different, we now evaluate F0 and F,
in an approximation which exactly corresponds to
taking only the first term in f0 and g„respec-
tively. The results can be represented as follows:

A. Free surface (isotropic contribution)

The surface energy y of a free liquid-crystal
surface is given by

1y L, L (3.7)

where 6 denotes the angle between the director
of the liquid crystal and the direction of the sur-
face normal. We notice that for liquid crystals
the dielectric anisotropy dn/n, „,in general, is
sufficiently small to justify our approximations
of Sec. II (restriction to the terms up to linear in
&n/a „)

x(M,(,3) +M,',"), (2.23)

where the superscripts denote that media (1) and

(3) represent the same material (liquid crystal).
We first estimate y by neglecting the anisotropy
completely; i.e. ,

where

(n(a) +2) 1/3 y —I (2.24)

1 gL, L

From (2.18) we then obtain

(3.8)

III. SURFACE AND ANCHORING ENERGIES OF
LIQUID CRYSTALS where

A
24wd2 (3 9)

In the following we first apply our general re-
sults to calculate the van der Waals contribution
to the surface energy of a liquid crystal (free
surface), and then consider a liquid crystal in
contact with an isotropic solid.

According to Sec. II, the solid as well as the
liquid crystal are characterized by simple model
dielectric functions. For the isotropic solid we
write

(/ )' (3 1)

and

II

& "(3(())=1+
1 ( / )3 (3.2)

and the liquid crystal is represented by the princi-
pal-axis dielectric functions

3 2

18 ~g (n +2)3/2 /0 0

is the Hamaker constant and f0 is defined in
(2.19).

(3.10)

B. Determination of the parameter d

In order to evaluate (3.9) we must know the
parameter d. This problem has been investi-
gated in some detail in the case of various sa-
turated hydrocarbons". As shown in Fig. 1, d
represents the distance between two continuous
phases considered as continuous dielectric media.
Each medium may be thought to end at a surface
defined by the position of the outermost polarizable
electrons. Therefore, the mean distance between
the centers of two liquid-crystal molecules is no
meaningful estimate for d. As suggested in Ref.
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10, a better estimate can be obtained from the
mean distance between the centers of individual
atoms. If the volume is thought to be occupied
by a close-packed assembly of spheres, their
diameter d can be obtained from the relation

(3.11)

where n is the density of molecules, and N the
number of atoms per molecule. If the interfacial
separation is taken as the distance between ad-
jacent close-packed planes, we obtain

d =0 916(nN) (3.12)

(3.13)

In the case of saturated hydrocarbons", d is in
reasonably good agreement with the value of d
obtained, via Eq. (3.9), from the measured sur-
face energy. For n-dodeeane, e.g. , where N=38
one has" d =1.85 A and d =1.97 A.

The situation is quite different, however, if we
turn to liquid crystals. As an example we consider
PAA (p-azoxyanisole), for which'' e = 1.7 and

co~p=6.28x10" sec '. This leads toA=3. 6x10 "
erg, and with the experimental value' of yp 38
erg/cm' we then obtain d= 1.13 A. On the other
hand, Eq. (3.12) applied to PAA leads to d =2.04 A.
The disagreement between d and d is thus Sub-
stantial and needs to be explained. There is the
problem of what fraction of the measured surface
energy is due to the dispersive forces. In the
case of PAA, and other liquid crystals, there
may exist a dipolar contribution to the surface
energy which is not present in saturated hydro-
carbons. The magnitude of such a contribution
is difficult to estimate because there is no reliable
information about the electric field at a free sur-
face. For MBBA the dipolar contribution y has
been deduced experimentally, ' y~-10 erg/cm';
i.e. , y is about 25% of the total surface energy.
ws y-1/d', this is not sufficient to explain the
difference bebveen d and d, which is almost a
factor of 2.

The main difference between saturated hydro-
carbons and pAA (or liquid crystals in general)
comes from the fact that in PAA the polarizable
electrons are on aromatic orbitals. As these
orbitals are much more extended than those in the
hydrocarbons, the analysis which leads to Eq.
(3.12) is obviously less convincing for liquid cry-
stals.

A different way to obtain information about d
is to relate it to the heat of transition &U and to
the change of volume ~V at the nematic to iso-
tropic phase transition. Within our model the two

quantities are related through

~V =—'Fhd. (3.14)

Here E is the total surface of the molecules, and

By = —2yo &d/d (3.15)

is the change in the surface energy. For PAA
the experimental values are" &U= 0.574 kJ/mole,
LV/V=0. 36x10 ', and V=221 cm3. This results

d =I —— =1.38 A.
l(6g p QU

(3.16)

This value for d leads to a dispersive contribu-
tion CEq. (3.9)] to the surface energy of PAA of
about 25 erg/cm', implying a dipolar contribu-
tion of 13 erg/cm'. Compared to the experimen-
tal results obtained for MBBA,' these values seem
very reasonable.

C. Anisotropy of the surface energy

We now proceed with the calculation of the an-
gular dependence of the surface energy. The 8
dependence of y can have two different origins.
One contribution is due to the anisotropy of the
dielectric function and vanishes if 4o. =0. With-
in our approximation, this contribution is con-
tained in

y(8) =--'+"

P2 (cos8),&n 2yp

o'a (uav+2) &0

where P, is the Legendre polynomial

P, (cos8) = —,'(3 cos'8 —1) .

(3.17)

(3.16)

A second contribution to the 8 dependence of y(8)
is due to a possible anisotropy of d(8). We define

4d =d(0) —d( 'n), —' (3.19)

and put d (—,'v) =—d. To first order in Ae/n„and
4d/d we then obtain the following expression for
y, -y„=y(0)-y(a&):

3y P bz
yJ II (~ +2) g ~ YO d 7 (3.20)

where y, is defined in (3.9) and (3.10). With n„
=1.7 and &n =0.3, which are the appropriate
values for PAA at 125'C,"we obtain

(y, —y„)/y.=o.16, (3.21)

if we put &d =0. This is in good agreement with
the result obtained by Okano and Murakami. ' Our
expansion with respect to an/a„and the approxi-
mation of «(ar) by its dominant uv resonance seem
therefore accurately justified.

It should be noted that ~o. depends on the ne-
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matic order parameter S, whose value near the
surface may be different from that in the bulk. "
The possibility of such a spatial variation of S
is not included in our present treatment. The
influence of a 4d C 0 on yg yII is illustrated by
the two model examples of the following section.

D. Anchoring energy

We now consider a liquid crystal (L) in contact
with an isotropic solid (S). The interface energy
y' of the liquid crystal is then given by

0.06—

0.04

0.02—

—0.02—

—0.04—

—0.06—

h, d/d =0.02

5d/d =0

I

0.2

hd/d = -0.02

0.3 h, n

r'( 6)= 'I-'-'(e) F "(f)
so that the anchoring energy becomes

X,'-1",
,
=, -r„+F''( 0)-&''(-' )

(3.22)

(3.23)

The superscripts I, and S again refer to media
(1) and (3) in our general expressions for F, and
after quite some algebra we finally obtain

y
' —y,'I

II Q +g (3.24)

where

2 A 2

] a. v I.o S So + S SO

4& ~ o( ($st+, ) ($, + h, )'

(3.25)

2 24o's~so k

~(o'.,~ious(&s+ &i)

~s =~so~~s+2

4, =~so~ o'av+2 i

(3.26)

(3.27)

and yo is as defined by (3.9) and (3.10). For a
model glas~ with as 1 25 and ~so =10"sec ', and
with the previous data for PAA, we obtain

FIG. 2. van der Waals contribution Qy to the anchor-
ing energy vs hn, the dielectric anisotropy of the liquid
crystal. The model liquid crystal is otherwise charac-
terized byn =1.5 and ~&p ——7. 54x10 sec, the solid
by ns=1. 5 and sos()=10'6 sec '. The three curves cor-
respond to 6 d/d = 0 and +0. 02, respectively.

stal. For Ad/d =0, &y is very small for all rea-
sonable values of &n, but a small anisotropy in
the separation para, meter leads to an appreciable
contr ibution.

The calculations presented in Fig. 3 demon-
strate that the dispersion contribution to the
total anchoring energy follows a simple trend.
Large-refractive-index solids favor homeotropic
alignment and small-refractive -index solids
favor planar alignment. The total amplitude in
the shift of &y when going from ns =1.3 to 2.5 is
of the same order as the total anchoring energy,
i.e., several erg/cm'. Superimposed to this trend
are shifts resulting either from the angular de
pendence of the separation parameter d or from
other than dispersive contributions. These con-
tributions are likely to dominate the anchoring
energy in the vicinity of ns =1.5 where b.y is very
small for Ad/d=0. The sign of other than dis-

(y,' —y,', )/y, = —6.5 x10 ', (3.29)

which is again in good agreement with the result
of Okano and Murakami. '

We finally present two model calculations which
illustrate the dependence of the anchoring energy
&y—= y~ —yII on the dielectric anisotropy &n of the
liquid crystal, on the refractive index ns of the
solid, and on 4d/d. As our formulas are expres-
sed in terms of polarizabilities cy, rather than
in terms of refractive indices n, we notice that
the two are related by n =n' —1. The results for
the two examples are presesented in Figs. 2
and 3, respectively, and the choice of the model
parameters is explained in the corresponding
figure captions.

IV. DISCUSSION

From Fig. 2 we find that 4y depends only weakly
on the dielectric anisotropy ~n of the liquid cry-

~Y/Yo

0.05

-0.05—

6d/d = 0.02
I I I ~ I I ~ I

5 ns

—0.10—

-0.15—

-0.20—

FIG. 3. van der Waals contribution Ay to the anchor-
ing energy vs the refractive index ns of the isotropic
solid. The model parameters for the liquid crystal are
chosen as follows: n, = 1.7, n = 1.5, and col p

= 7. 54 x 10
sec-, whereas the solid is characterized by (ns —1)Q)sp
=const (~sp ——10'6 sec- atns =1.5). As in Fig. 2, the
three curves correspond to 4d/d = 0 and +0. 02, respec-
tively.
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persive contributions usually can be guessed. For
steric contributions the sign is evident from the
form and orientation of surfactant molecules, and
dipole forces align the effective dipole of the
liquid-crystal molecule along the field. We note,
however, that if the liquid-crystal molecule lacks
an inversion symmetry the angular dependence of
d introduces a polar part into the dispersive

interaction: In the homeotropic orientation the
dispersive energy y depends on which end of the
molecule faces the surface.
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