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Single-electron analysis of the space-charge effect in free-electron lasers
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An exact treatment of the space-charge effect in the single-electron analysis of a free-electron laser is presented to
calculate its small-signal gain. With the inclusion of the repulsive force between electrons, it is found that the
trajectory of an electron can be solved from a generalized equation which includes a space-charge term. The results

show the gain is saturated with decreasing growth rate due to high electron density. The radiation frequency is

found to increase with the electron density and approach the value at plasma resonance. The condition regic = e
clearly defines the boundary between the noninteracting and the collective regime of an electron beam, where w is

the plasma frequency, L is the device length, and c is the light velocity in vacuum.

INTRODUCTION

In order to increase the gain and the output power
of a free-electron laser, it is intended to use elec-
tron generators that can provide a high-density
beam. However, it is known that at high electron
density the space-charge field begins to influence
the interaction between individual electrons and the

radiation. This effect is usually neglected in a
preliminary analysis of free-electron lasers, as-
suming that the current density is very small. Due

to the potential use of high-density electron beams
in future experiments, this problem has been dis-
cussed extensively in several theoretical investiga-
tions. ' ' Most previous work has used the electron
distribution function to obtain the growth rate of

radiation from the dispersion relation or only the

first-order correction to the no-space-charge
gain. " Since the single-electron model deals
directly with electron trajectories in the electro-
magnetic field, there has been doubt about its
usefulness in solving the space-charge problem. '

In this paper, however, we shall show how to
account for the space-charge effect exactly to ob-
tain the small-signal gain of a free electron laser
using the single-electron analysis. Since the la-
ser oscillation involves only the low-gain process,
the constant-field approximation is considered in

the following analysis. The advantage of using the

single-electron model in the problem of space-
charge interactions is shown in its mathematical
simplicity and extensive range of applicability.
The analysis describes the wave-wave interaction
from the single-particle point of view. It also
shows how the radiation frequency of an oscillator
changes with the electron density from the nonin-

teracting to the collective (plasma) regimes.

THEORY

The classical single-electron model has been
used successfully in the investigation of trans-

verse' and longitudinal" free-electron lasers. The
interaction between an electron and the radiation
is described by the Lorentz force equations

d - 1—(my v) = e E+ —v &&B
dt c

d—(ymc') = ev E,
dt

(2)

where v and ymc' are the velocity and energy of
the electron, and E and B are the total electric
and magnetic fields in the interaction region.

The electron beam propagates in the z direction
and through the axis of a helical magnet where the

magnetic field is represented by

B =B(cos2zz/l, —sin2zz/l, 0) . (3)

The spontaneous and stimulated radiations in this
magnet are circularly polarized. Neglecting all
the dependence on the transverse variable, the

radiation field is represented by

E„=E(cos(tot —kz+ p), -sin(tot —kz+ p), 0},
(4)

B„=E(sin(&ut —kz+ p), cos(&ut —kz+ p), 0),

—Az(t) = a cos(Qt —phz+ p),d
dI,'

2e'BE
y 'm'ctc(l + esB'/msc'&as) '

fl = tc —Pv, , P = k + 2v/l,

az(t) = z(t) —v, t .

where co=bc is the radiation frequency, F is the

field strength, and P is the phase at the entrance

of the interaction region. The total fields in (1)
and (2) are then E = E„and B=B,+ B . Under the

constant-field approximation, the transverse com-

ponent of Eq. (1) can be integrated exactly to obtain

e„and the Lorentz equations are reduced to a

simple equation describing the parallel motion of

an el.ectron
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In (5), a is the interaction strength, A is the off-
resonance parameter, P is the wave number of the
first harmonic component of the radiation in a
periodic structure with period l, hz is the position
deviation of an electron from the noninteraction
value.

The simplest way to obtain the radiation gain is
to calculate the energy loss of the electron beam
in a single pass. According to the energy conser-
vation, it is converted into the radiation energy if
other loss mechanisms are negligible. The energy
change of a single electron can be calculated from
the work done by the radiation.

0.15--

-- -0.15

2.6

hz =- h(ymc') = e v ~ E dt .
0

(6)

hz"'(t) =—,[(1—cosAt)cosp -(At —sinAt) sing].
A

(8)

Substituting (8) into (7) and (6), we can obtain its
energy loss, which depends on P. For an initially
uniform beam, the ensemble average (over P} of
(6) is taken to find that average energy change.
The averaging process eliminates the first-order
term and leaves the energy loss proportional to
the radiation energy ((W)~o-E'). For an initially
monoenergetic beam, the average energy loss per
electron is multiplied by the particle current den-
sity

~
J/e~ and divided by the radiation flow intensity

cE'/4z to obtain the single-pass radiation gain of
the device [G(T}—= (I,„,—I„)/I„],

G(T)=Gof(8),

T = L/c is —the flight time of the electron. Since
there is no longitudinal component of the electric
field, the integrand contains only

v,E,= cos[At —pnz(t) + p] .eEBL
2mmcy

The integration depends on the explicit form of
n.z(t} that is to be solved from the pendulum equa-
tion (5). In the small signal region, nz(t) is ob-
tained up to first order in E:

FIG. 1. No-space-charge gain f(QT), 0= (d

—(u+ 2~hj, .

charge gain. "
Neglecting the space-charge field, Eq. (8) de-

scribes the trajectory of an electron which is as-
sumed to pass the entrance of the interaction re-
gion z =0, when t=0, with phase (t). Such a
periodic dependence on (t) results in a nonuniform
beam which generates a space-charge field. Equ-
ation (5) describes only the situation when this
field is negligible compared to the ponderomotive
force. In general, the space-charge field E,
should be included in the analysis, since the total
field to which an electron is subjected is the sum
of this field as well as the external applied field.

The space-charge field E, is included in the
equation as

—dz(t) = a cos[At —P hz(t) + Q]+
d eE„
dt' my' (10)

The second term on the right side represents the
contribution of the space-charge effect. y' in the
denominator comes from the relativistic consider-
ation.

If the change of the transverse space-charge
field is assumed to be very small and neglected,
the longitudinal space-charge field obeys the Poi-
sson equation

2e'JLB2L3
G = m'y'c' (9)

E„(z,t) = [N(z, t) —No), —a e
0

2 —2 cos8 —8 sin8 8 1 —cos8
(8) -=

8' ae e'

f(8) represents the gain spectrum (Fig. 1). The
maximum gain for given L is 0.135 G0 at 8 ~= 2. 6.
Since the electron distribution is assumed to be
much narrower than the spectrum bandwidth, this
corresponds to the limit of small cavity or homo-
geneous interaction and is known as a "no-space-

where N(z, t) is the electron density at position z
and time t; N, is the initial electron density. In
order to follow the evolution of the electron den-
sity, we consider an infinitesimal section of the
beam at z0 when t=0. Its width is 6z0 and den-
sity is N0. After time, t, it propagates to posi-
tion z and develops into a section with width 5z
and density N(z, t). If the electrons retain their
relations in space during the propagation (the
single-stream assumption), the density function
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obeys the equation

N(z, t)6z = N06zo

or, equivalently,

(12)
—,hz + &d2~[hz —(hz) ~ ]= a cos(Qt —phz + p),

2 0e'N

&,my' '

N(z, t)=N
i

taz-
'Eaz. (13)

In general, the position z is a function of t and z0.
It can be written as

(d~ is the relativistic plasma frequency at the elec-
tron density N0. To solve for Az, we consider the
perturbation expansion in the limit of small radia-
tion field

z(z„t)= z, + v, t+ t z(z„ t). (14) bz = hz"'+ hz"'+ ~ ~ ~ (20)

N(zt)=N,
(,

Z — z*(z„t)) .a

az. (15}

Substituting (14) into (13) and assuming (&)az/&jz, )
is small, we have

where Az'"' is the nth order deviation proportional
to E" Sub.stituting (20) into (19) and considering
the self-consistency in P, we find (hz)~ contains
only even-order terms. Therefore, (hz)~ is at
most a second-order effect. The solution is

Using (15}in (11), we obtain

a—E„(z,t) = — ' ~z(z„ t}.elV0 8

Bz 6 Bz
(16}

Equation (16) involves partial derivatives with
respect to different variables: z and z, . How-
ever, they are equivalent in the case where only
the partial differentiation is concerned, and ~z is
small compared to (z, + v, t) This ap. proximation
is valid even in the strong signal regime. The
integration of (16) over zo leads to

iz = » (cosQt —cos&d~t) cosP&,) eE/my'
(d —0p

0+ sin Qt ——sin(d~t sin P
COp

and

(eE/my ) P

4&d&, (&d&,
—0 }

(21)

x [(&d, + n}' sin(&d, —Q}t —(&d p
—0)' sin(&d, + &)t

E„(z,t) = — ' [tiz(z„ t) + h(t)] .
0

(17)

The function h(t} does not depend on z, . Since E„
becomes zero when ~z is uniform (i. e. , indepen-
dent of z,), it is natural to identify h(t) as the en-
semble average of the position deviation (&z (z„t))„.
It is noted that it does not make any difference if
we replace z, by Q to label electrons. We have
thus found a way to relate the space-charge field
to the dynamic variable of an electron ~z:

E„(z,t) = '[t z(y, t) ——(~z(y, t)),].
0

(18)

Physically, it means that the space-charge field
experienced by an electron is proportional to its
"net" position deviation.

SINGLE-PASS GAIN

We have shown that the space-charge term in
(10) can be related to the single-electron position
deviation through the key equation (18). Since no
assumption was made concerning the electron den-
sity, the analysis which follows should apply to
beams with arbitrary current density provided
other conditions are satisfied. By combining Eqs.
(10) and (18) we can write the force equation as

—4&dqQ(&dp —0 }t], (22}

v ~ E = v,E„+(v, + d v, )E„. (23)

where, in 4z"', only the part independent of (t) is
written explicitly.

The modulation of the electron position results in

the modulation of the beam density which in turn
can drive the radiation field according to Maxwell's
equations. Since we are only interested in the

energy gain of the radiation within the constant-
field approximation, it is more convenient and

straightforward to consider directly the energy
exchange between the electron beam and the radia-
tion. In the case where the Coulomb interaction
is neglected, the energy loss of electrons is con-
verted completely into the radiation energy. How-

ever, when Coulomb interactions are considered,
the energy extracted from the beam must be dis-
tributed between the radiation and the space-charge
field Since only the increase in the radiation
field is available as useful output, we must be
able to calculate the increase in the space-charge-
field energy and subtract it from the total energy
lost by the beam.

The energy change of an electron in a single pass
can be calculated from (6) with the integrand in-
cluding the longitudinal space-charge field as well
as the transverse radiation field
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If the ensemble average is taken before the inte-
gration is executed, we find immediately (vQ„}
disappears:

(E„),=- 0(az -(~z},), =0.
Gp

We also find the energy loss due to (~v, E„)is

(24}

——e 4v „dt = — ' Lv Lzdt

=""'((")~
2gp

(25)

To obtain the result in (25), we have neglected
(~z)~ in E„because it is at second order, which
results in a third-order term in the energy ex-
change after multiplication by hv, . Physically,
(25) shows that the energy loss due to ~vP„ is
exactly equal to the space-charge energy. There-
fore, the energy increase of the radiation comes
exactly from the contribution of v,E„. With the
explicit expression of bz"', we estimate roughly
that the energy for the buildup of the-space-charge
field is only a very small part of the energy loss
of the electron beam. Their ratio is -0/ur or
-A/l, which is only 10 ' for the Stanford device.

Following a procedure similar to that used to
derive the no-space-charge gain expression (9),
we find that when we include the space-charge
field the gain becomes

88~

P

8 8)
&& 2 —2cos8 cos8 — ~+—~sin8 sineP 8 8, j

(26)
G,'=G,/8;, 8= AT, 8, = ~,-T. -
G,' is a constant independent of 8 and 8~. This
result is identical to the expression obtained by
Gover and Livni. " It is interesting to note that
the gain spectrum is almost the same in terms of
either variable, 8 or 8~, although they have com-
pletely different physical meaning. 8~ indicates
the electron density, while 8 represents the velo-
city detuning from the resonance condition. The
condition 8= 8~ leads to a well-known phenomenon,
"plasma resonance. " However, it is approached
for the first time from the single-particle point of
view.

G'" = G'8' f(8) (2')

The result in (28) is identical to that obtained by
Louisell' and Sprangle, ' using the coupled Max-
well-Boltzmann equations. The fundamental spec-
trum f(8) and the correction function g(8) are
shown in Fig. 2. Up to the first-order correction,
the gain becomes smaller for 8&4.6. The nonuni-
form reduction results in an upshift of 8 . The
upshift is proportional to the electron density and
can be written as

d(8 )8,
maz f'~(8 )

P' (29)

To demonstrate the phenomenon of gain satura-
tion, the normalized gain [G(8, 8')/G, '82'] is plotted
for different values of 8'(Fig. 3}. The reason why
we normalize the gain with respect to the electron
density (through 8'} is to compare it with the gain
in the no-space-charge situation, where it is pro-
portional to the electron density. Therefore, the
normalized gain for 8~=0 as shown in Fig. 3 cor-
responds to the case of the collisionless electron
beam. In general, it is observed that the peak
(normalized) gain decreases and shifts to the right
with increasing electron density. Physically, the
reduced gain is due to the repulsive force between
the electrons which weakens the tendency of the
electrons to bunch together. This reduces the
beam alternating current which can couple to the
electromagnetic field. The increase of 8 with

O.I2

O.OB

0.04

where the superscript (1) indicates that the gain is
proportional to the first power of the electron
density. To obtain the lowest order correction to
the collisionless gain, we expand (26) up to the
order of 8~ and find it to be

G&"= -G'e4g(e)
(28)

(24 6e') cose+(16e —e') slue —24
g(e) -=

685

DISCUSSION

It is expected that the new expression for the
gain (26} should reduce to (9) when the current
density is very small. Indeed, if we let 8~ ap-
proach zero, we find

-0.04

FIG 2 The first order space charge correction
g(QT) to the single-pass gain.
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FIG. 3. Normalized gain [G(8, 8&)/G 08&] for different
electron density (8&). The curve 8&

= 0 corresponds to
the case of no Coulomb interaction.

—G(8, 8 )=—,
' G' 8 [f(8+ 8 )-f(8 —ep)]=0, (31)

where f is a function identical to the fundamental

spectrum appearing in (9). It is obvious that

(8, 8~)
—= (nm, mm) is always a solution of (31) when-

ever (n +m) is an even integer number. The gain

becomes a local maximum at these positions.
Among those solutions, it can be observed that
the solution 8=8, leads to the overall maximum

gain for given 8~=mr. The curve in Fig. 4 shows
the trace of the maximum gain. It crosses the
plasma resonance line (8=8~) whenever 8~ is a

multiple of m, or, in general, is a solution of the
equation f(28~) =0.

8~ is due to increasing plasma frequency. In a
practical device which is used as an amplifier,
the radiation frequency is fixed by the input field.
If the electron energy does not change (i. e. , 8 is
a given constant), the normalized gain decreases
very fast with the current density. If the electron
energy is adjustable, we can choose 8 to corre-
spond to the value which yields the maximum gain.
This reduces the effect of saturation. If the device
is used as a laser oscillator, the radiation fre-
quency adjusts itself automatically until the gain is
maximum. It thus makes sense to study the effect
of gain saturation by inquiring what happens to the

peak gain as a function of the space-charge para-
meter 8~.

The behavior of the maximum gain is easier to
follow if we use an alternate expression for the

gain

G,'8 1 —cos(8 —8,) 1 —cos(8 + 8~)

(e e,)
'

(e+e,)
'

(3o)

For given 8~, the value of 8 can be found from
the solution of the equation

FIG. 4. The relation between the radiation frequency

and the electron density in a free-electron laser. is
shown as the trace (solid curve) of maximum gain on

the map (8, 8&). The dotted line indicates the condition

for plasma resonance. The value 8&= z serves as a

critical boundary between the noninteracting (8& & 71) and

the collective (or plasma 8& & 71) regimes.

The radiation frequency is determined in terms
of the detuning parameter

ur =2/ c —+— (32)

The point 8~= m is then observed to serve as a

critical boundary where the transition between two

regimes occur. Above this point, the effect of
plasma resonance dominates. The radiation fre-
quency is then given by the sum of the lattice and

plasma frequencies except for the small deviation
(33).

We have shown the frequency shift due to the

space-charge effect. The maximum gain along
this curve is shown in Fig. 5 as a function of 82~.

In the limit of small electron density, the maximum
gain is proportional to Qp (Gm~ 0 135Gp8p) When

the beam density increases, the maximum gain
begins to saturate with a smaller growth rate.
However, there is no upper bound to the gain. In

the limit of high electron density, the gain is pro-
portional to the square root of the electron density
(G ——,

'
GOB~).

Therefore, the curve reveals clearly the transition

of the radiation frequency from the noninteracting

to the collective (plasma) regime. 8 represents
the deviation of the frequency from the "lattice
frequency" (2mc/I). At low electron density

(8~-0), 8 approaches the value of 2. 6, where the

field-interference process dominates. When 8~

begins to increase, 8 approaches the value of 8~

very fast and starts to oscillate around the line

8 = 8~ with a decreasing oscillation amplitude

( 8 )
3 S11128~
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We have performed all the quantitative analyses
in terms of the dimensionless parameter 8~. In
order to get an appreciation of its value in a prac-
tical device, we write 8~2 as

FIG. 5. The gain of a free-electron laser as a function
of the electron density (8&). The gain grows linearly
with e&2 at low current densities and becomes saturated
( 4 8&) for higher densities.

device used as an oscillator, "
8~ is found to be

about 0. 1. Thus it is still far from the space-
char ge saturation.

If the pumping is strong, such that the gain is
high enough, the increase of the field amplitude in
the interaction region can no longer be neglected.
In this case, a self-consistent treatment of the
field is required, which is to be reported in detail
elsewhere. However, the self-consistent method
is important only when it is applied to a high-gain
amplifier; For the analysis of a laser device us-
ing a resonator with high-reflectivity mirrors, the
field amplitude increase per pass must equal the
small mirror loss per pass, and the constant am-
plitude approximation is very good.

In summary, we have included the space-charge
effect exactly in the single-electron analysis of
free-electron lasers. The gain is found in (y6)
through the key equation (18). In the small signal
and low gain region, the maximum gain is found to
saturate at high electron densities and the radia-
tion frequency approaches the condition of the
plasma resonance.

J(A/cmm)L2(m}
p e

y3 (34}
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