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The ionization of open-shell electronic systems produces ionic multiplets of various symmetry species. The

associated intensity ratios (or branching ratios) are investigated theoretically. Based on three well-defined

approximations a method is presented to determine the branching ratios from the one-particle densities in the initial

states. This method allows one to take initial-state correlation into account and contains the so-called geometrical

branching ratios as a special case. The method is demonstrated for several examples of systems in LS, J, and LSJ
symmetry.

I. INTRODUCTION

The ionization spectra of open-shell electronic
systexns, e.g. , molecules, ' ' atoms, ' "negative
ions" ' exhibit characteristic differences to the
spectra of closed-shell systems. In the latter
case the ionization process is in general well de-
scribed by the picture of ionizing an electron out

of a specific occupied shell of degenerate one-
particle states. At lower binding energies the
ionization from a single shell usually leads to a
main ionic state accompanied by weak satellite
states. For higher binding energies strong final-
state correlation effects xnay change the situation
significantly and several ionic states with com-
parable intensities can appear (breakdown of the
one-particle picture of ionization"). In any case,
all ionic states usually share the intensity avail-
able for the specific ionized shell and are charac-
terized by the symmetry of the hole state. For
open-shell systems the picture of ionizing an elec-
tron out of a shell is equally well applicable. In

general, however, even at lower binding energies
the ionization out of a specific shell produces sev-
eral ionic states of different symmetry due to the
different coupling possibilities within and between
the occurring open shells. This so-called multi-
plet splitting obviously provides for a rather com-
plex structure of the ionization spectra.

The interesting quantities are the magnitudes of
the energy splittings and the relative intensities of
the multiplets. The energy splittings often differ
profoundly from the first-order results and have
to be calculated by methods taking final-state cor-
relation into account. ""Calculations of photo-
ionization cross sections using various methods
have been. reported for open-shell atoms" "and
ions"' providing the theoretical intensities of the
ionic states in dependence of the photon energies.
Often, however, there is no need to perform

elaborate cross- section calculations when one is

only interested in the relative intensities or inten-
'sity ratios of the ionic multiplets produced by ion-

izing a specific shell. Under certain conditions
the intensity ratios are well described by "geome-
trical" a priori rules, as have first been worked
out by Cox et al. ' ' These geometrical ratios
may be given by the ratios of the statistical
weights of the ionic multiplets, but often differ
from them. A different approach to geometrical
multiplet ratios has been presented by Rau. " The
validity of Rau's results, however, may be limited
to a special case only, as is discussed below.

Thepurpose of thispaper is topresent a coxnple-
mentary and more general method for determining
theoretical multiplet ratios. The approach is, in

particular, capable of incorporating the effects of
initial-state correlation into the geometrical in-
tensity ratios. Much emphasis is placed on clar-
ifying the approximations which have to be intro-
duced in Order to obtain geometrical intensity
rules. The disposition of this paper is as follows.
In Sec. II an expression for the ionic intensities is
derived. For the special case of LS symmetry
(atoms with a spin-independent Hamiltonian) the
theoretical xnultiplet ratios or branching ratios
are introduced and discussed in Sec. III. An ex-
tension to the important case of additional spin-
orbit coupling (LSJ symmetry) is given in Sec. 1V.
Some applications and comparison with experi-
ments are presented in Sec. V. A discussion of
our results follows in Sec. VI.

II. INTENSITIES FOR THE IONIZATION
OF DEGENERATE INITIAL STATES

We consider the ionization process for an elec-
tronic system with degenerate initial states

~ g, (AM)), M = I, ...[A]. In this general notation
the quantum number A assigns the irreducible
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representations of the symmetry group for the
considered system and the "magnetic" quantum
numbers M distinguish between the different mem-
bers of the basis of A. The number of degenerate
states is denoted by the symbol [A]. Correspond-
ingly, the ionic states can be written

I $(n A'M')),
where n is an additional quantum number for the
different ionic states with equal symmetry A'M '.
In the usual experimental situation, one deals with
a statistical mixture of the states

I g,(AM)}, each
state contributing with equal weight. In addition
the magnetic quantum numbers of the Gnal ionic
states and of the free electron states are usually
not measured. Starting from Fermi's golden rule
we thus obtain for the spectral intensity P"~ of a
final ionic multiplet nA' the expression (apart
from factors depending only on energy and intensi-
ty of the ionizing particles}

I'""' = 2 —2 l(e(nA'M'), ~&m I7 lgo(AM}) I'„.[A]„„.
x 5((g +E"-E„,-E,) .

Here the Gnal states are assumed to be products
of the ionic states

I $(n AM')) with energy E„"„.'
and the free electron states leam) with kinetic
energy E, and symmetry A,m'.

r~

chic

t

where &~, are the one-particle matrix elements of
In the case of photoionization one may employ,

for example, the matrix elements of the interac-
tion operator with the electromagnetic Geld in the
dipole approximation:

1r = p --n'P qc

Here n denotes the, polarization vector of the pho-
tons and P is the momentum operator.

Making again use of approximation (a), we obtain
via Eqs. (3) and (4) from Eq. (1) the following ex-
pression for the intensity of the final state nA':

pc pa
pc

(5)

operators c~~(c~) for electrons in the states Ip).
These operators fulG11 the common anticommuta-
tion relations

[c,', c,]=5„,
[cA, c,']= Ic0, .c,]= 0.

The transition operator & is assumed to be a one-
particle operator. In second quantized notation &

is given by

I
t(nA'M'), ~~m& =

I
C(nA'M')) I~&m) ~ (2) Here the "transition coefGcients" are given by

The 5 function in Eq. (1}introduces the energy
conservation co, +E,"= E„"~,'+ E, into the summation
over the free electron states, coo being the energy
absorbed from the ionizing particle, e.g., the pho-
ton energy. The transition operator for the ioniza-
tion process is denoted by &.

By writing the final states according to Eq. (2)
we have made use of the approximation —hence-
forth referred to as approximation (a)—that the
correlation between the continuum electrons and
the bound electrons of the ionic and initial states
is neglected. This is, in particular, justiGed for
the case of large kinetic energy of the ejected
electron, whereas, in general, threshold proces-
ses and processes involving resonances and auto-
ionizing states are not adequately described. It
should be noted, that for detachment of negative
ions, where the remaining systems is electrically
neutral, approximation (a) may be valid already in
the vicinity of the thresholds.

In order to further evaluate Eq. (1) we shall rely
on the means of second quantization. Although this
is not indispensable, it allows for a very conven-
ient and compact notation. For a basis of one-
particle states Ip), where the indices p represent
a complete set of one-particle quantum numbers
(e.g., p =pXm) we define creation (destruction)

~p. =Z r.x pr,*x .5(&A+Eo -E."A —E.}
e }theft

and the "relative intensities" are given by

R"~ =, g ($,(AM)
I

c~
I
$(nA'M'))

x ( y(nA'M'}
I c, I p, (AM)) . (7)

The formulation according to Eqs. (5)-(V) is con-
ceptually very appealing. It allows to separate
the calculation of intensities into two well-deGned
parts. The Grst part consists of calculating the
transition coefGcients, containing the details of
the considered ionization mechanism. The second
part is independent of the speciGc ionization pro-
cess and depends only on the electronic properties
of the initial and ionic states. If one is interested
in relative intensities, it is often sufGcient to
compute the latter part of the intensity only.

Expressions (5)-(V) can be evaluated further by
performing the summations over magnetic quan-
tum numbers. To be speciGc we now conGne our
considerations to the familiar case of LS symme-
try where the initial states, the Gnal ionic states
and the o'ie-particle states are denoted by
ILSM~M~), InL'S'M~M~), and Iplm, m,), respec-
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pnL'S' 2(21 + I) TnL'S'RnL'S'
gSgSP'7 kg, P'g '

PSP Sg

(10)

tively. It should be stressed, however, that the
following results are general and can be trans-
ferred to other cases, e.g., J symmetry or molec-
ular symmetry. As is shown in Appendix A the
relative intensities are diagonal with respect to
the one-particle indices l, m„m, and independent
of mg and mq'.

~~I,' s' ant' s'
~gSgfft m Ps g'm'ms gg' m fff' fft .. ~gag P' 7

'
g 8 7 g

8--8 ~
(8)

Here the m-independent relative intensities R~g p
are given by

RsLi'&', ——-,
]

(nL's'll c» II Ls)(nL's' ll cs. , ll Ls}*,
1

s, l, L, S

(9)

where (nL'S' Iles, II LS) denotes the reduced matrix
element of the operator c», for the initial and
ionic states ILSMLMs) and InL'S'MLMs), respec-
tively. For notational brevity here and in the fol-
lowing the symbol [j„...,j ]= (2j, + 1}' ' ' (2j„+1)
is used. As can be seen from the properties of
the reduced matrix elements, Eq. (9) also implies
selection rules for the symmetries of the ionic
states: Nonvanishing contributions arise only if
the triangle conditions for the spins —,', S, S' and
for the angular momenta l, L, L' are fulfilled.
With the help of Eq. (8) the intensity P"L s of Eq.
(5) can be expressed by m-independent quantities
only:

the only nonvanishing relative intensity is Rpg pg
In this case the right-hand of Eq. (10) reduces to
the simple product

pn S 2(21 + I)znL' S RnL' S'
PgsP7 PgsPg (Is)

The picture of ionizing from a single shell is
henceforth termed approximation (b}. It is obvious
that the justification of approximation (b) is closely
connected with the choice of an adequate one-par-
ticle basis.

The dependence of the transition coefficients
T~~f pg for an orbital Pl on the final ionic states
nL'S' is only due to the restriction of energy con-
servation as can be seen at the example of Eq.
(12). For close-lying ionic states, as is the case
for the ionic multiplets resulting upon ionization of
a single shell, this energy dependence is weak and
it is justified to assume a constant transition co
efficient Tpg pg for each shell Pl. This is called
approximation (c). The quantities RnLi ~si are then
indeed the relative intensities and the intensity
ratio of two multiplets nL'S', n "L'S" arising from
the same shell pl is given by R,"L s /R,", L„s .

III. THEORETICAL BRANCHING RATIOS
I

A natural starting point for the determination of
theoretical branching ratios is provided by the ap-
proximations (a)-(c) introduced in the preceding
chapter. Again we restrict ourselves for the mo-
ment to the case of LS symmetry. Let us consider
the ionization of a shell pl producing the ionic mul-
tiplets nL 'S' with relative intensities

Here we have defined m-independent transition
coefficients by R" ' = [(nL'S'll c, IILS)f'.1

[—,I, L, S]
(i4)

~&a, ~ s 1
PI~@' i 2 (2I + I) ~ Phnimn, P' imimn '

fg
7 S 5l

An explicit expression for the diagonal transition
coefficient T~g pf is easily derived for the dipole-
transition operator r= (x,y, z):

I'",Li'",,
'=-

1 g Q(I" lls llpt)/'. (i2)

The prime at the summation symbol restricts the
summation over continuum states l to those states
fulfilling the energy conservation with respect to
the considered ionic state nL'S'.

For a given ionic state nL'8' the diagonal rela-
tive intensities Rpg pg characterize the intensity
contribution resulting from the specif ic orbitals
pl. If two (or more) orbitals pl and p'I contribute
intensity there also occur nonvanishing nondiagonal
relative intensities Rpg p g

ORen, however, the
picture of ionizing from a single shell is valid.
This means that every ionic state nL'S' obtains its
intensity from one particular orbital, say pl, and

I

ttSs ~ IsSt
7 (15)

associated with the ionic symmetry L'S' rather
than the relative intensity of a single multiplet
nL'S'. The branching ratios are defined as the
ratios of the partial intensities RL s

/RLi s . As
we shall see, these quantities are completely de-
termined from the properties of the initial states.

It is useful to introduce the so-called weight
factor g(I, LS,L'S') being defined by

Here we have simplified the notation of the rela-
tive intensities according to R~, =- R~, p7 In
addition we omit the orbital index p, whenever
unambiguous. It may happen that among the mul-
tiplets arising from the shell l there occur two or
more multiplets having the same symmetry. The
distribution of intensity among such multiplets can
certainly not be predicted by a priori rules, but is
subject to strong final-stake correlation. In this
case we consider the partial relative intensity
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g(l, LS,L'S')=, , S, g J(nL'S'll c, IILS)(s.

(16)

The partial intensity then simply reads

[L',S']
2, E, L, S

From Eq. (16) it is clear that g(l, LS,L'S') and

hence R~ ~ is nonvanishing only for the case that
the triangular conditions for (l, L,L') and (—,', S, S')
are fu151led. This means that for ionization from
a shell l of initial states LS the ionic symmetries
L'S'with IL —l I&L'&L+l and fs--s' f& S'&S+-',
are allowed. One further notes that the branching
ratios are determined by the statistical values

n, =(LSLSIct c, , ~LSLS), (16)

i.e., the occupation numbers of the one-particle
states lm, m, with respect to the special initial
state ~LSLS} with maximum magnetic quantum
numbers M~ =L, M~ =S. For practical purposes
most useful are the following implicit equations~
for the weight factors (see Appendix B):

[L',S') if all weight factors are identical.
As is demonstrated in Appendix B the weight

factors g(l, LS,L'S'), L'= ~L —l ~, ..., L+ l, S'
= ~S-s ~, S+-, are completely determined by the
initial-state wave functions. In particular there
is a unique relationship to the one-particle densi-
ties

g'l L 2 Si &2

Qmg L L + m& '& m, S S +m, (19}

These equations constitute a system of 2(2l + 1}
linear equations for the weight factors g(l, LS,
L'S') mth (L l [& L' & I. + l and

f
S ——,

'
f

& S' & S
+ 2. The coef5cients on the left-hand sides are
products of squared Clebsch-Gordan coef5cients,

I

solved easily by hand once the one-particle densi-
ties are given. The required Clebsch-Gordan
coef5cients may be taken from tables" or canbe
calculated with the simple recursion equations

l L l+L'
l1 l 2 l3

'
—= (l,m, l,ms I l,l, lsms)

1
,l L l+I (2Oa)

mj m2 m3

in the notation of Edmonds. " When the rows of
Eqs. (19) are ordered according to (m„m, )
= (l, —,'), (l, --,'), (l —1,—,'), ... and the columns ac-
cording to (L', S')=(L+ l, S+-,'), (L+ l, S —', }, -
(L+ l -1,S+ s), ..., the matrix of coefficients is
of triangular shape, as can be seen by inspection
of the Clebsch-Gordan coefncients. As an exam-
ple, the system of equations (in matrix notation)
for the case of ionization out of a P orbital (l = 1)
of a 'P ground state (L = S= 1) is presented in the
following:

1
B

p j.

1 1 1

2 3-'o-' o-'
B

1 1 1 & 1 2
s 18 9 B 9 9~

g(2, s)

g(2, s)

g(1, s}

g(1, -', )

@O s)

.g(O, s) .

+-1,-1/2

-1 1/2

SP 1/2

0) 1/2

+1 -1/2

1)1/2n

Here the notation is simplifed according to
g(L', S')=g(l, LS,L'S') and n, —=—n, , From
the triangular shape of the matrix of coefficients
of Eqs. (19) it is immediately clear that the weight
factors are uniquely determined by the one-par-
ticle densities n,„and that Eqs. (19) can be

8

LI

m —1 L L+m-1 ~

.m L L+m.
(21)

It should be noted that for the case l o L only the
nrst 2(2L + 1) equations (19) are needed. The re-
maining equations are linearly dependent. Simi-
larly for the case S= 0 the equations with m, =-2
can be dropped.

Equations (17) and (19) establish a simple means
for calculating relative intensities and branching
ratios for general initial states, e.g., correlated
states, states with several open shells. The use
of this method is demonstrated for several exam-
ples in Sec. V. For the important case of a uni-
formly filled shell l with n, =n, for all m„m,~lms g

the general solution of Eqs. (19) is immediately
obtained. Recalling the orthogonality relation (21)
(for the coefficients of a row) we see that g(l, LS,
L'S'}=K, solves Eqs. (19). Here the partial in-

'l L L'
(l +m)(l -m+ 1)

(L'-L -m+1)(L'+L+m) .m L L+m,
(2ob)

together with the orthogonality relation

P 2
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tensities are proportional to the statistical weights
of the ionic symmetries:

gage [L &S ]
['l L-SJ"'' (22}

In particular, this result applies to the case of the
ionization out of a closed shell of an uncorrelated
initial state (all n, =1). It states that hereits gm~
ionic stateswithsymmetryL'S', L'=~L —l~, . . . , L

—,
'

~, S+-,' are produced, their branch-
ing ratios given by the statistical weights.
For nonuniformly filled shells there apparently
occur deviations from this simple result. Nonun-
iform one-particle densities are caused by partly
filled shells and (or) by initial-state correlation.
If no initial-state correlation is allowed the result-
ing partial intensities and branching ratios are en-
tirely geometrical, i.e., they do not depend on any
radial wave functions. It should be stressed that
geometrical ratios and statistical ratios are not
necessarily the same —a point that is oken con-
fused

The geometrical branching ratios for the impor-
tant case of an initial state with one open shell has
been discussed by Cox et al.' We would like to
relate both methods for this case. The initial
states ~LSM~M~) can be constructed from the ion-
ic states ~nL'S'M~M&) and the one-particle states
~lm, m, ) of the considered shell with the help of
so-called coefficients of fractional parentage"
(C FP):

~LSM~M, ) = g f(l, LS,nL'S')
j (nL'S'}ILSM~M, ) .

(28)

This is apart from a somewhatdifferent normaliza-
tion the result of Cox et al.' ' ' Again it should be
stressed that for the case of several ionic states

(23)

Here we adapt the notation f(l, LS,nL'S')
=—[l' '(nL'S')ILS~)l"LS] for the CFP's. The state

~
(nL'S'}ILSM~M~) which in general is not anti-

symmetric is constructed by simply coupling the
ionic states ~nL'S'MJ. M~) and the one-particle
states ~lm, mg to a state with symmetry L, S, M~,
M~. There exists an important relationship be-
tween the CFP's and the reduced matrix elements
of the second-quantized operators" for the con-
sidered cases:

(nL'S' () c, ll LS)= (r[L,Sg~*f(l, LS,nL'S') . (24)

Here r is the number of the electrons in the shell
to be ionized. According to Eq. (24) the relative
intensity for the final state nL 'S' is given by

with equal symmetry L'S', the single relative in-
tensities of Eq. (25) have no meaning, since in
general there is strong mixing for the final states of
equal symmetry. The invariant quantity is the
partial intensity R~ of Eq. (17). The corre-
sponding weight factor is related to the CFP's by

g(l, LS, L 'S') =r, , f'(l, LS,nL 'S') .[L,S]

l L

~m L L+m. 2L+1 (27)

one arrives at the equation

L' S'

where

ZipsR, =n, , (28)

1
(2(21+I) ~

ml ~ms

is the mean one-particle density of the considered
shell.

Finally we would like to present the central re-
sults for the case of J symmetry. Here we are
concerned with an initial multiplet J, ionize from
a shell j and produce ionic multiplets nJ'. The
distribution of intensity on the ionic symmetries
is given by the partial intensities

(30)

wheretheweightfactorsg(j, J,J'), J'= ~J —j~, . .. , J
+j are determined by the set of equations

t j J
.m J J+m-

g(j, Z, Z')=n, , m=j, ... , j.

The nz are the one-particle densities for the in-
itial state

~
JJ) with the maximum magnetic quan-

tum number.

IV. BRANCHING RATIOS FOR LSJ SYMMETRY

In the preceding section we have studied partial
intensities for the case of LS symmetry. Here
the initial and final states are classified as eigen-
states of total spin and angular momentum, and
the picture of ionizing an l shell is assumed to be

(28)

The CFP for several l" configurations can be found
in the tables of Ref. 37.

From Eq. (19) a simple sum rule for the partial
intensities can be derived. By making use of the
modified orthogonality relation (for the column
coefficients}
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adequate. The results also have been transferred
to the complementary case of J symmetry, where

the j shells provide a good on.e-particle descrip-
tion and the initial and final states are classified
by the total angular momentum. In the following

we shall discuss the important case where rela-
tivistic effects (represented by spin-orbit coupling
terms in the Hamiltonian) cause the (2L+1)(2$+ 1)
degenerate initial states ILSM~M~) to split into

sets of (2J+1}states ~LSJM) with IL —S~- J- L
+ S. The spin-orbit coupling is assumed to be
small enough to ensure the spin and angular rno-
mentum to be good quantum numbers. Analogous-

ly, the resulting ionic states may be classified by
~nL'S'J'M') with spin S', angular momentum L',
and total angular momentum J'. We consider the
ionization of an l shell. Due to spin-orbit this
shell splits into two j shells with j = l + &. Ap-
parently the picture of ionizing out of a single j
shell is inadequate here, since the occurring ionic
states may gain intensity from both j shells. For
that reason one cannot simply proceed as in the
case of J symmetry.

To get the correct result for the intensity of an

ionic state nL'S'J' produced by ionizing the shell
l one has to resume the analysis following Eqs.
(5}-(7)in Sec. II. This procedure is outlined in

Appendix A. In addition to the three approxima-
tions (a)- (c) introduced in Sec. II one here has to

assume that the transition operator is spin-inde. -
pendent. Under these conditions one arrives at
the simple result

PrfL'S' J = T RsfL S J
» 1

(32)

R"~ ~ ~ = . [(nL'S'J'll c IILSJ))
I:j,J1

(s4)

Here c& is the destruction operator for the sub-
shell states jm'.

c,.=g
haft ) ~ ftl g m

j'
c)e e ~

l
m~ ' mi

(s5)

The remaining task consists in evaluating the re-
duced matrix element of Eq. (34). It is straight-
forward to show the identity

The total intensity again is the simple product of
the transition coefficient T» for the concerned
shell l —as has been given by Eq. (12)—and of the
relative intensity

i+1/2

(2q+ 1)R""' (ss)
2(2l + 1) ~, ,(~

The right-hand side of Eq. (33) is the (incoherent}

sum of the weighted relative intensities R&L s J

for the two subshells j= l + &, given analogously to

Eq. (14) by

(nS'L 'J'
I I cz II SLJ)

l — j
= (-1) [j,J,J']' * L s J (ns'L'll c, IILs), 6=1+i+-,'+L'+s'+ J'+L+s+ J

L' S' J'
(36)

between the reduced matrix elements in the LM and LS coupling scheme. The 9j symbols occurring here

are defined according to Edmonds. " From Eqs. (33}, (34), and (36} follows the result

1+1/2 l —,
' j

2J'+1R""'= [(nL'S' ll c IILS))' + (2'+1}

L I SI Jt

(37)

As has been discussed in Sec. 111 the branching ratios are defined with respect to the partial (relative) in-
tensities of an ionic symmetry species L'S'J'. In the case that two or more ionic states nL'S'J' with the

same symmetry L'S'J' occur one has to consider the sum of the individual contributions

RL' S S ~ RffL' S J' (ss)

With the weight factor g(l, LS,L'S') of Eq. (16) the anal result for the partial intensities reads

l —' j
i+1/2

g(l LS L'S') Q (2 + 1) L S
2(2l + 1)

L' S' J'
(s9)
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Ri s Rz, ts ~ ~t
l

g (l, LS
&
L 'S ') .[L',s']

2

(4O}

This result is identical with Eq. (17) for the case
of LS symmetry. It means, that the distribution
of intensity on the final L'S' symmetries does not
depend on the specific J value of the initial state
and is equal to the result of the LS case. As a
consequence of the sum rule for the LS case )Eq.
(28) ] it follows that the sum of the partial intensi-
ties

The inspection of Eq. (39) shows that the distribu-
tion of intensity on the ionic symmetries L'S' is
determined by the weight-factors g (l, Ls, L 'S').
As has been discussed in Sec. III the weight fac-
tors are uniquely determined by the initial states
and can easily be evaluated by means of Eqs. (19)
for any given initial states. If initial-state cor-
relation is neglected the weight factors are called
geometrical. For the case of an initial state with
one open shell the weight factors can be expressed
by CFP's. In this case the result of Cox" is es-
sentially equivalent to Eq. (37). The distribution
of intensity on the ionic symmetries J' for given
L'S' is governed by the 9j symbols of Eq. (39).
This part is apparently purely geometrical and
not influenced by initial-state correlation. The 9j
symbols reflect several selection rules since non-
vanishing contributions require that the triangular
conditions are fulfilled for the rows and the col-
umns. The allowed symmetries L'S'J' for ioniza-
tion from a shell l of a state LSJ are IL —I

I

~ L'
-L+ ~ Is--,'I s' s+l IL'-s'I-~'-L'+s'
and IJ jl J' J+j for j=l

We finally discuss some consequences of the
above results. Several sum rules can be derived
for the partial LSJ intensities. With the help of
the orthogonality relation for the 9j symbols" one
obtains aker summing over all symmetries J'.

gt $t J't

~Jts' JtREL) —n) (41}

is equal to the mean one-particle density n, of the
considered shell.

A special case of interest is the ionization of a
closed-shell atom, where L = S= J= 0 in the ini-
tial state. The ionic multiplets resulting upon the
ionization of a shell with angular momentum l are
the two spin-orbit splitting states with J'=j= 3'

~-,', L'=l, S'=-,'. The partial intensities

Ri rz/20 2j + 1

2(2l + 1)
(42)

1+1/2
Jl LI Sl)

ftl, 's't' I. s t j Q (2
~ + 1)

(2$f] f $-1/2=

l — j
L S J
Lt St Jl

(43)
The geometrical branching ratios in general dif-
fer from the ratios of the statistical weights J' of
the ionic multiplets.

It should be mentioned that the Eqs. (33), (34),
and (36) also provide a means to evaluate relative
intensities for a CI (configuration interaction) cal-
culation. Let us consider the case of strong spin-
orbit coupling. Here spin and angular momentum
are no longer good quantum numbers and aa ionic
state nJ' may be given as a linear combination

Ine'M'&= g b"„f,. t In'L'S'z'm')
~t L ~ $t

(44}

of states n'L'S'J', where b„"f~.$, denote the expan-
sion coefficients. The relative intensity for the
ionic state nJ' follows from

are given by the respective statistical weights of
the two subshells.

Let us consider the special case of ionizing from
a closed shell of an uncorrelated initial state.
Here all weight factors are equal to 1 and the par-
tial intensities are given by

1+1/2

I.J'] v L S J (-1) 't '~ (n'L'S' ll c, (( Ls)b„".~,t,
Jl

(45)

Here the initial states are still assumed to be given in LSJ symmetry. Of course, also the initial states
may be expanded analogously to Eq. (44) leading to a straightforward extension of Eq. (45).

V. APPLICATIONS AND COMPARISON
WITH EXPERIMENTAL PARTIAL INTENSITIES

The aim of this section is to demonstrate how to use the concepts presented in the preceding sections
for determining partial intensities or branching ratios. In order to allow for a self-contained reading of
this section we repeat the essential working equations.

For LS symmetry we are concerned with an initial multiplet LS, ionize from a shell l and produce ionic
multiplets nL'S', where the additional quantum number n is required for the case that more than one ionic
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multiplet with symmetry L'S' occur. The distribution of the intensity on the final ionic symmetries, de-
scribed by the partial intensities R, , is completely determined by the properties of the initial state.
The branching ratios are given as the ratios of the partial intensities R~i /Rf 2 . When the initial state
is uncorrelated the resulting partial intensities or branching ratios are called "geometrical. " The partial.
intensities for LS symmetry are given by Eq. (16),

R~~
2' =, g(/, LS,L'S],[L,S]

&y

where the weight factors g(l, LS,L'S') with L'= ~L —l ~, ..., L+l, S'= ~-'2 S~I, -S+-', are uniquely deter-
mined from the set of 2(2l+ 1) linear equations (19):

l L L' —' S S'

im, L L+mi im, S S+m,
g (l, LS,L 'S') = n,

The inhomogeneities on the right-hand side of Eqs. (19) are the one-particle densities n, of the specific
initial state ~LSLS) with maximum magnetic quantum numbers M~ =L, M2=S. For a given wave function
representation of this state the n, „are readily obtained. A particularly easy care is met for the uncor-175g sI~
related ground states of an open l" shell. According to Hund's rule the ground state possess maximum spin
S and maximum angular momentum L. The corresponding state ~LSLS) is a single Slater determinant with
the n electrons successively occupying the one-particle states (m„m, ) = (l, 2) (l —1,—,'). .. (-l, 2},
(f, ——,), ... . According to this occupation scheme the one-particle densities assume the values 1 and 0.

In the case of LSJ symmetry we start from an initial multiplet LSJ resulting from coupling the LS states
to a specific total angular momentum J. Ionization takes place from both j= l + —,

' subshells of a shell l.
The ionic multiplets nL'S'J' again result from states nL'S' coupled to another momentum J'. The corre-
sponding partial intensities are given by Eq. (39):

J L $1RL'2'z' ]. s s j
(f LS L~S~}

f]
l —' j

x ) L S J
)=j-1/2

L' S' J'

The weight factors g (l, LS, L'S') are determined
by Eq. (19), as described above.

As an example for LS symmetry we consider the
~P ground state of an open P' shell. For the mo-
ment we assume the case without correlation.
Then the special state with M~ =1 and M~ =-,' is a
single determinant, where all one-particle states
are occupied except the one with m, = —1 and m,
= -~. The corresponding one-particle densities are
Ã z z/ z = 0 andn = 1 otherwise. Since L = 1, S = ~,
and l = 1 the final-state symmetries allowed ac-
cording to the triangular conditions are L'= 0, 1,2
and S'=0, 1. The linear Eqs. (19) for this parti-
cular case are in matrix notation as follows:

1 g(2D) 0

Here the notation of the weight factors is simpli-
fied according to gP "L')=g(f, LS,L'S-'). One

easily finds the solution g = 2 for 'P, 'D, 'S and,
g=0 for D, 'P, 'S. Of the six possible final mul-
tiplets only the three multiplets 'P, 'D, and 'S oc-
cur with the relative intensities —,', , —,', , and —,', ,
respectively, reflecting the statistical weights of
these multiplets. It should be noted, however,
that in general the relative (partial) intensities for
ionization from an open shell are not given by the
statistical values. The relative intensities here
sum up to the mean occupation number -' of the P'
configuration in accordance with the sum rule of
Eq. (28). The coefficients of fractional parentage
for the ionic states 'P, 'D, and 'S are —', , —,, and

—,', , respectively, leading via Eq. (26) to the same
results for the weight factors and the relative in-
tensities.

As a case where initial-state correlation plays
a role we consider the state P resulting from the
p configuration and an additional excited configur-
ation P's'. This state is given by a linear com-
bination

0 1
2

1 1 1
4 4 4

0 ~ 0
1 j.
4 4

1
6

g('D)

g('P)

g('P)

g('S)

g('S)
(46)

1

~

'P) = a )'P (p')) + a
~

*P(p's*)) (47)

with coefficients normalized by ao+ a, = 1. Now
the vector of one-particle densities is

( -1,-1/2 -l, l/2 n0, -1/2 0, 1/2 nl, -l/2, /

= (O, x, x, x, x, 1)
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where x= a'p+-,'a', . Inserting this vector on the
right-hand side of Eq. (46) we find the solution
g=0 for ~D, P, 3S, and g(BP}=g('D)=2ao+a'„
g ('S}= 2ao+ 4a', . The branching ratios for the
three occurring states P, D, and 'S now are
—'--,'a', :—'- —'a', :—'+ —'a,' show ng a. deviation
18 + 1 ' 18 3B 1 18 18
from the above geometrical values 18 18 ]
The initial-state correlation here causes an en-
hancement of the 'S intensity with respect to the
intensities of the states 'P and 'D. This is an ex-
ample for a principal effect which apparently is
important for the case of large mixing coefficients
01~

Now we extend the previous examples to LSJ
symmetry. Upon inclusion of spin-orbit coupling
the ground state 'P splits into the two states 'P1/2p
'P, &, with J= 2 and —,'. If the spin-orbit coupling is
weak we may classify the ionic states according
to P2 1 p Dg and Sp The relative intensities of
these ionic states produced by ionizing the p shell
of the initial state P,&2 or 'P, &, are easily obtained
from Eq. (39). The requir'ed weight factors
g (l, LS,L'S') already have been determined for
the case of the uncorrelated state 'P(p') and the
correlated state of Eq. (47). The correlation ef-
fects in the latter case influence the distribution
of intensity on the ionic symmetries L'S' as dis-
cussed above. The relative intensities of the ion-
ic states J' for a given symmetry L'S', however,
are purely geometrical and are not affected by initial-
state correlation. In Table I the geometrical rel-
ative intensities (without initial-state correlation)
are listed. Apparently these values differ dras-
tically from the statistical expectations. We note
that both for 'P, &, and 'P, &~ the relative intensities
sum up to. the mean one-particle density —,

' of the
p' configuration. In Table I also the experimental
relative intensities of several photoionization spec-
tra are presented. The agreement of the geome-
trical values with the data of the high precision

photodetachment experiment of Breyer, Frey, and
Hotop'B for the negative ions 0 and S is excellent.
The reported data here are obtained at a photon en-
ergy of 2. 54 eV. Thus, only the 'P Gnal states
are reached energetically. The agreement between
experiment and the geometrical values is particu-
larly interesting considering the fact that the pho-
ton energy is only slightly above the 'P thresholds.
For negative ions the approximation (a) of neglect-
ing the continuum correlation may be adequate al-
ready for small kinetic energies of the detached
electron.

The HeI photoelectron spectra of Kimura et al.'
exhibit for the Cl atom a good agreement. between
the experimental and geometrical relative inten-
sities. For Br the spin-orbit coupling plays an
increasing role. Hence the LSJ classification
ceases to be adequate. By a small CI calculation
for the ionic states of the same total angular mo-
mentum Berkowitz and Goodman'~ achieve a better
description of the experimental relative intensi-
ties. We would like to mention that for the special
case of the P' configuration Berkowitz and Good-
man use an expression for the relative ionic in-
tensities which is essentially equivalent to Eq.
(46).

As an example for the ionization from a closed
shell we consider the 'S,&, ground state of a d "s'
configuration, e.g. the 4d' 5s' configuration of the

Ag atom. The geometrical partial intensities for
ionization from the d shell are obtained from
Eq. (43). For the four ionic states 'D„'D„'D„
and 'D, we find the statistical branching ratios

The experimental intensity ratios
for Ag have been measured by Suzer. " His ratios
7:4.9:2.9:4. 7 are in good agreement with the
geometrical results. We would like to remark
that for the special case of an initial state 'S, &,

the geometrical partial intensities assume the
statistical values for any shell.

TABLE I. Comparison of the geometrical relative intensities with experimental intensities for the ionization of the
('p) Pf/2 3/2 states.

Ionic
states

Initial state Pi(2
Geometrical Expt. ratios

Intens ity Ratios 0 S

Initial state P3/2
Geome tr ical Expt. ratios

Intensity Ratios ' 0 S
Expt. ratios

Cl Br

3P2

P

Po

D

is

36

36

36

1.0
1.8
0.8

2.0

0 4

1.00

2.0(2)

1.00

1.90(10)

0.85(10) 0.81(5)

25
72

72

1.0
0.36

0.08

0.8

0.16

1.00 1.00 1.00 1.00

0.367(12) 0.346(13) 0.44 0.51

0.084(5) 0.082(4) 0.06 0.06

0.81 0.71

0.16 0.09

' Ratios with respect to the state P2.
b 0

Data of Ref. 16, ~ =5145 A, the uncertainty with respect to the last digits is given in parentheses.
'Data of Ref. 8.
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In order to present a complete list of geometri-
cal branching ratios for the interesting case of
ionization from the open P" configuration Tables
II-V have been compiled. The weight factors
g(l, LS, L'S') for the respective ground states
(Hund's rule) are listed in Table II. The geome-
trical relative intensities for the LS case follow
immediately from Eq. (IV). In Tables III-V the
results of the LSJ case are presented for the p4,
P', andP' configurations, respectively.

Initial
states 4

S3/2

Final states
2
D5/2 D3/2 P3/2 2 2

Pi/2

P
3p

Pp

36

38

38

36 36

36

TABLE III. The geometrical relative intensities for
the ionization of the (p ) P2 i p states.

VI. DISCUSSION

Methods for determining branching ratios of
ionization experiments have been presented and
illustrated for several cases. The only required
input data are the one-particle densities of a spe-
cific initial state. The approach considered here
to determine branching ratios makes use of few
well&efined approximations: (a) no cor~elation
between bound and free electron states, (b) the
picture of ionization from a single shell is valid,
(c) constant transition coefficients for each shell.
Fbr the case of LSJ symmetry we also have to as-
sume (d) small spin-orbit coupling for the transi-
tion operator and for the initial and ionic states.
When initial-state correlation is neglected, one
arrives at the so-called geometrical branching
ratios which have been discussed in the work of
Cox et al.' These geometrical ratios may be
given by ratios of the statistical weights, i.e., the
degree of degeneracy of the ionic symmetry spe-
cies. Statistical ratios result for the ionization
from a closed shell in the LS or J case. The
geometrical ratios, in general, differ from the
statistical values when the ionization takes place
from an open shell. In the LSJ case the multiplet
ratios, in general, do not reflect the statistical
weights even when a closed shell is ionized.

We have shown that initial-state correlation in-
troduces deviations of the branching ratios from
the geometrical ratios. Hence, at least in princi-
pal, one could study initial-state correlation ef-
fects from experimental branching ratios. In par-
ticular, one could determine relative one-particle

TABLE II. The weight factors g Q, LS,L'S') for the
ionization from the (Hund's rule) ground states of all p"
configurations.

densities from the experimental branching ratios
via Eq. (19}. For such a purpose it is, of course,
essential, that other sources of deviations from
the geometrical ratios can be eliminated. Such
sources clearly are provided by approxima-
tions (a)-(c). The validity of approximation (b)
is itself determined by initial-state properties.
The approximations (a) and (c), on the other hand,

depend on the kinetic energy of the ejected elec-
tron. In particular for high kinetic energy the er-
ror introduced by approximations (a} and (c}may
be neglected. Then the experimental branching
ratios exclusively reflect initial-state cor relation
effects. Here a remark might be appropriate.
The theoretical branching ratios are defined as the
ratios of partial intensities, i.e., the relative in-
tensity of a specific shell. When determining ex-
perimental branching ratios one has to make sure
to collect actually the contributions of all states
with the same symmetry. The relative intensities
for ionic multiplets of the same symmetry are sub-
ject to anal-state correlations and cannot be pre-
dicted by a priori rules.

As we have already mentioned, an approach to
geometrical branching ratios for the case of LSJ
symmetry has been presented by Rau." Although
Rau apparently also makes use of the approxima-
tions (a)-(d) his final formula still takes explicit-
ly the (geometrical} coupling of the continuum
electron into account. This renders a comparison
to our result of Eq. (39) rather difficult. As has
already been noted by Linebergeri' the result of
Rau does not correctly predict the distribution of
intensity on the ionic symmetry species L'S' when
an open shell is ionized, since he does not anti-
symmetrize the state obtained by geometrically
coupling the ionic state and the one-particle
states, However, for a given symmetry species

p' pp TABLE IV. The geometrical relative intensities for the
ionization of the (p ) S3/t State.

3P 3
2 3/2

2D iD

S 4/3 P 3 P 6 S
0 Initial

state P2
Final states

P1 Pp

3/2 0
is 2P is 4

S3/2
ik
36

2
36
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TABLE V. The geometrical relative intensities for the
ionization of the (p ) P2 g p states.

Initial
states 2

P3/2

Final states

P2

3p
1

Pp

L'S' the distribution of intensity on the possible
J' states is not affected and should be correct.
Fbr the example of the 2P, /»/, (p') states dis-
cussed in Sec. V Eau reports geometrical ratios
for the ionic states 'P», which agree with the re-
sults of Eq. (39). These ratios have been calcu-
lated for a s continuum electron. For the case of
ad continuum wave these ratios —reported by
Breyer et al."—differ from those of the s wave.
This is in contradiction to the general result that—
provided the four approximations (a)-(d) are valid-

j

the branching ratios do not depend on the symme-
try of the continuum electron. A possible error
in Rau's result might come in as follows. Rau
introduces in the dipole-transition matrix element
a complete set of LS coupled states LSJ of a com-
plex of the ion and the contiuum electron. When
squaring this matrix element the contributions
for different values of J add incoherently. One
also has to perform a summation over the different
values of L (and S). In contrast to what is ap-
parently assumed in Rau's result these contribu-
tions do not add incoherently. Por s waves the
summation over the angular momenta L reduces
to a single term, thus explaining the fact that
Rau's formula produces correct results for s
waves, but incorrect results for d waves.
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APPENDIX A: RELATIVE INTENSITIES FOR LS
AND LSJ SYMMETRY

We consider the relative intensities of Eq. (7) for the case of LS symmetry where the initial, ionic,
and one-particle states are denoted by fLSM~Ms ), fnL'S'MIMz), and fplm, m, ):

(LSM~M, fct,. ~ ~ fnL'S'M~M~) (nL'S'M~M& fc» fLSMrM&) . (Al)

(nL'S'M~M~
f c», f LSM~M~)

R"c s 1
»im&m», avm'&ns' [L S] Z

&L.&at&Z, ~&

Since the creation operators ct, and the (modified) destruction operators (-I)' &
"/~ 'c, , are ir-

reducible tensor operators, the Wigner-Eckart theorem~ may be applied to evaluate the matrix elements
of Eq. (Al):

LI r SI S '
( I jT,

' N'I+s'-//g
( I)i+mg+1/8+-»» (nL'S' ff c», ffLS). (A2).-M~ -m, MI, , -M$ -m, M$,

Here (nL'S' ff c» ff LS) is a reduced matrix element [defined by Eq. (A2)] being independent of magnetic
quantum numbers. Now the summation over M~, M~, M~, M~ in Eq. (Al) can be performed yielding the
simple result

(As)

with m -independent relative intensities

R», „=„](nL'S' li c~, II LS)(nL'S'll c„ II LS)». (A4)

From the properties of the Sj coefficients" appearing on the right-hand side of Eq. (A2) the selection rules
for the ionic symmetries fL -l f&L'&L+l and fS- —,'S' f&S' &S+ —,', are derived.

In the LSJ case we consider initial states fpSJM) and ionic states fnL'SV'M'). For the moment both
LS and L'S' can be regarded as additional quantum numbers characterizing the initial and ionic states ofJ symmetry. We assume that the ionic states stem from the ionization of a shell I or equivalently of the
both subshells j= l +-,. The evaluation of Eq. (5) can be performed by using the one-particle basis flm, m, )
as well as the basis

fjm), j= l+ —,. With the first choice one obtains for the intensity

Pffft' g& J' yggt $t J'I
e R t I ~.1ssPcpf lfsfslp ffflf8$+$1fflPlp (A5)
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Here the dependence of the transition coefficients on the ionic state has been le@ out of consideration. The
relative intensities are given by

Ri ', ', i ' ' =[~] 2 (LS~ lctim m', InL'S'~'M'&(nL'S'~'M' lcim, ILWM& ~

To proceed we introduce the destruction operator for the j subshells

(AS)

c,.= g Cgn fn

im m m'e

and the relative intensity R&L s J for a shell j

(A7)

R"~ =—g (nL'S'J'M'lc/ lL&M&l'= l(nL'S'J'l)c/ IILSJ} '.
[~l ... l:j,~j

(AS)

The last equality follows from an analysis analogously to Eq. (Al)-(A4) for the case of J symmetry. With
the help of Eqs. (A7) and (AS) the relative intensities of Eq, (AS) can be written as

2 j'
m

r
gnL' S' J'

jfn mg

1
gnL' S' J'

I I
m) mg m

(A9)

Apparently, the right hand of the equation is not diagonal with respect tom, and m,
' (ni, and m,'). Let us

now consider the transition coefficients of Eq. (A5). If one can neglect relativistic effects for the transi-
tion, in particular, if the transition operator employed is spin independent, then the transition coef5cients
T, , ~ ~ are diagonal with respect to m„m,' and independent of m, . We shall call this approximation1fn Pkgv jfn gran~

(d). As a consequence one can perform the summation over ni, on the right-hand side of Eq. (A5). With
the help of the relation

g'l 2 j '' 2j+1
-2l+1 ' (A10)

~m) m~ m] +m~ ~

we arrive at the simple result for the ionic intensity
pnL'S' J' T L'S'J'

l

with the relative intensity

R"L's z g (2.+ 1)RNI''3
2(2f+1), (A11)

and the m-independent transition coeff'icient T„ofEq. (12).
APPENDIX B: THE WEIGHT-FACTORS FOR LS

SYMMETRY

In the following we show that the weight factors g(l, LS,L'S') introduced in Eq. (16) are given by the nor-
malization integrals

g(l, LS,L'S') = (L 'S'M~M~ lL'S'Ml'M~&

of the (N —1)-particle states

(B1)

SI
( ])I+Ilgtl/2+sly l

l

L'S'M'M'& = cits ss~ ILSMrM (B2)
r "L ~ "S -m, ML ML. -m, Ms Ms.

which are constructed by coupling the operators c, and the initial states lLSM~Mz& to states with sym-
metry L'S'M~M&. For this purpose we start from the definition (B1) and (B2) and prove Eq. (17). Ac-
cording to Eq. (A1) and (A3} the partial intensity Rf s can be written as

nL'S'MLMs c) LSMLMs
NL, N S vNL+ S

Using the inverse expansion of Eq. (B2),

(BS)

ci lLSMiMg& = l L L''
~ S SI

( f)iona +l/sana lLISIMtMg) (B4)
,-m, ML ML. ~ -m, Ms Ms.I I
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Eq. (BS) becomes

E L 21 I & 2

"L™s™z,"'s -m, ML ML ' g m Ms I Ms.
(B8)

Since the summation over n runs over a complete set of normalized states with symmetry L'S'M~Ms we

obtain

(nL'S'M~M~ ~L'S'M~M~) '= g (/, LS,L'S'), (B8)

where the weight factor g (/, LS,L 'S') is given by the square of the absolute magnitude of the (&- 1)-parti-
cle state of Eq. (B2). The remaining summation on the right-hand side of Eq. (B5) is easily evaluated

with the help of the orthogonality relations for the Clebsch-Gordan coefficients, yielding

[L',S']

(B8)

8' =0 l~ s0

This result proves the validity of Eq. (17). From Eqs. (Bl) and (B2) it is clear that the weight factors
are entirely determined by the initial states ~LSM~Mz). Equations (19) relating the weight factors to the

one-particle densities n, of Eq. (18) are readily obtained by taking the norm on both sides of Eq. (B4)
fm) mg

for the special values M~ =L and M~ = S and by making use of Eq. (Bl).
In addition to the procedure discussed in Sec. III an explicit solution of Eqs. (19) can be derived as fol-

lows. We start from Eq. (Bl) and insert the right-hand side of Eq. (B2). To evaluate the matrix elements

(LSM~Mz ~c,- —c, , ~LSM~Mz) we express the products
P ~ f' l. 1 pl l l P 2 S I sif+gg +g/gy~C-- C &0 .'

lfs
&1' +

Jm &m& ~, ~
m

I.m, -m, m . m, -m, m,

by irreducible tensor operators ()' ~ [defined by the inverse expansion to Eq. (B8)] and make use of the

Wigner-Eckart theorem. The various summations over magnetic quantum numbers of the occurring
Clebsch-Gordan coefficients can be replaced by two 6j symbols, yielding

1 2l

(/, I,S,L'S')=(-I) ' ' " ' ' ' 'g g (-1) "'[s' /']' *

x
' ' (LSII|)' "IILS).l l' l 2 S'

L L' L S S' S
(B9)

The reduced matrix element on the right-hand side of Eq. (B9) can be evaluated introducing the one-parti-
cle densities n, „=(LSLS~c', „c, ~LSLS) of Eq. (18):

-j. ~ I ™1
(LS ~[0&'.~[[LS)= g (-1)""

.-L 0 L. .-S 0 S.
~'t a a

~m~ -m) 0 m, -m,

S
(B10)

Equations (B9) and (B10) establish an explicit relation between the weight factors and the initial-state
one- particle densities.
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