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Wave propagation and diffraction on a potential ridge
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The drastic perturbation of high Rydberg levels in a magnetic field is interpreted as a prototype effect of wave

propagation on a ridge with formation of standing waves and with diffraction from radial into angular excitation

modes. Analogs of this phenomenon include two-electron excitations into continuum or high Rydberg levels and

may well be quite numerous since ridges occur generally on molecular potential surfaces. The Wannier-Peterkop-

Rau theory of two-electron detachment at threshold is shown to provide the essential mathematical model for the

description of these phenomena in terms of a base set of two eigenmodes that mediate the diffraction process. The

apparent limitation of the original theory to an infinitesimal range of coordinates straddling the ridge is lifted. The
problem remains of utilizing the eigenmodes as mediators of the coupling among the complete sets of adiabatic

modes that seem to afford an adequate description of phenomena away from the ridges, that is, in potential valleys.

I. INTRODUCTION

In 1953 Wannier' made a key remark on the
process of molecular ionization by electron colli-
sion at energies E barely in excess of the thresh-
old I. He pointed out that the incident and the
ejected electron can simultaneously escape the
molecular field only by moving in their joint phase
space along classical trajectories within a cer-
tain narrow bundle. The useful width of this bun-
dle shrinks as E decreases causing the ionization
cross section to become proportional to (E —f)~,
where &=1.127 (for a neutral molecule) is a root
of a second-degree equation referred to in the
following as the '%'annier equation. " The limit of
the shrinking bundle represents the two electrons
as maintaining equal distances from the residual
ion during their escape. Thus it consists of con-
figurations in unstable equilibrium, because either
electron that may lag behind the other remains
more exposed to the ionic field and will fail to
escape.

Wannier's conclusion met with resistance,
partly because of its reliance on classical mech-
anics for low speed electrons and partly because
it was disconnected from other aspects of the ion-
ization process. This lack of connection was in
fact modeled after the formulation of Wigner's
threshold law for single particle ejection in zero
field. Wannier's analysis has since been success-
fully duplicated in a wave mechanical Wentzel-
Kramers-Brillouin (WKB) approximation by Peter-
kop' and Rau' in 1970 and its conclusion has been
strikingly verified in a 1973 experiment by
Cvejanovic and Read. 4

Several considerations have enlarged the role of
Wannier's analysis in the wake of its experimental
verification. On the experimental side it was sug-
gested that the ionization threshold law implies a

corresponding law for the threshold excitation of
high Rydberg states. ' On the theoretical side it
became apparent that both of these threshold laws
should evetually be incorporated in an extended
Macek-Lin treatment of doubly excited helium. '
All these studies were formulated in hyperspheri-
cal coordinates but the threshold law analysis was
confined to an infinitesimal cone of the hyper-
space; removal of this restriction should help
their consolidation.

The main point raised in this paper is that the
essence of the Wannier-Peterkop-Rau analysis
transcends its application to collision threshold
laws. The analysis actually bears on the classi-
cal or wave mechanical motion of any system
along the ridge of a rounded potential barrier
represented by

a(x) —b'(x)y',

with the x axis lying along the ridge. This poten-
tial will depend, in general, on additional coordi-
nates, but the pair (x, y) is singled out here because
motion along the x axis is of primary interest in

the examples to be considered and because the po-
tential decreases as y departs from y =0 in either
direction. Thereby the x axis represents a locus
of points of unstable equilibrium. The Wannier
analysis is now seen to identify eigenmodes of
motion that remain quasistationary in spite of this
instability while propagating along x. The ridge
is also viewed as the locus of breakdown of quasi-
adiabatic approximations that have been successful
for treating nonseparable systems such as the pair
of electrons in doubly excited helium. " Indeed,
motion along the ridge may provide the main
mechanism for a massive transfer of excitation
between degrees of freedom (x, y) whose coupling
can be treated as an adiabatic perturbation in other
regions of configuration space. The occurrence
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of this set of properties will be called the "Wan-
nier phenomenon. "

A prototype for an extended Wannier analysis is
afforded by the motion of a single Rydberg elec-
tron in a magnetic field, a phenomenon that dis-
plays remarkable "quasi-Landau" resonances ex-
tending into the continuum. ' " Here the sum of the
Coulomb and diamagnetic potentials

V(r, 8}= -1/r+ —,
' u'r' sin'8

frequency of Larmor rotation (u/B = 2. 13X10 '
a. u. /gauss) and the energy eigenvalue E excludes
the Paschen-Back contribution of spin and orbit.
The operator A2 is the sum of the squared orbital
momentum l~, for a given value of m, and of the
diamagnetic potential energy a'r ' sin'8 multiplied
by r'. It wilf be regarded as a function of the
parameter ar'. For each value of ur', A' has a
complete set of eigenfunctions called the oblate-
spheroidal functions g, ,"

=(-1/r + —,
' a 'r') ——'a'r' cos'8, (2)

H. THE MAGNETIC-RYDBERG PROBLEM

The Schrodinger equation for an electron in the
potential field (2), with orbital magnetic quantum
number m, is represented in a. u. by

CP +2E + ———f (r 8)=0r2 I' r r2 m (3)

1 8 . B m—sing —+ . , + n'r ' sin'8,
sin8 88 88 sin'8

(4)

[Eqs. (5) and (6) of Ref. 10]. Here u indicates the

has a ridge along 8=—,'m in a meridian plane; that
is, 8= —,'v in Eq. (2) corresponds to y=0 in Eq.
(1). This potential rises to infinity as r increases
along the ridge, where sin'8=1, in contrast to
Wannier s application to a pair of electrons in a
Coulomb field where the potential flattens out as
indicated by a(~}=0 in Eq. (1). (The quasi-Landau
resonances arise from formation of standing waves
along this ridge. ) That notable phenomena result
from propagation along potential ridges with dif-
ferent asymptotic behavior suggests that the es-
sential features of the Wannier phenomenon relate
to local properties of the potential field (1) or (2)
along the ridge rather than to its asymptotic be-
havior. Accordingly we shall not specify the func-
tions a(x) and b(x) in Eq. (1), in contrast to Refs.
1-3, except by requiring them to vary slowly over
a wavelength of propagation as one would do in
WKB procedures.

We aim then at disentangling the general aspects
of the Wannier phenomenon by an adaptation of
Peterkop's' treatment. The magnetic-Rydberg
problem will serve as the main context for our
treatment because it involves a minimum of ex-
traneous elements; this context will be described
in Sec. II, reviewing and extending the approach
of Refs. 9 and 10. Section III will present the new
development while the concluding comments of
Sec. IV will introduce the remaining problem of
utilizing the Wannier approach to remedy the
localized breakdown of adiabatic treatments.

A' g, (ur'; 8}=[X, (ur')+ a'r~Jg, (ar', 8).

(5)

The eigenvalue of this equation has been separated
into X, and z'r ' according to a standard practice"
which will prove convenient. Equation (5} reduces
to that of associated Legendre polynomials in the
limit of ur'-0 (i. e. , for zero value of the mag-
netic field and/or radial distance) in which case
the ordering label l ~

~

m
~

=0, 1, 2, . . . , «»nctdes
with the orbital quantum number, X, —l(l+ 1).

The spectral effects of the diamagnetic term
a'r'sin'8 in Eq. (4) remain extremely small for
low Rydberg levels and for laboratory fields. For
higher excitations, as the mean value (ar) in-
creases, each spectral level begins to rise above
its zero-field value reflecting an increase of the
corresponding eigenvalue of A' (Fig. 1). Simul-
taneously each node or antinode of g, (ur'; 8) at
8 &-,'m shifts progressively toward 8=0, while
those at 8&—,'v shift toward 8=v (Fig. 2). This
shift results from the field hindering any electron
motion orthogonal to the coordinate axis. How-
ever, symmetry requires the antinode (or node)
that lies at 8 = ~v for even (odd) value of l —m to
remain fixed; this circumstance will prove im-
portant.

Note also that the diamagnetic term u'r' sin'8
in Eq. (4) represents a potential barrier separating
two valleys at 8& —,'~. The parameter ~, in Eq.
(5)—more properly X, —m —measures the excess
of the eigenvalue'of ~' over the ridge of this bar-
rier, a'r'+m'. Hence an eigenfunction g, (8)
oscillates in the barrier region as well as over
both valleys if &, &m', but it tunnels through the
barrier and oscillates only in each valley for

&m'. Figure 1 shows how each A., (ar~}—m
is positive for low ar2 but becomes negative at
large r; the transition between these two regimes
is critical for our problem. In the limit of r-
each spheroidal function g, reduces to a pair of
oscillator functions of the variable r sin8, one
centered at 8 = 0 and one at 8 = m.

An adiabatic approximation' considers approxi-
mate solutions of Eq. (3), f -h, (r)g, (ar2; 8),
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h, These coupling terms remain small for
moderate values of or', where they can be treated
as perturbations (quasiadiabatic approximation).

The effects of the coupling terms manifest them-
selves in the spectra as the principal quantum

number n increases along a spectral series with a
concurrent increase of (ar'). First, they break
down the optical selection rules which restrict the

values of the orbital number l, thus causing the

appearance of additional lines. Figure 3 shows

satellite lines appearing in the absorption spectrum
at increasing values of n; these lines can be label-
led initially with values of l' different from the

single l observed at lower n. As n increases fur-
ther, the intensity of the satellites increases
rapidly and their classification becomes uncertain.
We witness here a breakdown of the quasiadiabatic
approximation. The further appearance of a
periodic "quasi-Landau" modulation of the spec-
trum near and beyond the ionization threshold is
totally foreign to the adiabatic approach; its
quantitative interpretation is a goal pursued here.

Breakdowns of adiabaticity generally result from
"avoided crossings" of adiabatic eigenvalues —i. e. ,
in our case, of the curves A., (ar')+ a'r' versus
o'r' —which imply rapid variations of the channel
eigenfunctions g, . Figure 1 displays a striking
sequence of avoided crossings along the line X,
=m'. Several circumstances indicate strongly that

these avoided crossings originate from a pheno-

menon occurring along the ridge of the diamagnetic
potential, at 8= —,'m:

(a) The condition X, =m' marks the transition of
the wave functions g, (8) from oscillatory to tun-

nelling behavior at 8=-,'w.

(b) The avoided crossing behavior in Fig. 1 is
far more apparent for even than for odd values
of l —m, which are distinguished by the occurrence
of antinodes rather than of nodes of g, (8) at 8= —,'v.

(c) The transition from oscillatory to tunnelling

(ar') -m' (8a)

(8b)

behavior of a wave function is indeed far sharper
at an antinode than at a node (Fig. 2). As ar'
increases but X, (ar') still remains )m', the

amplitude of g, (8) increases at the antinode 8= 2w,

in proportion to (X,„—m') '~', as long as a WKB

approximation remains valid; when WEB fails the

drop of g, (ar'; —,'v) toward its small values cha-
racteristic of the tunnelling regime is thus dra-
matic.

(d} The quasi-Landau modulation of the absorp-
tion spectrum of Fig. 3, in the high Rydberg range
and beyond the ionization threshold, has been ac-
counted for in terms of standing waves forming
along the ridge, 8= —,'m, by a one-dimensional
model that sets 8=~v and disregards 8/88 in

Eqs. (3) and (4)."
Qualitatively the breakdown of adiabaticity at

6} =—2~ becomes apparent by considering the sym-
metry under reflection of 6} ——,'m. As a wave func-
tion propagates outward from the low r range, the
diamagnetic potential tends to deflect it toward
6) =0 or 8=m. This deflection can proceed adia-
batically for 8 0 —,'m but is hindered by symmetry
which keeps an antinode or node locked at e --,'m
(Fig. 2}. As a result the wave keeps propagating
along the potential ridge until it is stopped by the
rising level of the potential along the ridge, o'r '.
The breaking of the wave is reflected in the ap-
pearance of spectral lines with higher values of l.
Indeed the excitation of higher-l components of the
wave field (6} represents a transfer of energy
away from the radial motion whose wave number
is reduced by the increased value of ~, in Eq.
(t)

In conclusion the locus of the breakdosen of the
quasiadiabatic approximation is identified by the
pair of conditions
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in our magnetic-Rydberg example. References 6
and 7 yield an analogous pair of conditions for the
motion of a pair of electrons in a central field.
In that second example the breakdown of adiabati-
city is responsible for double excitations by pho-
toabsorption and for all excitations by slow-elec-
tron impact. Similar effects will presumably oc-
cur for any wave propagating along a potential
ridge, typically along the ridges of molecular po-
tential surfaces.

Two steps will be required to remedy this break-
down:

(1) To develop a solution of Eq. (3), or analo-
gous equation, that describes the Wannier pheno-
menon of propagation along the ridge. Such a
specialized solution need not hold far outside the
range of Eqs. (Sa) and (8b) but it must permit
matching to solutions valid in other regions. This
development forms the subject of Sec. III. (2) To
combine the Wannier solution with quasiadiabatic
procedures that may hold in other ranges.

(V'+ k')(=0, (9)

with a certain dependence of the wave number k on
the space variables. It will be adequate to consider
initially a two-dimensional space, as in Eq. (3),
because only two space variables play a critical
role here as in the two-electron six-dimensional
problem considered by Wannier; indeed the deter-
mination of the Wannier parameter f hinges only
on variations of the potential within the plane of
radial variables (r„r,).

To recast Eq. (3) in the form (9), the condition

(8b) suggests using the pair of coordinates
(r, 8 ——,'w}. Setting

(10)

Eqs. (3)-(5) yield

k'(r, g}= k', (r) + ,'k', (r)P 1—+2 P 2n +2))

k', =2E + 2/r n'r', k', =2n-'r', (12)

where the terms O(m'/r') are negligible in prac-
tice. The quadratic dependence of k' on $ is cen-
tral to the Wannier phenomenon.

Consider now the condition (8a). It implies that
the kinetic energy of the electron stems entirely
from motion along the ridge (=0. Indeed the so-

III. PROPAGATION ALONG THE RIDGE

Equation (3), which governs the Wannier pheno-
menon in the region identified by the conditions
(8a) and (8b), will be considered here as a special
case of the wave equation

lution of Eq. (5) for A., =m' coincides for 8-—,'v
with a parabolic cylinder function" of order zero
whose eXpansion 1 —c$'+ lacks the, term ~ $'.
(The alternative solution odd in $ has the expansion
( —c'$'+ . ) The Starace calculation (item d

above) amounted to integrating Eq. (9) by WEB
method along the r axis —i. e. , on the ridge —con-
sidering only the k', term of Eq. (11). The phase
of the Peterkop-Rau wave function on the ridge
can be derived in the same manner. Thus we
characterize the solution of interest of Eq. (9) as
oscillating along the ridge according to

(13)

d'g d ln(k, r') d$, k',

dr dr dr k r (15)

terms of order $' are to be disregarded in ac-
cordance with Wannier's linearization. In Wan-
nier's problem —and within a "Coulomb zone",
~E

~

«~ V~ —the coefficients of Eq. (15) can be made
constant by taking lnr as the independent variable.
A general trajectory that obeys Eq. (15) with con-
stant coefficients is, of course, a superposition
of a base set of two exponential solutions. Each of
these exponential solutions is an eigenvector of
translations along the potential ridge.

In this paper the coefficients of Eq. (15) will be
treated instead as locally constant, that is, as
slowly variable in the sense of WKB approxima-
tions. This approach was anticipated by the re-
mark at the end of Sec. I about the Wannier pheno-
menon relating to local properties of the potential

A. The Wannier phenomenon

Further guidance is provided by reviewing the
substance of Wannier's original analysis. ' The r
axis in our present context corresponds in Wan-
nier's problem to the line r, = r, which constitutes
the axis of the bundle of trajectories mentioned at
the outset of this paper. Qther trajectories of that
bundle are deflected by a force, -8V/d$~ $ in our
coordinates, which increases linearly with $ and
whose effect is governed by (d/dt)(mr'd$/dt)
= -8V/8$. Wannier transforms this equation of
motion into an equation for the trajectories,
$ = $(r), by eliminating the time variable through
the relation d$/dt = (d$/dr)(dr/dt) and applying an

approximation linear in $ and d$/dr. Using then
md'r/dt'= 8V/Br —and the kinetic energy expres-
sion T ='E —V(r, g), Wannier's equation for the
trajectories reduces to

(, d'$ d$ BT, dP BT2T~r', +2r —+ —r' —= —~$. (14)dr' dr Br dr 2 g

In our context T is represented by ,'k'(r, $), —

whereby (14) becomes
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field along the ridge. General solutions of Eq.
(15}with slowly variable coefficients are super-
positions of a base set of two exponential WKB
solutions.

That WKB approaches are relevant to our class
of problems is manifested by the large quantum
numbers of the relevant states. (Variational ap-
proaches are instead appropriate for low quantum
numbers. ) For the Wannier problem the specific
WKB condition

~

d)(/dr(« I is demonstrated to hold
explicitly for r» 1 in Footnote 19 of Ref. 3. This
condition holds also in the magnetic-Rydberg
problem, except at large-r turning points which
will require a special treatment. Wannier him-
self has discussed the validity of a classical treat-
ment extensively. '

Qn this basis I identify the Wannier phenomenon
as the existence of particular bundles of solutions
of the trajectory Eq. (15) that converge (or di-
verge) exponentially to (from) the ridge (=0. The
rate of convergence (divergence) is a root f of the
second-degree algebraic equation with coefficients
equal to the local value of the coefficients of Eq.
(15). These special bundles of trajectories con-
stitute eigenmodes of motion of a particle —or
system of particles —in the region about a poten-
tial ridge. These eigenmodes are characterized
by a distribution in $ whose profile remains
translationally invariant along the ridge to within
the slow variation of the coefficients of Eq. (15).
The goal of this section is to describe the wave
mechanical analog of the Wannier eigenbundles of
trajectories.

The Wannier law for threshold ionization results
from arguing that the pair of incident and ejected
electrons escapes at near-threshold energies
through the eigenbundle of diverging trajectories.
The root f for the diverging eigenbundle repre-
sents its rate of attenuation along the potential
ridge. The divergence itself implies that a part
of the bundle feeds into highly excited but bound
states rather than into ionization; this process
has only been outlined qualitatively thus far' as
its further description will require a wave mechan-
ical representation. Completing this description
is an eventual goal of the development initiated in
the present paper. In the magnetic-Rydberg phe-
nomenon the trajectory eigenbundles cannot escape
the atom along the ridge )=0, where the potential
rises as n r . There results reflection at a turn-
ing point r, ; in a wave mechanical treatment the
reflection generates standing waves whose ampli-
tude exhibits the quasi-Landau resonances as a
function of energy. The trajectories with go0
should then diverge eventually away from the ridge
i. e. , into either of the potential valleys leading
to 8=0 or 6}=w.

v'A+(k'-(vS~'}A=0,

2VA ~ gS+A V'S =0.
(17)

(18)

Equation (18) is equivalent to the continuity equa-
tion of the particle flux for a stationary state

V -A'VS =0, (18')

for AAO.
A WKB approximation is often introduced to solve

the system of Eqs. (17) and (18) by disregarding the
V A term in Ea. (17), inasmuch as geometrical
optics relies on the amplitude of a wave varying
much more slowly than its phase. Equation (17)
reduces then to the Hamilton- Jacobi equation

i
vs''=k'(, g), (19}

whose solution identifies classical trajectories
as the streamlines of VS. The amplitude func-
tion A(r, () is determined in a second step from
the continuity Eqs. (18') or (18). This approach
originates from the familiar applications to one-
dimensional systems: Setting $ at 0, Eq. (19)
would yield S=f "k,(r')dr' as in Eq. (13)——and
Eq. (18) would then yield A =k,' '. Equation (17)
is then satisfied only to the extent that v'A =d'A/
dr'=d'(k, '~')/dr' is negligible; therein lies the
WKB approximation.

A lesser resort to approximation is, however,
required when following the same approach in the
presence of two, or more, independent variables
as shown below. We shall in fact proceed through
the following steps.

(1) Introduce Eq. (19) as a subsidiary condition
to Eq. (17) designed to select a particular solu-
tion that behaves in accordance with Eq. (13). A
concurrent boundary condition is also imposed,
namely, that VS be parallel to the r axis at g =0.
This condition identifies the phase function to be
constructed in Sec. III C by integrating Eq. (19)
away from )=0.

B. General procedure

To construct a solution of Eq. (9) that propagates
on the ridge according to Eq. (13), we represent
this solution in terms of amplitude and phase
functions by setting

g(r, $) =f (r, 8)/r =A(r, ()e' (16)

with A and S real. Introducing the phase function
S serves to identify the direction of motion of the
particle because A'V'S represents the current den-
sity in our units. Standing wave solutions of Eq.
(9) are represented by combining (16) with its com-
plex conjugate. Substitution of (16) transforms
Eq. (9} into a system of two equations for A and S
(Ref. 14),
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(2) Solve the continuity Eq. (18), thereby deter-
mining the variation of the amplitude function
A(r, x) along each streamline of VS (Sec. IIID).

(3) Solve the equation

a, u X a'A
V'A = —,—r' —+ —

2
—O,~' Br ar r' a(' (20)

that is, the residue of Eq. (17) after having solved
(19}(Sec. IIIE).

Here we see how the problem of solving the
system (17) and (18) depends critically on the num-
ber of independent variables. Equation (20) con-
sists of two terms in our problem with the coordi-
nates (r, g); in general it consists of one term
per independent variable. The solution of Eq. (18)
amounts to fixing one of these terms correspond-
ing to the variation of A in the direction of V'S;

hence it determines V'A completely in a one-di-
mensional system, whereby Eq. (20) can be satis-
fied only in a WKB approximation. This structure
is reduced in the presence of additional variables,
since previous solution of Eqs. (18}and (19) no
longer fixes the value of V A. Equation (20) will
thus be regarded in Sec. IIIE as the wave equation
governing the variations of A in directions ortho-

gonal to VS. This equation is nevertheless not
altogether independent of Eqs. (18}and (19}; it
will be made compatible with them only by treating
its coefficients as independent of S, thus intro-
ducing an attenuated form of WKB approximation.
Its integration will yield slow variations of A in

directions orthogonal to VS, as expected for a
WKB amplitude, but these variations are essential
to multivariable wave propagation.

The succession of steps outlined here will be
carried out explicitly for our prototype two-vari-
able (r, () system, with complementary remarks
on the extension to multivariable problems. Two
alternative parametrizations will be utilized:

(a) Expansion of S(~, $) and A(r, $) into powers
of $', following the procedure of Peterkop. ' Pe-
terkop's truncation of the expansion, disregarding
terms of O($'), will be seen to give adequate con-
sideration to the essential features of the problem.

(b) Replacement of the ordinary coordinates
(r, $) with an intrinsic pair of orthogonal coordi-
nates (S, T), such that S = const represents a line
of constant phase and T = const represents a clas-
sical trajectory. The wave propagation properties
will be embodied in the metric'for these coordi-
nates, as described in the following.

C. The Hamilton-Jacobi equation

Consider the expansions

(2n
S(~, ()= g S„(~) 2, =S,(r)+ ,'S,(~)~'—+O(~'),

n-

dS )2n 1
Zd (2n)l' iZ ~ "(2 1)!

=
dy 'dg ' ' i ]'

n=0 n=l

(21)

(22)

dS,/dr =k,(r), (24)

ensures that our procedure satisfies the condition
(13). [The sign of So(r) is irrelevant for our pur-
poses. ] The next equation,

$2
(25)

is central to our procedure. [Replacement of k,
and k, by their expressions appropriate to Wan-

Since the squared wave number k'(r, $) has been
introduced in Eq. (11}through an analogous ex-
pansion in powers of g', the equation

~

VS~'=k'
may be treated by equating the corresponding
coefficients of the expansions (23) and (11).

The zeroth order equation obtained in this manner,

S,(r) = (kr)r'd Ingr)/dr+ 0(('), (26)

a standard type of formula that transforms the
first-order nonlinear Riccati equation (25) into
the second-order linear equation (15). [See Eqs.
(28)-(30) and (18) of Ref. 2. ]

Equation (15) has been solved analytically in
Refs. 2 and 3 for the two-electron problem, both
in the Coulomb zone and in the farther region

I

nier's two-electron problem would turn Eqs. (24)
and (25) into Eqs. (14) and (15) of Ref. 2. ] Equa-
tion (25) constitutes the wave mechanical form of
Wannier's linearized trajectory equation (15},
since the slope of a trajectory, rdPdr, must
equal the ratio of the components of V'S in Eq.
(22}. Indeed, setting rd$/dr = [S,(r)$/r]/k, (r)
gives
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where E» Ze'/r .Numerical solutions will be
required in other cases including the magnetic-
Rydberg problem. To this end we generalize the
Wannier parameter f by setting

s,(r)
d lnr k,(r)r

'

Substitution of this expression transforms Eq.
(25) into

d ln[k, (r)r] }
d t —,

' k', (r)

(27)

(28)

S(r, $) =S,(r) + —,
' rk, (r)g(r) E'+ O($') . (3o)

[Note that the factor r in Eqs. (27) and (30) stems
from the coefficient of d$' in the differential line
element; it would reduce to unity for Cartesian
coordinates. ]

The expression (29) of t in terms of the "local"
values of k, and k, determines the Wannier para-
meter independently of any further specification
of the potential function (11), as anticipated in Sec.
I. Equations (29) and (27) provide the solution of
the Eq. (25) for S,(r) and the equivalent solution
of the trajectory Eq. (15},

d~ ~~ ' d&$(r)=exp f(r) —=~ — 1+0r (ro d lnr

(31)
where r, is a normalization constant. Recalling
that Eq. (15) holds within an approximation linear
in $, we note that ro should have a value interme-
diate between 0 and ~ which makes $ appropriately
small at small r for t' &0 (divergent trajectories)
or small at large r for f &0 (convergent trajec-
tories). These two alternatives correspond to the
alternative signs in the root (29). The following
treatment pertains to either one of these alterna-
tives unless otherwise stated.

For the two-electron problem in its Coulomb re-
gion this equation reduces to the Wannier equation
for f with constant coefficients and with dt/dr=0
In general, one may nevertheless solve (28) as
though df/dr 0, o-r at least by treating df/d lnr
as a constant to be fitted by iteration. Thus we
write

d ln[k, (r}r]'~'

d lnr

d ln[k (r)r]' 'l' —'k' df0 2 1

d 1 r ] k02 dlny

(29)
The two roots t'(r} thus obtained determine the
curvatures of the alternative eigenparabolas of
constant phase

Extension to larger $. Consider now how suc-
cessive coefficients S„(r) of the expansion (21),
with n~ 2, may be obtained by recursion from the
S„(r}with v&n. Equating the coefficients of P" in
the expansions (23) and (11), for n & 2, yields

tan~(r, &)=,S, = g(r)t+ O(P).
r '(3S/ay),

3S 3r, (33)

The second coordinate T may be introduced as a
normalization constant for the representation of
a particular trajectory of our bundle in terms of
the standard trajectory $(r), i. e. , by writing
$ = Tg(r}. However the solution $(r) provided by
Eq. (31) holds only over an infinitesimal range of

Beyond the linear approximation represented
by Eq. (15), the trajectories of our bundle no
longer differ only by a scale factor T. We write
then the more general trajectory equation

g = Tg(r, T) =Tg(r) . (34)

For larger T, the function $(r, T) is determined

= (-2)"-'k,(r) . (32)

The key point is now this: The coefficients dS„/dr
and S„(r) of highest order v in Eqs. (32) have
v =n &1 and appear only linearly, in contrast to
Eq. (25) which contains S,(r) quadratically.
Therefore Eq. (32) determines S„(r) by quadra-
tures, uniquely, in terms of the S„(r) with v&n;
the latter are determined in turn by earlier steps
of the recursion. We conclude that the quadratic
equation (25), solved in Refs. (2) and (3), consti-
tutes an exceptional element of the recursion pro-
cess, namely, the one that identifies two alterna-
tive eigenmodes.

The recursion proceeds uneventfully thereafter
enabling one to construct the function S(r, $} with-
out any restriction to the infinitesimal range of $
considered by Peterkop and Rau. Singular points
of the constant phase surfaces may well be en-
countered at a finite distance from the ridge, cor-
responding to intersections within a bundle of tra-
jectories. Such singular points would limit the
range of the special solutions considered in this
paper. The Wannier-Peterkop-Rau analysis thus
appears to have already identified the essential
aspects of propagation along the ridge. The con-
struction of S(r, $} will thus be regarded as accom-
plished throughout a finite range of (r, g), even
though our present purposes do not require its
explicit calculation.

The intrinsic frame and its metric. At each
point (r, $) the axis Vs of the coordinate frame
(S, T) and the axis r of the frame (r, $) form an
angle a defined by
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by extending the Eqs. (26) or (27) which require
the trajectory to be parallel to VS and hence to
have the slope (33},

It follows that

(35)
and further, from Eq. (34},

(38}

The differential metric elements for both frames
(r, $} and (S, T), are expressed in standard form;
they shall include here the third coordinate, y,
for the sake of later applications. Thus we write

with

—dr +r d$ +r sin /de
—jP dS2 + fP d T'2 + Q2 d(p2 (36}

(8T/ar-),tana(r, t') = (33')

(37)

h„(r, g)=rcosg.

To calculate ~VT~ note that the orthogonality of
VT and VS complements Eq. (33) with

r, T +T

=$(r, T} 1+ aha C

kk

(39)

Finally we obtain, with reference also to Eq. (31),

8 1n'(
kr(r, $) =

~

VT
~

' = r$(r, T) 1+ cosa(
r&

—r — &+0 +0 $' (40)

Additional variables. In an N-dimensional space
the expansion (11) of the squared wave number of
the wave equation about the ridge takes the form

k'(r, (, (, . )=k'(r)k —' rr. k (r)P (t'E "'(""")
=1 ll=2

(41)

where v, = +1 for different values of i and k',. may
vanish. In our magnetic-Rydberg problem we
have N = 3, a, = 1, and k,'(r) = 0, since the axial
symmetry of the problem makes k' independent
of the third coordinate, $, =-q. The Wannier two-
electron problem has N=6, the k, vanish for i &2
and o, = -1, implying stable equilibrium about

$, =0. References 2 and 3 have treated g, on an
equal footing with $„ introducing two parameters
f,(r) and f,(r) Howeve. r, the expression (29) of
g, has a factor o, = -1 in front of k,'(r) which makes
the discriminant negative and &, and S(r, $„$,)
complex. We had defined S initially as a real
phase function; according to Eq. (16) an imaginary
dependence of S on E, is equivalent to an exponen-
tial variation of the real amplitude function A. An
alternative, but equivalent, procedure would avoid
complex values of S by removing all terms of the
expansion (41) with a, = -1 fram the k' term of the
Hamilton-Jacobi equation (19), and combine them
instead with the residue V'A of Eq. (17}; these
terms, which represent a potential well, would
thus contribute to variations of the amplitude func-
tion A directly rather than through a complex S.

D. The equation divA2VS =0

This equation requires the probability density
of the Rydberg electron in our problem —or of the
corresponding system in other problems —to vary
in proportion to the local condensation of the
streamlines VS. Accordingly its solution has a
main role in determining the threshold law in
Wannier's problem and the intensity distribution
within the manifold of excited states in the mag-
netic- Bydberg problem.

Let us start from the equation in its form (18),
linear in A(r, (), entering in it the expansion

VS =—(k o(r ), k o(r) f$ }+0 ($ ) (42)

from Eqs. (22), (23), and (27}. The equation is
then

BA 2 BA 1 d 2 1
2 —k (r)+ ——k (r)t'(+A ——r'k + —k gr Pg r' dr

+ 0((')=0. (43)

Multiplication by r/Ako and grouping of terms re-
duce this equation to
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8 in[A'k, (r)r'] + 2
(} lnA

&+ g+ O(p) =0. (43')
8 lnr 8 in)

To proceed further we should now also expand
A(r, $) into powers of P, but this step requires
a discussion of symmetry.

The equations of our' problem are invariant un-
der reflection on the ridge, that is, under the co-
ordinate transformation $ ——$. This implies oc-
currence of eigenfunctions of Eq. (9}of alterna-
tive parity, even or odd under this reflection. It
is the amplitude function A(r, () which has alter-
native parity, since the phase function may not
vanish identically at $ =0 and has in fact been taken
as even. The essential point now is that the factor
3 InA/9 In) in the second term of Eq. (43') has
quite different expansions depending on the parity
of A(r, (). It is of O($') for even parity but it
equals 1+O(P} for odd parity, i. e. , when
A =A, )[1+0(P)]. Equation (43') yields thus the
alternative solutions, expressed in terms of the
trajectory function (31),

A(r, $) =A,(r)+ O(P), A',k,r'(x: $(r) '(x:r ' (even)

(44a)

A(r, $) =A, (r))+ 0($'), A', k,r'~ $(r) '(((-r" . (odd)

(44b)

We see here that odd-parity eigensolutions with
positive f and divergent streamlines decrease in
amplitude with increasing r far more rapidly than
even solutions do. This result agrees with the re-
mark in Sec. II that quasi-Landau resonances oc-
cur only for 0 polarization, i. e. , for even values
of l-m and even parity under $ reflection. For
the Wannier two-electron problem, Refs. 1-3
have considered only even-parity solutions. On
the other hand Klar and Schlecht have obtained the
result (44) for both types of state using coordi-
nates for which even (odd} parity in (, corresponds
to singlet (triplet) states of the electron pair. "

The sharper dependence on r of odd-parity eigen-
modes is analogous to phenomena familiar in other
processes of field propagation. Thus, e. g. , the
field of an electric 2~ pole lying in the (x, y) plane
decreases in the z direction far more sharply for
high than for low values of k, even though it is
governed by the same equation, V' ~ E =0. The
difference stems from the requirement of k-fold
symmetry about the z axis. The role of symmetry
will be more directly apparent in our problem
when formulated in the intrinsic coordinates
(S, T, y), introduced in Eq. (36), ff. , and thus ex-
tended to a finite range of g.

In the intrinsic system VS has a single nonzero
component,

VS =(k, 0, 0). (45)

The continuity equation (18') takes then the simple
form

1 8
y

S T y

whose general solution is represented by

A(se T)=(hrh k) ' 'F(T)

(46)

(47)

in terms of an integration factor F(T). Equation
(47) holds in this form regardless of symmetry,
but solutions of even or odd parity have distinctly
different behavior of F(T), represented by

«„„(0)=F,~ 0, ~~") =e (e )
dF„„

T=O
(48a)

F«~(T) = TF,(T), F,(0)=F,o a0,

(
'( =0 (eee).

(48b)

E. The equation V2A = 0

Consider finally the Eq. (20}, V'A =0, which
follows from Eqs. (17}and (19) in our approach.
The dependence of A upon the coordinate S has
already been expressed in Eq. (47) through the
parameters hT, h„, and k, but we should see now
how to determine the factor F(T). Expressing Eq.
(20) in the coordinates (S, T, cp), with A in its
form (47), yields

h, h, h„aS "'"~ aS
+ ar "'"~"' aT

x [hrh k] ' 'F(T)=0. (50)

Here F, or Fyp serves as a normalization con-
stant, while the further variations of F„„(T)or
F,(T) remain to be determined by integrating
&'A =0 along T.

The consistency of Eqs. (47) and (48a) (even)
with the small-$ expansion (44a) (even) is apparent
from the expressions of hr and h, Eqs. (37) and
(40). For the odd-parity case notice firstly that
the dependence of A(S, T) on S, i.e. , its variation
alorig each streamline, is represented in Eq. (47)
through the factor (hrh„k) '~' regardless of parity.
Odd parity is represented by the factor T in Eq.
(48b) (odd), which represents the main variation
of F,«(T), since F,(T) will be seen to vary slowly.
Comparison with Eq. (44b} (odd) involves express-
ing this factor in terms of (r, (), by means of the
trajectory Eq. (34), i. e. , writing Eq. (48) as

A(r, g}=(hrhsk) (~'TF,(T)

= $[hr \(r, T)'h, k] ' 'F,(T) (odd). (49)

Consistency with Eq. (44b} (odd) is now apparent
since the factor $' in this equation combines with
the factor $ in hr to yield a contribution of ($') ' '.



2670 U. FAN 0 22

The derivatives with respect to S operate only on
(krk„k) '~', accordingly they contribute to Eq. (50)
a term that acts as a squared wave number for the
propagation of F(T) along T S.etting b(S, T)
= [krhzk]'~', the resulting equation reduces thus
in effect to the ordinary differential equation in T,

{
8, 8 1 8'lnb 8lnb '

8T"'"~"' 8T b(S, T) ( ' 8S' +
8S

xF(T) =0, (51)

which can be solved numerically starting from the
boundary conditions (48). Equation (51) shows the
effective wave number of the propagation along T
to be small, since it depends on second variatiohs
of lnb along the streamlines.

Note here that the dependence on S of b(S, T) and
of the other metric coefficients makes Eq. (51)
appear incompatible with our procedure of solving
Eqs. (18), (19), and (20) sequentially, because
it makes F(T}itself a function of S in contrast to
its role in Eq. (47). Disregarding this dependence
on S constitutes a WEB-type approximation which
is introduced here as anticipated in Sec. IIB. This
approximation appears consistent with our initial
understanding that the coefficient k'(r, $) of Eq.
(9), and hence the resulting metric coefficients,
Eq. (37), vary slowly along the ridge. Equation
(51) can still be integrated along T for any given
value of S. What is, in fact, disregarded is the
contribution to Eq. (46) that would result upon
substitution of Eq. (47) with an S-dependent factor
F(T)

Problems with several independent variables,
with a wave number represented by Eq. (41) in
terms of several $, , introduce a set of intrinsic
variables T, = $,/$, (r, T„. T„.. . ). Each classical
trajectory is then defined as the intersection of
several surfaces T, =const. The function F(T)
depends on several T,. and belongs to one of
several possible species of the symmetry group of
the ridge T, =0. Equation (51) would then include
additional terms with derivatives 8/BT, ;it may.
also include wave number terms originating from
terms of the expansion (41) with o,. = —1 as indi-
cated at the end of Sec. IIIC. This consideration
points up that our procedure amounts in fact to
dealing explicitly with a single variable of the
wave equation (9), namely, with the pathlength
along the bundle of trajectories orthogonal to the
surfaces of constant phase S. The wave propaga-
tion over these surfaces remaihs to be treated by
Eq. (51).

Actual performance of explicit calculations of
S(r, () and F(T) does not seem relevant until
methods will have been developed for incorporat-
ing the wave propagation along the potential ridge

into solutions that satisfy conditions at distant
boundaries.

IV. DISCUSSION

Section III substantiates the main point of this
paper, namely, that the Wannier-Peterkop-Rau
analysis of the ionization threshold law enables us
to construct a base set of eigenmodes of wave
propagation along a potential ridge. The curvature
of the wavefront of each eigenmode represents
a progressive diffraction of the wave away from
(or into) the direction of the ridge. The construc-
tion procedure extends transversally from the
ridge over a finite domain. The alternative roots
of the Wannier equation (28) characterize the dif-
ferent properties of two eigenmodes of wave pro-
pagation, particularly by appearing as exponents
of the radial coordinate in Eqs. (31) and (44). A
further characterization of eigenmodes according
to symmetry about the ridge has emerged in Sec.
III D.

The next main task facing us is to utilize these
results to compensate the breakdown of the adia-
batic approach to nonseparable wave propagation,
which is localized on a ridge as described in Sec.
II. Recall from Sec. II that Eq. (6) represents the
expansion of an exact wave function into a complete
system of angular functions, and that the resulting
system of coupled radial equations, Eq. (7), is
exact. The breakdown to be remedied is that the
effects of channel coupling in Eq. (7} become in-
creasingly~large and nontransparent at large radii.
These effects obscure the origin of the quasi-Lan-
dau resonances in the spectrum near the ionization
threshold in Fig. 3. Formation of standing waves

. along the ridge presumably accounts for the reso-
nances but we do not yet see how to fit this inter-
pretation within the context of the coupled Eq. (7).
Recall also that the magnetic-Rydberg example of
Sec. II was introduced as the prototype of a class
of phenomena which may prove very broad.

A further characteristic feature emerges from
Sec. II. The locus of the breakdown of the quasi-
adiabatic approach, as defined by Eq. (8a),

(ar') -m', is seen in Fig. 1 to cut across the
entire spectrum of potential energy curves

(or')+ n'r', in the very region of the avoided
crossings. This picture suggests that the eigen-
modes of propagation ori the ridge play the follow-
ing role in the context of the quasiadiabatic ap-
proach. In Fig. 1 the diagonal line A. , (or')+ n'r'
= m'+ @2'4 may be viewed as representing the
adiabatic potential level of the eigenmodes of pro-
pagation on the ridge. Incorporation of these
eigenmodes into the coupled system, Eq. (7),
would introduce a strong coupling between
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either eigenmode and each adiabatic channel near
the intersection of their respective levels. This
coupling might then rePlace much of the direct
coupling between the several channel pairs (l, l')
in Eq. (7). The eigenmodes are thus viewed in
the role of mediators of the coupling among the
adiabatic channels, whose strength and complexity
obscure the interpretation of Eq. (7). [While the
diagram of Fig. 1 may suggest that the coupling
affects primarily pairs of adjacent channels (l, l'),
with l'= l +2, its extension to larger values of
a'x4 would show the range of an avoided crossing
to spread over channels with

~

l' —l~
& 2. j

A pattern of quasiadiabatic approximation where
one level crosses a manifold of other levels has
been treated by Demkov and Komarov-. " In that
case, however, the crossing level and the mani-
fold were understood to belong to the same system
of orthogonal channels whereas the g, (8) of Sec.
II (or the corresponding adiabatic channels of Refs.
6 and 6) form a complete set which becomes over-
comPlete upon inclusion of the eigenmodes of the
ridge. The eigenmodes have thus the character
of collective coordinates whose introduction serves

to interpret properties of a system without being
orthogonal to its standard coordinates. Extension
of the Demkov-Komarov treatment to this different
circumstance is a remaining task.

A further separate task consists of extending the
treatment of Sec. III to the turning point at large
r in the magnetic-Rydberg problem, where k,(r)
vanishes. The two-dimensional nature of our
problem with curved lines of constant phase,
S(r, ()= const, prevents a simple application of the
usual Airy function procedure that complements
the WKB approximation. The boundary at k(r, $) =0
will presumably couple the two eigenmodes with
effects that are not yet foreseen.

Note added. A description of the turning point
phenomena, developed after submission of the pres-
ent paper, is being published separately. "

ACKNOWI. EDGMENT

I am indebted to many colleagues for helpful
discussions and for comments on the manuscript.
This work was supported by the U. S. Department
of Energy, Office of Basic Energy Sciences.

G. Wannier, Phys. Rev. 90, 817 (1953).
R. Peterkop, J. Phys. B 4, 513 (1971).
A. R. P. Rau, Phys. Rev. A4, 207 (1971).
S. Cvejanovic and F. H. Read, J. Phys. B 7, 1841
(1974).

U. Fano, J. Phys. B 7, L401 (1974).
U. Fano and C. D. Lin, in Atomic Physics, edited by
G. zu Putlitz (Plenum, New York, 1975), Vol. 4, p. 47,
especially p. 66ff.

~U. Fano, Phys. Today 29(No. 9), 32 (1976).
K. T. Lu, F. S. Tomkins, and W. R. S. Garton, Proc.
R. Soc. London, Ser. A 362, 421 (1978), and references
therein.

U. Fano, Colloq. Int. C.N.R.S. 273, 127 (1977), espec-
ially pp. 131-133.
A. F. Starace and G. L. Webster, Phys. Rev. A 19,
1629 (1979); also Bull. Am. Phys. Soc. 24, 1194 (1979).
A. F. Starace, J. Phys. B 6, 585 (1973); see also
A. R. P. Rau, Phys. Rev. A 15, 613 (1977); and A. R.
Edmonds, J. Phys. (Paris) 31, 71 (1970).

C. Flammer, Spheroida/ Wave Eunctions (Stanford
University Press, Stanford, 1957); also Ref. 13, Chap.
21.
M. Abramowitz and I. Stegun, Handbook of Mathemati-
cal Functions (Dover, New York, 1965), Chap. 19.
A. E. Migdal, Qualitative Methods in Qgantum Theory
(Benjamin, Reading, Mass. , 1977), pp. 206-208. I
thank A. F. Starace for introducing me to this approach.
An application of Eqs. (17) and (18), analogous to the
present one in many respects, has been developed by
T. Banks and C. M. Bender, Phys. Rev. D 8, 3366
(1973).

5H. Klar and W. Schlecht, J. Phys. B 9, 1699 (1976).
Yu. N. Demkov and I. V. Komarov, Zh. Eksp. Teor.
Fiz. 50, 286 (1966) [Sov. Phys. —JETP 23, 189 (1966)];
see also Yu. N. Demkov and V. N. Ostrovskii, Method
Potentsialnov Nulevogo Radiusa v Atomnoi Fizike
(Leningrad University Press, Leningrad, 1975), Chap.
IX.

~U. Fano, J. Phys. B (in press).


