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General expressions are derived for the spectral line shapes of resonance absorption and scattering of coherent

radiation in collision-broadened gases, taking into account effects of coherent excitation of two or more atoms (or

molecules), as steady-state solutions of a hierarchy of master equations described in a previous publication (paper I).

Coupling between the coherent motions of the atoms, provided by a Bethe-Salpeter —type effective interaction, in the

binary-collision approximation, forms the essential mechanism for introducing cooperative coherent effects into the

steady-state spectra. Explicit expressions are given for the effects of two-atom coherence in the binary-collision

approximation, in which the Bloch-type dressed-atom self-energy superoperator is modified by the presence of
collisions in which both atoms retain memory of their coherent propagation before the collision. The self-energies

include the effects of resonance exchange symmetrization in self-broadening, and are renormalized by the

coincidence of radiative transitions during the collisions. The impact (near-resonance) and the quasistatic (line-wing)

limits of the applied-frequency detunings are discussed. In the quasistatic limit, coherent many-atom excitations

become irrelevant; however, interactions of both collision partners with the radiation during the collision accounts

for such phenomena as collision-induced absorption or radiative collisions. In the impact limit, the inclusion of the

Bethe-Salpeter interactions allows for the appearance of two-atom resonances. Magnitude estimates of these effects

are discussed. Effects of higher-rank (many-body) coherences are formally discussed with the help of a diagrammatic

method, leading into implicit bootstrap equations that can be solved by iterative or other procedures.

I. INTRODUCTION

In a, previous publication (Paper I), ' a, hierarchy
of master equations was derived describing the co-
herent excitation of a many-atom nonreactive gas

/

system by an arbitrarily strong applied coherent
radiation, under the influence of binary collisions.

In this publication, a general expression derived
in Sec. II for photon-counting rates and applicable
to both resonance absorption and resonance scat-
tering of radiation, is brought into a form related
to the steady-state solution of the master equa-
tions, in the case of continuous-wave spectra. As
in Paper I, coherence effects are introduced
gradually, beginning with the one-atom case (in
Sec. III), going through the two-atom case (in Sec.
V), and culminating in a brief formal discussion of
many-atom effects (in Sec. VI). Explicit expres-
sions are derived for the two-atom coherence case,
using a diagrammatic method described in Sec. IV,
in the binary-collision approximation. The spec-
tral shape is expressed in terms of self-energy
(collision broadening and shifting) superoperators,
related to the binary-collision scattering matrix,
and including such effects as resonance exchange
in self-broadening and coincidence of radiative
transitions during the collisions. The effects of
collisions between two atoms, both retaining
memory of their coherent excitation before
the collision, are introduced as modifications to the
self- energy, related to the Bethe- Salpeter effective
interaction of Paper I. In Secs. VII and VGI, the

impact and the quasistatic approximations are de-
rived as limit cases, using the method of Burnett
et al. for treating the initial correlations in the
density matrix. In the imPact limit, where the
evolution of the system extends over many colli-
sions, the modifications involving the Bethe-
Salpeter diagrams introduce frequency-dependent
features that allow, in principle, the appearance of
cooperative two-atom resonance peaks in resonance
fluorescence. '4 Rough estimates of the cooperative
effects are discussed. In the quasistatic limit,
where the time evolution extends over one colli-
sion at most, such cooperative effects cannot be
felt. However, introducing self- energies renor-
malized by the interaction of both atoms with radia-
tion coincident with the collision, allows one to in-

corporate in this limit such phenomena as radiative
collisions. s' This relation is discussed in Sec.
VIII. A more detailed study of the two-level-atom
resonance fluorescence will follow in a forthcom-
ing article of this series. For terminology and
notation used here consult Paper I. Here, too,
wherever "atoms" are referred to, they can be
replaced by "molecules. "

II. PHOTON-COUNTING RATES

The rate at which photons are emitted (or ab-
sorbed) in the kth mode of the radiation field, from
a coherently driven gas system of N„atoms, can
be obtained by calculating the time derivative of
the mean photon number in the kth mode. This
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mode can be one of the incident field modes (self-
attentuation) or a scattered mode (resonance scat-
tering or resonance fluorescence). In the Schro-
dinger picture, the emission (or minus absorption)
rate can be written as7

(N0& = —ig ~ tr([a0a0, V0"]p(t)j,
using a second-quantized description of the fields.
Here p(t) is the density matrix of the entire sys-
tem (gas plus radiation). The interaction of the
gas with the kth radiation mode (considered here
in the electric-dipole approximation) can be writ-
ten as'

P(t0) = D(n(t0))P, D (o(t0)) (t0 —— ),
where

(10)

by specifying the initial conditions at a fixed time
(for example, t, = 0) and letting t -~, or by letting
t0- —~, and reckoning p(t) at a fixed time (for
example, t=0). Following the latter lead, we now
postulate for the initial conditions an equilibrium
state of the sample on which the coherent incident
beam is superimposed' by a Glauber displacement
transformation,

yR yjeR yR++ yR-
k

[stn VRv] ~ Vlb:

Hence

(N0& =mitt tr[ V0 p(t) —p(t) V0 0]

-=+i tr[V 'p(t)],

(4)

(5)

with both signs applicable. In the last equality
we used the definition of Liouvillian superopera-
tors'

ttXX = (HX —XH~) -=(HI —IH )X (6)

[where H is an ordinary (dyadic) Hamiltonian
operator], as operators in double space, ' with

«nk l~' I«&& =(el~le&(k IH ld&' (7)

Note the appearance of the Hermitian-conjugate
dagger symbol in (6). V0

' is not a Hermitian
operator. If it were, then by the use of (6), Eq.
(5) would be turned into a trace of a commutator
and thus vanish.

The time evolution of p(t) can be related to a
specified initial condition at to by

where the +(—) term is proportional to the annihila-
tion (creation) operator a0(a0') for k-mode photons.

The annihilation and creation operators obey the
boson commutation relations

[a„a',]=1,
etc. , and therefore

assuming the incident beam is a discrete set of
coherent monochromatic fields, each described by
a Glauber coherence state Io, &,

'0 and

o0(t) = n0e '"0'

with &o, being the (angular) frequency of the kth
mode.

The displacement operators can be removed at
the cost of adding a time-dependent classified field-
interaction to the Hamiltonian, in the manner shown
in Appendix A to Paper I. The time dependence can
be removed by the Floquet method, extending the
basis of double-space vectors in which p(t) is ex-
panded, "by introducing the Floquet numbers n
describing the harmonics of the incident-field
frequencies in the response of the system. %ith
3-'replaced by

g 30+g ReC,1 + gR

where 'U"'" is the superoperator corresponding to
the classical-field (time-independent) interactions,
and 2" is a supermatrix of frequency harmonics
in Floquet space, '

I n» = — n0&u0
I
"n» n = (nJ; n~ = 0, z 1, . . .

kg am

(14)

we can write

(15)

p(t) = U(t, to)p(t0) U'(t t0) -=u(t to)p(to) (6)
with the end-point interaction g~ ' including now
the classical-field interaction, and

where U is the ordinary time-evolution operator
(in the Schrodinger picture), and 'u is the corre-
sponding superoperator

U(t, t0) = exP[- iK(t —t0)],
where 3.'is related to the Hamiltonian H of the
entire system by (6).

Steady-state emission rates, under continuous-
wave irradiation conditions, can be obtained either

'n'(t, t0) = exp[ —i 2 (t —t0)] . (16)

The equilibrium average is expressed here as an
expectation value in double space, using the defini-
tion of the metric in this space

((X la » = trf X'H }, (17)

with the identity operator J as the bra conjugate to
the equilibrium-state ket p„(both belonging to n
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=0 in Floquet space).
The equilibrium state, being a stationary state

of the system when the incident radiation is
switched off, obeys

( t f0)pqq = Pqq y
(18)

t
—i 'n'(t, t')'U 'u, (t', to)dt',

tp

(19)

where, from now on, 'U refers to only the rele-
vant ("dressing") field modes (all incident plus the

single scattered modes), and the definition of the

(retarded) resolvent superoperator,
t

g (&) i egq(t -t )cur( ff't)dp

= (z —z) ' (Imz) 0),
we finally get

(N q }= v i t r ['U
q
' 9 (i0Q "p,q ]

(20)

(21)

for the steady-state emission rates. Here z =i0
implies the limit as z approaches the origin from
above the real axis. A term involving 'U~ 'p„alone
was omitted, since transition rates require an

even number of applications of the interaction
superoperator.

The resolvent in (21) can be expanded as an in-

finite series in the coupling to the beam modes,
allowing for their effects to arbitrary strength.
In self-attenuation, reference to the second-quan-
tized part in 'Uq' can be omitted, to O(L 3), and

the expansion involves explicitly only the classi-
cal-field interactions. All couplings to other field
modes are relegated to the role of radiative-bath
relaxation effects. In resonance scattering, the

coupling strength is proportional to L ' in box
normalization, and therefore the resolvent should

also be expanded to first power in the relevant
coupling to the k, mode. (The resulting L 3 de-

pendence is canceled on calculating the differential
rate of scattering into a finite solid angle. } The ~

scattering rate can therefore be expressed as

(Nq )= v i tr('U g„- g(iO)'U [ 1 + 5-„q(i0)'U~ ]p ).
(22)

Here n, = 0 and a 1 specify two different repre-
sentations of the resolvent operator in double

where%&, is obtained from '4' by removing the
classical-field interactions (Z -Z,). Using a box

normalization in a macroscopic box of length I,
we can also omit from , the interaction with the

scattered mode k„ in case (15) refers to resonance
scattering, within an error of O(L ). Using the

integral identity

%L'(t& to}= 'u, (f, tq)

„P='(u. 0— )PO=[1+ &q(iO)& ] Po ~ (23)

Here 9, is obtained from Q by setting V"= 0

(where R refers to the relevant dressing modes)
and '-0 is the "thermal bath" interaction, incor-
porating all interactions within the sample (atom-

atom and atom-photon). The square brackets in

(23) serve as a superoperator analog of the Moiler
wave operator in scattering theory, '4 or the Gell-
Mann and Low transformation in quantum field
theory, '5 transforming po as the "bare-vacuum"
state into the "interacting-vacuum" state p„. As

the final state involves a trace over a complete
basis, no such modification is required, strictly
speaking, in the final sta, te (represented by the

identity operator}. However, in resonance scat-
tering or absorption, we generally limit the final-
state summation only to those atomic levels lying
close to resonance with one of the dressing field
modes. We then practically replace the identity
operator in (15) by a projection P" on a limited
subset (the "resonance set").' However, these
levels are modified by collisions in the gas, which

may mix them with other (nonresonant) states.
Therefore &~, too, must represent a set of real
(interacting) gas states, andaBurnett et al. trans-

formation must be applied, again, to relate it to
the ideal-gas resonance set (Pq"):

space (in the limit 'Uqa -0}. The first one is in-

dependent of the scattered-mode frequency co~;
the second one involves + ~~, in the denominator

and hence determines the spectrally resolved
features of the scattered radiation. The two terms
in the square brackets in (22) thus split the ex-
pression into two parts. The first part represents
sPontaneous emission, with the atoms initially in

thermal equilibrium, but the emission spectrum
is modified by the presence of the coherent beam.
The second part describes induced emission, with

the density matrix of the atoms initially driven by

the applied fields, affecting both intensity and

shape of the scattering spectrum. This part is
therefore more likely to be influenced by coopera-
tive coherent excitation in the gas. "

The scattering rate, being quadratic in z~, is
essentially proportional to the spectral resolution
(Fourier transform) of the first order co-rrelation

function of the scattered field. '2 A second-order
correlation function can be related to the coinci-
dence rate of two photons in modes & and &'. This
rate is quartic in the scattered-field amplitude.

The equilibrium distribution p„ includes all
statistical correlations between constituent par-
ticles (atoms and photons). The transformation of

Burnett et al. ,
3 relates it to the separable (ideal-

gas) canonical distribution pq by 3



2588 ABRAHAM BEN-REUVEN 22

P"=Po U, (~, 0)=PO[1 + U'9, (i0)] .
Using the identity

(24)

HI. ONE-ATOM COHERENCE

At this point, Zwanzig's method of projection
operators"'6 can be introduced in order to obtain
reduced expressions for the emission rates. Con-
sider first the existence of only one-atom co-

[I+8(z)~"][I+8,(z)~'] =I+ g(z)(V" +U'),
(25)

and a similar one transposing resolvents and inter-
actions, we can now write

(N ) =+i tr["'+u )g(i0)(uz+g )p,], (26)

omitting explicit reference to the resonance-set
projection Po. The last 'U on the left will anyhow

vanish on summing over a complete basis as it
contributes a commutator to the trace. However,
it produces a much better approximation when the
sum is limited to the resonance set.

herences, ' as in the foreign-gas broadening prob-
lem, assuming the N„ identical atoms in the sam-
ple have no knowledge of each other's coherent ex-
citation. The trace in (26) can then be written as
N„ times a single-atom expression, where 0" is
replaced by 'O' . The calculation of the trace is
accomplished in two steps, summing first over
all "bath" degrees of freedom, and leaving out the
dressed" atom (single atom plus relevant field

modes) to the next step. Let
i B~o=~o~o ~ (27)

where 1 and 8 stand for the dressed-atom and the
bath, respectively, and let

(26)

(where I implies a trace over bath degrees of
freedom) be the corresponding Zwanzig projection
operator. Inserting 6'+ g (where g =1 —6') at
every intermediate step in a power-series expan-
sion of 8 in powers of w" and 'U~, and bunching
together all terms with intermediate 's between
a 6' at the edges, we get

(N~)=+ iN„ trq(f 6Z~'(i0) + ['Oq~' "' + 5Zq (iO)] g (iO)[&1™+Z (i0)]}po ) . (29)

Here

Z'(z) = tr, ([u" +V "g(z —gag) '0:0"-]po } (30)

is the self-energy superoperator, and

6Zfv tr [~fizz(z g~ y)-1g~t ~ Rv

xg(z —&Z g)-'~"p,'] (31)

is the contribution to the self-energy in which' appears as the last radiative coupling on the
left. Also g' is the reduced resolvent

g'(z) =[z —Z' —Z'(z)] (32)

where 2' is the dressed-atom Liouvillian super-
operator, including coupling to the relevant field
modes.

In the binary-collision approximation we can
write

Z~(z) = Nz try[ &z'~(z)pp~) .
Similarly,

(33)

6Z,"=N, tr, [W"(z)(z —Z,)-'

x'U~ '(z —zo) 'v'„' (z)po]. (34)

Here Nz is the number of perturbers, and W'~(z)
and T'„'~(z) are the field-independent and field-
renormalized binary- collision scattering super-
operators defined by Eqs. (22) and (21) of Paper I,
respectively, and Zo is the interaction-free two-

pic 2 q.is RgB R (35)

where Sz is a symmetrization operation implying
a summation over the two permutations of particle
labels. Furthermore, the replacement

~is B ~is@+~2, 8 .gR (36)

should be made in the definition of ~'„'~, since both
atoms can interact with the radiation during the
binary collision. Also, N& is replaced by N„.

Special care is needed in handling the sole 6Z~"
term, appearing in (29) as a vacuum-expectation
value (in the terminology of Paper I), and the two
end-point insertions, Z and 5Z~' acting as vertex

atom Liouvillian superoperator.
In self-broadening where the perturbing and

driven atoms are identical, we can still use the
- one-atom coherence picture provided one of the

two atoms, before or after the collision, is not
coherently excited (i.e. , it is in the coherence-
vacuum state described by the ideal-gas thermal-
equilibrium distribution). We should then play a
game of "follow the ball carrier, " labeling the one
atom marked by coherent excitation as 1," even
though resonance exchange may occur in colli-
sions. All intermediate binary-collision self- en-
ergies Z' appearing in the resolvent (32) should
be replaced by the symmetrized forms Z~ ob-
tained by replacing
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functions, raising and lowering the coherence rank
(from 0 to I and vice versa), respectively, to-
gether with the accompanying bare radiative cou-
plings. The first two of these three self-energy
terms operator on the coherence vacuum, defined
by Eq. (57) of Paper I, and therefore should appear
in the nonsymmetrized form, ' provided (36) is still
used. The last of the three terms is different, how-
ever. It carries, as last radiative coupling during

I

the collision, the terms 'U~ "', in which the label
1" comes from replacing the N„-atom radiative

couplings by N„ times the single-atom interaction.
This serves as an "identity tag," by which the
atom carrying the coherent excitation before this
terminal collision can be identified. Therefore
the symmetrized form, with (35), should be used.
Hence

(N~) = viN„ tr(( f65''(i0) + ['Uq' ' + 5Zz'~(i0)] gz(i0)['U ' + 2 (f0)]}po) (37)

in self-broadening, with

(36)

as the symmetrized propagator, using (35) and (36)
in the definition of Z~z, and (36) only in that of L'.

The addition of the end-point vertices represents,
according to Burnett et a/. , radiative processes
that commence or culminate during a collision,
whereas the bare radiative couplings refer to in-
tercollisional transitions. The sole vacuum- aver-
aged term represents a complete process occuring
within a single collision, i.e., a collision-induced
absorption ~ (or scattering) process, or a radiative
collision. '6 In strongly allowed line spectra (i.e.,
spectra in which the intensity is dominated by the
bare radiative vertices), under moderately strong
radiation intensity, the effects of these collision-
induced interactions will be felt only in the line
wings, and can be neglected under near-resonance
conditions (in the so-called impact limit, to be
discussed below). Only under stronger radiation,
in which the Rabi nutation frequencies become
comparable to the inverse collision-duration time,
will the self-energies in the resolvent be appre-
ciably affected, ' and the domain of optical colli-
sions (discussed by Lisitsa and Yakovlenko') be
rea, ched.

IV. DIAGRAMMATIC REPRESENTATION

The results of Sec. III, as well as further modi-
fications resulting from higher-rank coherences,
can be translated into a diagrammatic representa-
tion, forming a one-to-one correspondence be-
tween algebraic elements and graphic symbols. In
this construction we should recall that resolvent
operators describing the propagation of disjoint
components of the system, represented here by
vertical lines, can be convoluted into a single
resolvent (or propagator), represented by a pair
of parallel lines, by using the identity

(z —2' —2') '= f ( —z' —2') '(*' —2') 'd*'.
(30)

Integration in (39) is carried along a straight line
parallel to the real axis, with Imz ~ Imz' ~ 0.

Let a solid untruncated vertical line represent
the propagation of a bare atom (with no radiative
or collisional couplings). Let a parallel dotted line
represent the dressing relevant free-radiation
modes. The dressed- atom propagator, including
radiative coupling, is then represented by a solid
double bar obeying the Dyson equation illustrated
in Fig. 1, with the wavy horizontal bar repre-
senting the radiative coupling 'O' ". The dotted
ver tical bars, r epr esenting fr ee- radiation propa-
gators, are not shown explicitly in later diagrams.
Reduced propagators, such as (32), modified by
foreign-gas collisions are represented by Fig. 2,
where an "improper" self-energy insertion (using
the conventional terminology of many-body
theories "), represented by a crosshatched block,
is related to the "proper" self-energy (simply
hatched block) by the Dyson equation illustrated in

Fig. 2. A self-energy diagram, in the foreign-gas
binary-collision approximation, is represented by
the "ladder" diagram of Fig. 3, with the dashed
horizontal bar r epresenting an intermolecular
coupling 'U'2. All closed loops and truncated par-
ticle lines, representing a projection onto a lower
coherence rank, signify a thermal averaging over
particle states, and multiplication by particle num-

ber, implying the separable (ideal-gas) distribu-

FIG. 1. A dressed-atom coherence propagator in
double space (a double bar) in absence of a thermal bath,
the solid and the dotted bars representing free propaga-
tors of the bare atom and the relevant ("dressing" ) field
modes, respectively. The horizontal wavy line repre-
sents a radiative coupling.



2590 ABRAHAM BEN-REUVEN 22

FÃz

FIG. 2. A dressed-atom coherence propagator in
double space with coupling to a thermal bath, the singly
hatched block representing a "proper" self-energy in-
sertion.

+ . +

tion in the averaging. Self-energy diagrams for
self-broadening, with resonance exchange (in the
binary-collision approximation) are shown in Fig.
4. In this fashion the hvo atoms are treated sym-
metrically, labeling the one-atom coherence by

irrespective of the identity of the atom it
belongs to.

The complete spectrum produced by one-atom
coherences is represented by Fig. 5, where the
crossed blocks signify a radiative vertex modified
by collision-induced processes (Fig. 6). The up-
permost vertex is labelled k+, to denote the emis-
sion (absorption) of a k-mode photon as the final
radiative process. Processes completed within a
single collision are represented by the sole
(vacuum-contracted) block in Fig. 5, more ex-
plicitly shown in Fig. 7. The collisional contribu-
tions to the lower-end vertex, and the vacuum-
contracted block of Fig. 7, have no resonance-ex-
change counterpart, as on the "vacuum" side,
there is no particle line to be labeled.

An effective interaction of the Bethe-Salpeter-
type, introduced in Sec. IV of Paper I, is repre-
sented by Fig. 8. On each side it has a pair of
protruding double bars representing a two-atom
coherence. The two sets of labels at the outgoing
bars, representing resonance exchange, should
be used when the symmetrized form of the effec-
tive interaction is required. Having no truncated
vertical bars, this diagram involves no bath
average, neither does it carry a particle-number
factor. Its role in creating nonvanishing contribu-
tions of two-atom coherences to the steady-state
spectra is exemplified by Fig. 9. Without the ef-

FIG. 4. A symmetrized self-energy diagram in reso-
nance broadening, with resonanc e-exchange collisions.

fective interaction providing a lateral link, the
evolution of two independently driven atoms would
produce the disconnected diagram of Fig. 9. Such
diagrams involve products of factors, each in-
dependently implying a trace over a complete set
of dressed-atom states. However, only one such
factor carries the distinctive mark k+, hence all
other traces vanish, leading to the vanishing of
the whole diagram Thi.s'constitutes the law of
disconnected diagrams familiar from other dia-
grammatic methods. '

V. TWO-ATOM COHERENCE

The effective interaction of the Bethe-Salpeter-
type, '

@1I2 (pfI1(k) s.4R ~4R(k) (40)

where P'~(k) is the projection onto the subspace
of two-atom coherences (in double space), provides
a link between two disjoint one-atom coherence
propagation diagrams. However, owing to the L 3

factor in (40) in box normalization, in the binary-
collision approximation, once such a link appears,
one of the particle propagators must be truncated
(providing the extra factor N„) without the two co-
herently driven atoms colliding again. This can
be repeated any number of times, with both atoms

k, + + i&N )

FIG. 3. A self-energy (g ) diagram in the foreign-gas
binary collision approximation, with dressed-atom prop-
agators renormalized by radiative coupling. The hori-
zontal dashed line represents a two-atom interaction.

FIG. 5. A 0-mode photon emission rate, including a
single collision-induced term, and a multiple-collision
term with collision-modified end-point vertices.
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FIG. 6. A collision-modified right-end (initial} vertex,
including a bare radiative vertex, and a collision-induced
vertex.

in each case retaining memory of their coherent .

propagation before the collision. As a result, the
self-energy diagrams of the one-atom coherence
should be replaced by the diagram shown in Fig.
10, in which such memory-retaining effects are
incorporated. Similar memory effects extended
after the collision vanish on taking the trace. In

binary-collision self-broadening, E~ is r eplaced
by

=-'(z) =N, tr (@"(z){I+g' (z)[&'"+&'(z)1]p«),

(41)

where

g«'(z) =[z —&'- &'- ~«(z)- ~«(z)] '

is the reduced propagator of the two independent
dressed atoms. Note that the end-point vertex

FXÃ/li

NF/Ills

FIG. 7. A single-collision diagram for collision-in-
duced k-mode photon emission rate.

operators /2(z) are not symmetrized, as they are
projected onto the coherence vacuum.

Two-atom coherences will also affect the final
end-point vertex, by adding similar memory-re-
taining terms as shown in Fig. 11. Therefore

5 ~"(z)=N„ tr&(54'+(z){g'«(z)['0«'"+Z«(z)]

+I]p«» (43)

replaces 5Z~'~ in the final vertex. Here 54~'+~ is
defined the same way 6Z~', ~ was, with M,' as the
last radiative coupling on the left. The arguments
behind using the nonsymmetrized self-energy and

the symmetrized effective interaction in (43) are
the same as those that lead to Eq. (37).

The sole vacuum-averaged collision-induced
term has no protuding memory extensions, and is
therefore unaffected by higher-order coherences.
Hence

(N, ) =+ iN„ tr, ({5Z,"(io) + [Q,'z' + 5","(i0)]g'R(i0)[u's+ E'(i0)]]p«),

with

(45)

Equation (44) is the continuous-wave emission
rate, modified by the presence of two-atom co-
herences, in the binary- collision approximation.

This scheme can be readily adapted to a mixtu~e
of several distinct gases, all of which participate
actively in the radiative process in the spectral
region under study, either independently, or by
forming x'adiatively responsive complexes during
collisions (radiative collisions ). In this case,
each dressed-atom propagatox should carry a
particle-type label, and upper truncation of such
a propagator —the appropriate particle number.
The self-energy insertions 5 or "' form "ma-
trices" in particle-label space; foreign-gas-like

contributions forming diagonal elements, and

resonance-exchange terms forming off-diagonal
elements. Radiative collisions are represented
by the sole vacuum-contracted collision-induced
term. Emission rates,

(N&), = + iN& N« tr~, 2[ 54«' (i0)p«'. ], (45)

(W «)~, = —iN„N«tr( «[P«M'«(i0)Po p«'«]

(47)

form one aspect of such radiative collisions.
Another aspect is formed by the radiation-induced
transition rates from two-atom state a = n, o& to
P= QP«,

+ II/ii 0

FIG. 8. A Bethe-Salpeter-type binary-collision effec-
tive interaction, vrith two pairs of particle labels repre-
senting symmetrization by resonance exchange.

FIG. 9. An identically vanishing disconnected thoro-atom

di agr aXIl
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~IEPii

@ 8
FIG. 10. An effective self-energy insertion ( ) in the

presence of two-atom coherences, in the binary-collision
approximation.

(& being a projection on the state n, etc.), where
54'~ is the modification of the effective interaction
by the incident radiation. The partial collision
cross sections are obtained by (47) on dividing by
N„N~L v, where v is the mean relative speed of
the colliding pair.

VI. MANY-ATOM COHERENCE

The effect of higher-rank coherences (N & 2),
with N varying indefinitely, can be worked out
formally in the binary-collision approximation.
Each of the one-atom propagators in Fig. 10 should
be modified by coupling to other one-atom co-
herences, in the same fashion the self-energy it-
self was modified. The improper (crosshatched)
self-energy diagrams in Figs. 10 and 11 should
then be modified with "' replacing Z'. As a re-
sult, the explicit expression (41) for =~ is replaced
by the implicit equation

= z(z) = N„ tr, (4~z ~(z) (I +g~z ~(z)

x[~"+ Z'(z)] }p02), (48)

where

g'„' (z)=[z —&' —8 —"'(z) —"„(z)] '. (49)

The unmodified vertex in the last term of Fig. 11
should be modified accordingly, replacing Eq. (43)
by

~=~a(z) = &g trg(5@ g', g (z) 4'z'(z)[&'"+ ~'(z))

+1}p,'). (50)

This "bootstrap" situation, in which "'„(z) de-
pends on itself, may be resolved by a self-con-
sistent iteration procedure (e.g. , continued frac-
tions). A truncation after a finite number of itera-
tions is equivalent to a consideration of N-atom

FIG. 11. A left-end (final) vertex modified by the
presence of a two-atom coherence.

coherences with a finite value of N. The first step
in such iteration processes would most likely be
the nonrenormalized version (41), incorporating
only rank-two coherences. A solution of these
bootstrap equations should provide a general
theory of resonance broadening in the binary-
collision approximation.

The response of a gas sample in a finite cavity
may drastically change, and its spectrum altered,
as a result of the onset of optical bistabilities. '~

The preceding discussion suggests, however, that
cooperative coherence effects may exist even in
the "one-atom" branch, as a result of the com-
bined effect of collisions and coherent radiation.

VII. IMPACT LIMIT

The impact limit in binary-collision broadening2
is obtained whenever the field modes are tuned
sufficiently close to resonance, so that the per-
tinent eigenvalues of ' are sufficiently small:

(51)

where ([g'[( represents the magnitude of the eigen-
values of ', and 7, is the correlation time of the
memory kernel Z(t) which, in binary collisions, is
a measure of the duration of a collision (-10 '2 sec
in thermal collisions). In this limit, the self-en-
ergy can be approximated by its on-resonance
value, where the collision integral V'„' can be ex-
pressed in terms of on-the-energy-shell T-matrix
(or S-matrix) elements, or asymptotic scattering
wave func tions.

This approximation (regarding the dependence on
the eigenvalues of 2, ) should not be confused with
the Markovian approximation (regarding the de-
pendence on the real part of the complex variable
z in time-resolved phenomena), as some authors
fail to observe, although their criteria of validity
are similar, given the self-energies vary smoothly
as functions of these variables.

Under impact conditions [unless the radiative
coupling is so strong that it becomes comparable
to the inverse of T, (Ref. 18)) one may neglect
radiative corrections to the self-energy~ (substi-
tuting V"2 for V'„'~) and replace the collision-modi-
fied end-point vertices of Fig. 11 by the free
dressed-atom radiative vertices. The effect of
collisions will be felt only through the repetitive
occurrence of the self-energy diagrams in the
resolvent g (z). Furthermore, if Doppler shifts
are negligible, and the collision integrals do not
depend too strongly on the velocities, the molecu-
lar-chaos approximation will generally hold, and
velocity-averaged self-energies can be used.
Under these conditions, the molecular-chaos ap-
proximation can be applied to the Bethe-Salpeter
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1+Q0(z)v2'a= 1 + (z —2(') —ZO2 —u'
~ 2» R)-tg2» R (57)

FXÃ/i

+ FEE/i

This double-space analog of a Moiler wave opera-
tor transforms states of interacting-dressed-atom
1 and noninteracting-dressed-atom 2 into states of
the two atoms interacting with the dressing fields
(i.e., states modified by the dressing radiation) in
double space. In a closed basis in double space,
such transformations are unitary, and therefore
the magnitude of the elements of ™1remains
bounded by the maximum eigenvalue of Z~,

»» VXX/i [[:"'[[Syc(max}. (58)

FIG. 12. The single-collision diagrams reckoned in the
quasistatic limit, including the identically vanishing dis-
connected diagram for symmetry's sake. The uppermost
radiative coupling is tagged k+ in all diagrams.

effective interactions, too.
The modified resolvent of Eq. (45) can be split

by the Dyson equation

g a=Zz(z)+gz(z)[ '(z) —Zz(z)] g„'(z), (52)

into a part representing pure contributions of one-
atom coherences, and another part representing
the added effects of two-atom coherences. An
order-of-magnitude estimate of the corrections
involved in the two-atom coherences can be made
as follows. In sufficiently weak radiation (in the
under-saturation case), where

(53)

([ g ' (io)[I = (&~' + fl& + y& ) " (54)

where &~ is a frequency detuning off a bare-atom
resonance frequency. As N„4'~ is of the order of

yc, we then have

[[z» —& [[ y fi(hg~+ $2+ 2) (55)

n -yc
Q= ~2p, g'/K~ being a magnitude of the radiative
coupling (Rabi frequency) and —iyc a typical co-
herence-damping ("T2") element of Z~z (in the
velocity-averaged molecular-chaos approximation),
the propagator gz(i0) has the approximate magni-
tude

l~'+ &'+ Z', (i0)+g', (i0)
l

=0 (59)

as functions of the frequency ~~. of the attenuated
incident mode, treated as a complex variable. In
resonance scattering, these roots are shifted by

(60)~~S = ~a ~a.
S

(the detuning of the scattered-mode off the inci-
dent-mode frequency). The emission peaks then
depend on the eigenvalues of the inverse of g ~'~(i0);
namely, on the roots of the secular equation

( r.
' + 2 + Z z (i0) a —&tu, s

~

= 0 (61)

(S being the identity superoperator), with &u~. fixed
and &~s a complex variable. Consider, for exam-
ple, a nondegenerate two-level atom. In the limit
of well-separated resonances, i.e.,

The major novelty introduced upon replacing Z~
by "' is the possible appearance of new transi-
tions, that were forbidden in the one-atom case.
It is easy to see that in the case of over satura-
tion, the further modification introduced by higher-
rank coherences will not alter the magnitude of
"R appreciably, but it will allow still further for-
bidden transitions to occur.

The second part of (52} contains all the informa-
tion on the structural changes in the spectrum as
a result of two-atom coherences, such as the ap-
pearance of new resonance peaks. The positions
and widths of these peaks in self-attenuation spec-
tra depend mostly on the poles of the two-atom
coherence propagator g~'2(z) of Eq. (42); namely,
on the roots of

i.e. , the modifications increase with the applied
field amplitude and (off-resonance) with the gas
density, through yc. In stronger radiation (in the
over-saturation case), in which

Q &) yc

where

0' = (A~+ 4&em)'~2,

(62)

(63)" yc (56)

the self- energy insertions in the extension attached
to the modified self-energy diagram " in Fig. 10
can be neglected. This extension is then repre-
sented by

n (u, = nQ' (n = +01) . (64)

Second-order (two-atom) additional peaks, pro-

the first-order I,'one-atom) resonances lie around
the eigenvalues of ~', namely
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vided they are strong enough to be detected, are
expected around

&~,=+ 2Q' (65)

(the additional eigenvalues of 2'+ Z~), as claimed
by several authors. ' From the preceding discus-
sion, we can see that

FIG. 13. A truncated double-bar diagram with a pro-
truding collisionless one-atom coherence.

y (g~R~ @2+A 2)-1/2 y /Ili (66)

is an upper-bound estimate for the relative magni-
tude of the additional peaks (compared to the
one-atom sidebands), when (62) holds. The rela-
tive intensity of the additional peaks should thus

diminish on increasing the applied field intensity
beyond a certain value, pointing to the possibility
of reconciling between the conflicting opinions on
the existence of these features. ' '~~

In many cases, a real (frequency-shift) term 5c
should be added to the imaginary self-energy
(- iyc), such as the dipole-dipole resonance ex-
change shift discussed in Sec. V of Paper I. In
this case yc should be replaced by (y~~+ 52c)' ~ in
our upper-bound estimates.

It is important to note that, provided the scat-
tered-light spectrum is made of well-separated
sharp (ycvc «I) resonance peaks, the impact
limit &luays prevails for widths of resonance-
scattering peaks, notwithstanding how large 0' is.
The description in terms of complete collisions
(on- the- energy- shell scattering amplitudes) should
then refer to the dressed-atom states (modified by
radiative couplings) as the asymptotic collision
states. 3 In this manner, the variation of the line-
width with the incident-radiation frequency can be
attributed to changes in the dressed-atom states,
rather than to a nonimpact behavior. However,
line intensities, as in the one-atom case, "4 may
still depend on self-energy elements outside the

impact region.

VIII. QUASISTATIC LIMIT

The quasistatic limit25 in weak fields generally
refers to line-wing excitations where the exciting
radiation is tuned sufficiently off resonance so
that

kQ)T~&& 1
y

(67)

nQ'r, »1 (n=1, 2), (68)

with fi' defined by (63). The magnitude of the

self-energy, compared to the eigenvalues of ',
is then sufficiently small to let us retain it only
to lowest order in the rate expressions. This is
equivalent to considering only one collision, at
most, along the time evolution. of the system. It
then becomes obvious that many-particle coherence
effects, requiring a succession of collisions, are
unimportant. The single-collision terms include,
nevertheless, cooperative two-atom processes
owing to the interaction of the radiation with both
atoms.

The dominant term in this limit is the sole 6Z~~'

term. Add to it the relatively insignificant terms
that end or begin with collisionless dressed-atom
propagators and incorporate, at most, .only one
collision. Those additional terms vanish in case
the transitions ard forbidden outside the collision
(as in collision-induced absorption, or radiative
collisions). All the terms considered here are
shown diagrammatically in Fig. 12, with the trun-
cated double-bar diagrams explained in Fig. 13.
Adding the identically vanishing disconnected dia-
gram in Fig. 12, we can replace the sign-carrying
last radiative coupling by one-half the sum of the
two atomic couplings, expressing the emission
rate in terms of the more symmetrical form of
(36). Combining all these terms under the two-
particle trace, the quasistatic limit for self-
broadening is then

where ~, is the duration of a collision. The obvious
generalization to strong fields is to replace &~ by
an eigenvalue of 2'+ Z2; e.g. , in self-attenuation,

(N~) =v i ~Ng tr( mf NI' ' (i0)'Uq ' (i0 —20 —'0 ) [I+ f''~(i0)(i0 —& —'0 ) 1 0SR '(i0')p '~f

Here, following the method of Burnett et al. ,
3

gtt" (z) =1+9, (z)V'2,

sg' ' (z) = I+'U '~g (z)

(69)

are introduced as the superoperator analogs of the Moiler wave operators for the binary collision, where

9,(z)=(z —Z, -&") ' (72)
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(with go=i.'0+20) is the pair propagator in the absence of interaction with the dressing fields. The two

Moiler superoperators operating on the initial and the final state produce, respectively, the results

5tt' ) lp")) = lp"))
«bb)8II' "=«b

(78)

(74)

(N )=P' 'N 0 ' JP ((0( )0( );0~0"'('rl Er 0 ) '()+P'„')(0)('0-0, -0") ')0*1 ( ) ( );0&&P.( ),

ling

(75)

where
~
a(r)) is a. Born-Oppenheimer two-atom state (or two-molecule state in a molecule-molecule colli-

sion, with r connecting the centers of mass).
Equation (75) involves matrix elements between double-space vectors ~aa)) (representing projection

operators in the ordinary wave-vector space) of the superoperator obeying the Lippmann-Schwinger equa-

tion

where p~ is the equilibrium pair distribution function (unaffected by third-body correlations in the binary-
collision approximation), and ~b ) .is a stationary scattering state asymptotically evolving into the free-
particle state ~b) of the dressed-atom pair.

En the quasistatic limit, at frequency detunings larger than the inverse collision duration, kinetic-energy
contributions to the Hamiltonian can ordinarily be neglected under certain conditions (the Landau- Zenner
case). The scattering states and equilibrium distribution can then be treated by the Born-Oppenheimer
approximation, with the interatomic radius-vector r serving as a "good" quantum number. Then

r(z) =~'+ ~'G, (z)S(z). (76)

(77)

Hence (75) can be expressed in terms of the ordinary law relating transition rates to the Lippmann-
Schwinger scattering matrix. In order to accomplish this goal, it is necessary to introduce an ordinary
Hilbert-space analog of the Floquet space vectors ~n)). This is accomplished, following Shirley2' and
Cohen- Tannoudji and co-workers, 28 by using the dressed-atom representation. To each atomic state ~a)
is associated in this representation an infinite set of dressed-atom states ~a; n) (n=[nR}; nR= 0, a 1, . . . ),
a free- radiation Hamiltonian 8", with

This is the superoperator analog of a scattering operator (F}describing radiative scattering by the two-

atom system. The linear term 'U vanishes, as transition rates, expressed in the double-space formal-
ism, require that the coupling to each radiation mode 'U~ appear an even number of times. Elements of 5
between states ~aa)), etc. , are related to elements of F by the law24

—i «bb
I
S (io) laa» =2' 'l&b IF(@.+io) Ia) I'5((oRI) ~

H
i a; nR) =nR(dRA

i a; nR), (78)

and an interaction Vs' that raises (lowers) n by unity (but its magnitude is independent of n). It is then

possible to associate with each double-space vector, with a given Floquet number n, the infinite subset

f ab; n)) —f fa; n)&a; n+n f} (nR=O, + 1, . . . ) . (79)

This multiplicity should not unduly worry us since n= 0 can be chosen for the initial state, and the final-
state n value is taken care of by the delta function in (77).

Application of (77} to (75) should take into consideration the requirement that one of the two F elements
must end up with V~~'. Therefore,

(N )=p pi) N 0 g E f d 0 'r( )Re(r)( ); (

'(E ( )E+ '0)( (0);0)

x (p(r);n~F(E (r)+i0}~u(r);0) 5(& (r) —E(0(r) —nh}. (80)

Here

F(z) = V"[1+G, (z)F(z)]

and

(81)

(82)
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are radiative-transition Lippman-Schwinger operators, and

G, (z) = (g —8,)

is the corresponding resolvent operator, all defined on the dressed-atom representation with

(83)

H, =Hi+HI+ Vt'a+ He V"= Vi's+ V (84)

In self-attenuation spectra, o((r) stands now for a bare collision pair (without interaction with the radiation

modes). In resonance scattering we must add to it the scattered mode. Equation (80) can be simplified in

the optical limit (h(d), »ksT, where ks is Boltzmann's constant and T the gas temperature). We can then

choose ~0,) for the initial state and ~10) for the final. The two states being distinct, the positioning of

V~
' becomes inmaterial. Hence

(N )=rd 'NrL r g g fdrp"(rr)l,( (Pr);1„0~ P(E(r)+ , ()0~p(r);0„.0)(r

x 6(E,(r) —E~(r) —g(d), —tnt'), (85)

with H" and V" now incorporating the scattered mode, and I" incorporating V~ once only. Introducing
the eigenstates of the dressed-atom pair saith radiative coupling to the applied field,

~
n"(r);s) = (1+G,F,) ~

c((r); n) (86}

(N ) =rll 'N„L r g fdrp,", (r)((E"(r);(,;p~~Pr" ~d (r);0,;0)lr
a n

(where F, is defined without the scattered-mode coupling), and their energy eigenvalues E„(r}+rdf(d, we

get

x 6(Es(r) —Ef (r) —Sar, —nato) . (87}

F=F' '+ F' '+ F( 'G V '"(1+G F)e e (89)

and the cross products in I'I', express the co-
operative effects of the combined two-atom pro-
cess. Obviously, in weak fields, where perturba-
tion. expansions hold, these cooperative effects in-
volve higher-order perturbation terms.

Generalization to the case of two distinct atoms
is straightforward. Here 'U'~ and 'U '" imply
distinct matrix elements and, as either atom can

where p', ~& is the interacting-dressed-atom pair
equilibrium distribution, by using a procedure
similar to the one yielding Eqs. (73) and (74). The
kinetic motion effectively "smears" the delta func-
tion in (87). This effect is, however, negligible at
frequencies where the bulk of the contribution of
the spatial integral in (87) comes from.

Defining a one-atom radiative-transition opera-
tar

F' '= V '"+ V ' G,F' ' (j=1,2), (88)

we can extract from (80) a pure atom-j contribu-
tion by inserting into (80) F'~) instead of F (and
multiplying by two in case of identical atoms).
The remaining mixed terms in the equation

contribute to the last sign-carrying interaction,

N~ -N~N~ (90)
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should be substituted in the preceding analysis.
Qualitative analysis of resonances in the quasi-

static limit (both in similar-atom and different-
atom collisions} is rather complicated, depending
generally on the shape of the interatomic potentials
used. The quasistatic limit is explicitly (or im-
plicitly) used in most theories dealing with the
combined interaction of two atoms with a strong
coherent radiation, in the vastly expanding biblio-
graphy on radiative collisions, e'2'3' to which (80)
or (87), with (90) in different-atom pairs, may
serve as the connecting link. Little, however, is
known on the line shapes of of such gas systems in
the impact limit, under cooperative excitation con-
ditions, for the analysis of which the previous sec-
tions may prove useful.
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