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I

The response of a collision-broadened gas sample to driving coherent radiation is studied theoretically, taking into
account effects of coherent excitations of two or more atoms (or molecules). In analogy to the Bloch-type master
equation for one-atom coherences, describing the motion of a single atom "dressed" by the relevant (incident and
detected) field modes, a master equation is derived for two-atom coherences, including an effective interaction of the
Bethe-Salpeter-type, accounting for the mutual interaction of the coherently driven pair. The master equation
includes also all symmetrization effects owing to resonance exchange between identical atoms, and is limited to
nonreactive gas atoms {ormolecules) undergoing binary collisions, including otherwise all (internal and translational)
relaxation effects. The self-energy kernels are expressed in a nonperturbative fashion, in terms of binary-collision
scattering amplitudes, and include renormalization effects due to coincidence of radiative couplings with the
collisions (optical and radiative collisions). The concept of two-atom coherences is generalized to higher coherence
ranks by constructing a hierarchy of master equations, including vertex operators that upgrade or downgrade the
coherence rank, as a prelude to a diagrammatic method for calculating continuous-wave spectra. This hierarchy is
compared with prevalent Agarwal-type master equations, based on the Dicke pseudospin method, and used in the
study of two-level atoms.

I. INTRODUCTION

Resonance fluorescence from a group of co-
herently driven atoms has become the subject of
considerable theoretical interest in the last few
years. Though this problem was originally sug-
gested in order to provide a proof of the quantum
nature of light, ' attention was turned later on to the
spectral features of collective fluorescence. A
debate is going on as to whether, in addition to
the two sidebands in Rayleigh scattering predicted
by Mollow2 (and verified by experiments~), an ad-
ditional pair of overtone sidebands should appear4'5
or not. 8 Similar arguments apply to the problem
of weak-probe absorption. .' The debate is not
settled yet, and even if extra sidebands will even-
tually be discovered, other possible sources for
their appearance (such as dynamic Stark effects
beyond the rotating-wave approximation) should
not be ruled out. However, certain questions have
been raised with regard to the present treatments
of collective coherence phenomena. The common
attitude is to use a Hamiltonian, ' or derive a
master equation, '" that depend on the collective
(resultant) pseudospin operators, based on
Dicke's' pseudospin method of treating the two-
level-atom model. Such Hamiltonians have the
property of conserving the resultant total pseudo-
spin quantum number J (i.e. , the corresponding
collective Bloch vector's motion is confined to a
sphere in pseudospace"). In Agarwal's" master
equation, even radiative decay and transfer pro-
cesses appear as coherent (J-conserving) pro-
cesses.

Recently, two major objections have been raised

to this approach. Walls'4 has pointed out the im-
portance of relaxation processes in which the in-
dividual atoms decay incoherently, thus breaking
4 conservation. Mavroyannis" and Freedhoff"
have studied certain effects of electrostatic inter-
actions between the participating atoms (collision
broadening and shifting) which may lead to the
splitting and shifting of resonance peaks. Though
their treatments of collision effects are far from
being complete (collisions are treated only in the
quasistatic limit, with a fixed intermolecular sepa-
ration, without averaging over a distribution of
separations, and taking into account only first-
order dipole-dipole'5 and dispersion'6 interactions),
they nevertheless claim that collisions produce
significant effects. In particular, first-order
dipole-dipole interactions cannot be discarded even
at molecular-beam densities as their range extends
over distances comparable to the wavelength of the
radiation. Collisions, providing a thermal bath, "
will generally affect the rank of coherence of the
atomic system.

A third objection can be raised regarding the
inherent reflection symmetry in the two-level
model between the "least-coherent" ground state
and the" most-coherent" state in which all atoms
in the sample are excited. Although this is strict-
ly legitimate in a two-level model, the moment
any internal or translational dynamical processes
enter the picture this symmetry must collapse.
There is hardly any similarity between a chaotic
equilibrium state of a true atomic (or molecular)
gas system and a state of maximum coherent ex-
citation.

We therefore set out to look for another approach
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that stresses the intrinsic asymmetry between
equilibrium (as a coherence "vacuum") and co-
herent excitations. The basic idea is to replace
the Bloch equations for the coherent propagation
of individual atoms, by a hierarchy of equations
for N=1, 2, . . . , atoms collectively driven (using
the concept of vertex operators to form couplings
between the various equations in the hierarchy).
In doing so, we treat collision effects to all powers
of the interactions, by using a scattering-matrix
approach to the self-energies, restricting, how-

ever, the discussion to the binary-collision ap-
proximation (neglecting recollisions of the same
pair after third-body collisions). The driving
fields, supposed to consist of a discrete set of
coherent modes, are considered to arbitrary
power, both in the secular part of the equations

(dynamic Stark effectsL""") and in the self-energy
(incorporating such effects as optical and radiative
collisions'~). Finally, we make use of the method

proposed recently by Burnett et al. '~' for dealing
with the initial (statistical) correlations in an in-

teracting (real) gas, allowing the use of the un-

correlated (ideal-gas) equilibrium distribution in

the projection operators of the hierarchy.
A major feature of the equations for Ã-atom

coherence (with N& 1) is the inclusion, in addition
to the secular and self-energy parts of the ordi-
nary (N=1) Bloch equation, of an effective inter-
action of the Bethe-Salpeter-type, correlating the
motion of the participating atoms.

The hierarchy of coherences allows us (even in

macroscopic samples where the total number of

atoms is extremely large) to restrict the discus-
sion to any finite number of coherently excited
atoms by approximately truncating the hierarchy.
In particular, effects of two-atom coherence can
be discussed by considering only N=0, 1, and 2.
We can therefore apply the thermodynamic limit
to the sample volume, and use the methods of
thermodynamics of irreversible phenomena in

deriving the master equations. In particular, we

follow here the methods of Zwanzig and Fano,
with the realization that the reduction of the equa-
tions by projection operators should be carried
out on the "dressed" atoms (including the relevant
radiation modes, i.e. , the incident modes and the
scattered mode in resonance scattering). ~4'~~ In

the form presented here, this formalism considers
the state of thermal equilibrium as the asymptotic
condition of the gas (as the applied radiation is
switched off); however, with due modifications it
can be adjusted to other asymptotic conditions
(e.g. , molecular beams). Although our discussion
is generally focused upon short-range binary-
collision phenomena, it can be extended to include
radiative damping and long- range radiative- trans-

fer phenomena (as argued briefly in Sec. V).
The reader is led from a reconstruction of the

one-atom Bloch equation, using projection-opera-
tor methods, in Sec. II, through modifications for
atom indistinguishability in self-broadening in

Sec. GI, to two-atom coherences in Sec. IV, and,
finally, to the hierarchy of equations in Sec. VI.
This hierarchy is compared with pseudospin
master equations in Sec. VII.

This hierarchy is used in a subsequent article~~

(Paper II), with the help of a diagrammatic tech-
nique, to construct the steady-state (continuous-
wave) spectrum of any of the relevant field modes,
be it the exciting (pump) mode, a weak probe, or
a resonance fluorescence (or Raman) mode. This
theory is generally applicable to any number of
resonance transitions and relaxation channels,
restricted only by the requirement that the par-
ticipating molecules be inert (i.e. , neglecting
chemical reactions or ionization phenomena).
Wherever the word "atom" appears it can be
equally well replaced by the word "molecule. "
The problem of resonance fluorescence from a

two-level atom" will be dealt with as a special
case in a third article of this series.

II. ONE-ATOM COHERENCE —FOREIGN-GAS
BROADENING

One-atom coherence generally refers to a state
of an atomic (molecular) gas system driven by a
coherent radiation, in which we can single out in-
dividual atoms as being independently affected by
the radiation. All other atoms, at the time they
interact with a coherently excited atom, are ini-
tially in an equilibrium state, acting as a thermal
bath, with a resulting damping (or relaxation) of
the coherent excitation (the foreign gas broade-ning

problem). This notion of one-atom cohere'nce
(which will later be given a more quantitative
definition), can be extended by proper symmetriza-
tion" to a gas of identical molecules, provided
no collisions occur between two coherently excited
atoms, however, taking into account the possi-
bility of transferring the excitation from one atom
to the other (resonance exchange broa-dening).

The time evolution of one-atom coherences is
traditionally described by a Bloch-type general-
ized master equation, having the form

t
I

gt p'(t) =~'p'(t) + ~'(t- t')p'(t')dt' (I)

Here p'(t) is a reduced density matrix for the rele-
vant degrees of freedom (the atom plus relevant
field modes), 2' is the linear superoperator de-
scribing the secular part of its motion (including
interaction with the relevant field modes), and & (t)
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is a self-energy (or memory) kernel, representing
the mean eff ect of coupling to the rest of the sys-
tem (the thermal bath). The Markovian approxima-
tion is obtained upon assuming an infinitesimally
short memory time, replacing the memory kernel
by

Z'(t) = Z '(i0)5(t+ ~) (7- 0+),

where Z'(z) [or Z' (is)] is the one-sided Fourier
transform (Laplace transform) of Z'(t), taken
here in the limit z —i0 (s-0+). Thus

gi ~i +pic R+gR (8)

we can use an extended basis,

lp'»= 2 Z p'l"'I b;.»,n=- a&

where the Floquet number n denotes the nth har-
monic response [-exp(in&u, t)] to the applied-field
frequency co~, and a, b, refer now to the remaining
(quantized) degrees of freedom (not including the
classicallike applied field). We can then write

i„p'—(I) = [&'+ Z'(i0)l p(t),
~ 8 f

(3)
where X' is the Liouvillian superoperator for the
quantized part of the system, Z is a diagonal
supermatrix of frequency harmonics,

Ix)) = p X,~Iab)), (4)
ab

where Iab)) is the double-space vector (in Baran-
ger's30 notation) representing the operator Ia)(b I.
The metric of this space is defined by

((xIr» =tr (x'Fj. (5)

Each of the two labels, a, b, represents a com-
plete set of quantum numbers for the relevant
degrees of freedom (the dressed atom). A slightly
modified notation can be used in the case of ex-
citation by coherent radiation modes, represented
by Glauber coherence states. It can be shown that
having such states as initial states of the applied
beam is exactly equivalent to perturbing the mole-
cules by a classical time-dependent coherent
field~i'~~ (also see Appendix A). The time depen-
dence can then be removed with the help of the
Floquet method. Instead of using the ordinary
double- space expans ion,

1

(6)

where the real and the imaginary parts of Z (i0)
serve as shifting and damping (relaxation) super-
operators, respectively.

It is essential to specify more explicitly the
"relevant" degrees of freedom on which p' is de-
fined, as a preliminary to the discussion of higher-
rank coherences. These consist of all one-atom
degrees of freedom (internal and translational),
all applied-field modes, and the scattered mode
ideally singled out by the detector in resonance
scattering. In other words, (1) is an equation of
motion for the dressed atom. 24

The superoperators 2' a,nd Z' can be represented
in matrix form by providing a Hilbert-space basis
on which p' can be expanded. This is best done
with the help of the double-space (or Liouville-
space) representation. ~~29 In this representation,
ordinary (dyadic) operators are expanded in a
Hilbert- space basis,

~"In»= —n&oaIn&& (n=o, ~l, . . . ),
and '0' is the (now time-independent) interaction
with the applied field, acting as a raising or
lowering operator on the Floquet numbers. We
should recall that Liouvillian quantum super-
operators (x), generating the motion of dyna, mic
variables, are related to Hamiltonian operators
(H) byes

@XX=(HX XHi) -=(B—I —IH )X, (10)

(I being the identity operator) where we have used
the shorthand notation2~

((ab I
AB

I cd)) =A„B~~ .
The self-.energy superoperator Z(z) depends on

the interaction of the reduced system with all re-
maining (atomic and radiative) degrees of free-
dom, and can be derived by the help of Zwanzig's
proj ection-operator method. Let

po= popo
i B

be the separable (ideal-gas) equilibrium density
matrix for the entire system in the limit where
correlations between constituents are neglected
(B here denoting the bath degrees of freedom. The
Zwanzig projection operator is defined by

(13)

where IB is the identity operator in bath degrees
of freedom. Application of 0' to the density matrix
of the entire system, forms a bath-averaged den-
sity matrix for 1, multiplied by po .

&P(t) =P'«[P(t)] ~ (14)

In Liouville-space terminology, (13) projects on
a product space consisting of the complete space
of the reduced system 1, a,nd the one-dimensional
subspace of B specified by po.

Let 2o and g' be the Liouvillia, n superoperators
for the free bath and its interaction with 1, re-
spectively. In the foreign-gas problem we treat
only atom 1 as interacting with the relevant radia-
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where

~ c01
fthm( z pic cit )- tggt cB ](p }

(15)

g 1 y gB +~tc B
fact + ~ic tt y gB +~1~ B (18)0 0 0

with U' being the interaction with the relevant
modes, and

In the case of perturbations by binary collisions
(as in not-too-dense gases}, Z(z} can be approxi-
mated by 2'

Z(z)=N, tr2{~t~ 2[1+(z —Z) 'U"]ty}, (18)

where N~ is the number of perturber atoms, and

with 'U'2, Z, and the trace referring now to a
one-perturber "bath." The omission of the inter-
mediate l. projections from (15) is explained later
on. The pair Liouvillian superoperator in (18),

g gf + ic2+ 2itc 2 p etc ft g + cote 2 +1ffc ft (Ig)0 0 0

includes the radiative couplings ~', i.e. , it in-

corporates radiative transitions coincident with
the collision. We can, however, reexpress the
resolvent in (18) in terms of the undriven re-
solvent (at 'U'a=0); i.e.,

Z (z) =Nft tr2[f'tft 2(z)p02],

where

cffc 2(Z) cl'1 ~ 2(Z)

(20)

and

+ V"'(z)(z —&,}-'0"(z —Z,)-'y' (z)

(21}

tion modes. Then, according to Zwanzig's meth-
od 22

Zf (z) = tra {6'['0'

lpo» = g p f (p) I otf'pp;0»,
a p

(25)

with the Boltzmann-Maxwell distribution f (p)
providing the expansion coefficients (& denoting
the discrete quantum numbers of the dressed atom,
besides the Floquet numbers). Its corresponding
bra vector is the one-atom identity operator

perturbers (Na}, but U'2 (and hence V'a'2) intro-
duces an extra inverse-volume factor (L ), if we
use box normalization (in a cube of length L), in

order to introduce a denumerable basis. The box
normalization procedure can also serve to explain
why the intermediate t operators inserted in (15}
were omitted in the binary-collision approxima-
tion. Momentum states for the translation degrees
of freedom form with box normalization a de-
numerable manifold of Hilbert-space vectors lp)
whose density is proportional to L3. The corre-
sponding manifold of Liouville-space vectors

pq)& has therefore a density, or measure, pro-
portional to L'.

m({!pq)&})= O(L') . (24)

Application of U' to this basis set spreads it
further out onto a two-particle manifold which

(owing to translational invariance, or momentum
conservation) has a measure O(L2). Therefore,
discarding the 6' in $=1—6' at all intermediate
steps in the expansion of (15) in a power series
will have a negligible effect [to O(L 2)].

This measure-spreading effect of the pair inter-
action becomes even more marked if we note that
the projection onto the O(L2) manifold created by
Zwanzig's projection operator is still too big for
our purpose of describing coherent excitation.
Regard, for example, the ideal-gas separable
equilibrium distribution (12) as an intial state. p2

represents a one-dimensional vacuum" ket in

double space,

cf'1 ~ 2(z) 1tt ~ 2 [1 + (z g co tea}-t pter] (22) (&I'I= gg(&PP,.qq;0 l.
B

(28)

cf1~ 2 (Z) ccc cf 1~ 2(Z) (23)

in the binary-collision self- energies.
Expression (20} is proportional to the number of

Expression (22) is Fano's tetradic (Liouville-
space} analog of the Lippmann-Schwinger binary-
collision scattering (T) matrix. 22 It can be ex-
plicitly expressed in terms of the ordinary (dyadic)
T matrix, 2 '29 and generalized to the dressed-atom
case. Expression (21} represents a rettormalized
tetradic scattering matrix, 4 describing the colli-
sion of a dressed atom (with radiative couplings)
with a perturber atom. The more familiar linear-
response approximation ~ is obtained by replacing

Consider now the interaction of a classicallike
field mode j on such a state. In the electric-
dipole approximation we have

'0f'" X=—8 1 g [to~& 8~&(ff e&) exp(aikf ~ rt)X

—Cf'XS(ff zf) exp(+i. kf r')].
Qiv Rk+ (27)

where X is an arbitrary (dyadic) dressed-atom
operator. Here p,

' and r' are the dipole moment,
and center-of-mass position of atom 1; e&, kz,
and $z are the polarization, wave vector, and
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complex amplitude of the j mode (g&
——SP); 8' is

a raising (lowering) operator in Floquet space:

& s I "I))=
I n~ a 1)) . (28)

The plus (minus) part of (27) traces its origin to
the photon-annihilating (creating) part of a second-
quantized field interact;ion.

Thanks to the momentum-conserving spatial
phase factors in (27), successive applications of'0'" to (25) can only produce double-space vectors
of the type

IoP;p+nk, p;n)& (n=(n&}; n&
——0, +1, . ..),

(29)
where

nk = n~k~, (30)

summing over all applied field modes. This is
easily generalized to the case of resonance scat-
tering, where the scattered (s) mode is included
in the dressed atom, by letting

nk = n&k& + (n8 —n~)k» (31)

where

(n~ —n ) =—n, (n, = 0, s 1) (32)

pw(x, p)=Q e "*(p+qlp'Ip& (34)

define the Wigner representation for the one-atom
density matrix. An appropriate basis in Liouville
space is defined by

serves as a Floquet number for the scattered mode
(n being the s-mode photon occupation number in
state n, etc.).

The manifold of vectors represented by (29) is
only a subset of (24), because of the k-dependent
constraints on the momenta. One can assign to this
manifold of one-atom coherences a projection
operator 6"(k). Its measure is

m(I s' (k)})= O(L 3) . (33)

The meaning of distributions confined to this sub-
space is made more transparent by transforming
to the Wigner representation. 5 Let

Ip+q, p)), (35)

so that

I»'»=f »i Q»'(, »)l», »)). (36)
P

Distributions belonging to the manifold of one-atom
coherences attain in this representation the form

g (««) t(n) («)e-»nk ' x (37)

with a coherent spatial phase factor.
The self-energy superoperator Z', also, is pro-

jected onto this subspace of one-atom coherences.
In its field-renormalized form (20), it is generally
not diagonal in the Floquet n numbers. However,
in the more familiar linear-response approxima-
tion, assuming the perturbing-gas distribution is
translationally invariant, Z is diagonal in n as a
label specifying an irreducible representation of
the translational group. Similar arguments apply
to rotational invariance. Bases for the irreducible
representations of the rotation group are formed by
applying a vector-subtraction scheme to the con-
tragradient states forming the double-space vec-
tor. 6 Whereas the linear-response self-energy
is invariant under rotations, the field-renormalized
form is not.

A frequently encountered approximation is one in
which translational effects are neglected. Although
this approximation cannot apply to Doppler-limited
saturation spectra, " it may be quite broadely ap-
plicable to homogeneously broadened spectra. This
approximation requires either that the absorbing
molecule be much heavier than the perturbers (the
resting molecule, or Brownian particle, approxi-.
mation), or that collisions completely randomize
the velocity distribution. We shall therefore refer
to if here as the molecular-chaos approximation.
In this approximation, we may further reduce the
density matrix by taking the trace over the transla-
tional states, noting that in this approximation the
momentum dependence in (37) always remains the
Maxwellian equilibrium distribution. The resulting
Bloch equations refer now only to internal (dis-
crete) degrees of freedom, with Z replaced by
the velocity- averaged

« n p; n'
I & ~ & Irb, n&& =g ((n p' p + n'k p' n'

I
"- Irb; q +n" q; n&&f (q),

Ds+

where

(38)

f(q) = P f.(q) (39)

is the (box-normalized) Maxwellian momentum distribution. Obviously, this approximation is inadequate
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when velocity or position-dependent coherence effects are studied explicitly. In these cases it may be most
advantageous to use the Wigner representation.

III. ONE-ATOM COHERENCE —SELF-BROADENING

The dressed-atom master equation, in which the driven atom has been so far singled out as distinct from
all other atoms with which it collides (the foreign gas -problem), can be readily extended to self-broad-
ening, taking into account resonance exchange between identical atoms, as long as no hvo coherently ex-
cited atoms collide. All that is required then is to augment the foreign-gas-like self-energy by a reso-
nance- exchange term~'; i.e. ,

Zg=Z~ +Z

Having now Nz= N„(the number of driven atoms),

(40)

((ab; n'
I
z~f (z) I

cd; n)) =N„Q ((ae', be', n'
I
t~z ~(z)

I
ce, de; n))f,

ee
(41)

[where f, =f, (p) is the ideal-gas distribution of perturbers] is the foreign-gas-like contribution. Similarly,

((ab;n' IZ,', (z) Icd;n)) =N„p ((e'a, e'b; n' Iq'z2(z) Ice, de;n))f,
ee'

(42)

is the resonance-exchange contribution, with the
roles of perturber and emitter exchanged in the
final state. Furthermore, even though only one of
the atoms is assumed to be coherently driven,
before or after the collision, there is no point in
distinguishing betweem them during the collision.
Therefore, in the renormalization scheme (21), the
replacement

(43)

should be made in self-broadening.
This situation is radically changed when two co-

herently excited atoms collide, both particle propa-
gating coherently with well-defined relative phases
determined by the driving fields. Such collisions
provide a correlating mechanism for the motion of
the two otherwise independent atomic coherences.

IV. TWO-ATOM COHERENCE

Consider the manifold of dressed-two-atom (two
atoms plus relevant field modes) states in double
space,

In&nz P&Pq, p& n&+k, pq+ng, p„p2,.n)) (n=n, +nq),

(44)

where the subscripts 1, 2, refer to the two co-
herently excited atoms (or molecules), treated as
two distinct particles. These vectors form a basis
for the two-atom coherences, which attain the
form

p~'2'"s ~ "~'(p&, pi) exp[ —i(n&k. x& +nzk xz)], (45)
a~a&B& ~

in the Wigner representation. Define a projection

operator 6"2(K} projecting onto this subspace of
dressed-two-atom states. The measure of this
subspace in box normalization is

m(fa" ~(k)]) = O(L6) (46}

In deriving the appropriate self-energy for the
two-atom coherences we first apply a Zwanzig pro-
jection operator (13), with poz now referring to the
remaining atoms (plus all nonrelevant radiation
modes), and then further reduce to the subspace of
coherences by (P'z(k). In the course of this reduc-
tion we end up with two distinct types of contribu-
tions (in the binary-collision approximation): One

in which 'V', in the two end-point interactions
g'06' and 6'0$ in (15), is the interaction with the
"true" bath (all remaining atoms, less two, in
collision broadening), and another in which 'U'z is
replaced by 'U'~, the interaction between the two

participating atoms. The first contribution gives
the sum of one-atom self-energies

Z'~ Z +Z~,

in which Z', is diagonal in (and independent of) all
quantum numbers of particle 2 (including n2), etc. ,
and is proportional (in binary-collision broadening}
to the perturber density. The additional term in-
volving 'U'~ provides a coupling between the two

participating atomic coherences.
The interaction superoperator 'U'~ spans a mani-

fold of intermediate states of measure O(L~) during
the collision, as in the calculation of the self-ener-
gy terms. Therefore, even though we project here
on a manifold of higher measure, O(LS), than the
one we had in the case of one-atom coherences, it
still has a lower measure than the set of inter-
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mediate states. So, we can omit again the inter-
mediate-state g operators, to O(L '}. We are then
left with

e"(e)= (P"(k)V'" (e)(P"(k) (48)

as the contribution of the collision between the two
atoms. There is no summation here over per-
turbers (and therefore no Ns factor); 4 '2, like
'U'~, is proportional to I in box normalization.
It replaces 'U ' as an effective interaction, in the
reduced space of two-atom coherences. This in-
teraction is similar in nature to the one en-
countered in the Bethe-Salpeter equation for the
correlated motion of two particles.

Letting p'~ denote, in general, two-atom co-
herences (or rather their part orthogonal to the
one-atom coherences), we therefore obtain a mas-
ter equation (in the Markovian approximation} of a
mixed Bloch and Bethe-Salpeter-type

i p'~(t}=[—g'+2 + Z'(i0) + E (i0)
. a

at

~ @1~ 2(i0)] p1e 2(f) (49)

with an obvious generalization (introducing a
memory-kernel integral) to the non-Markovian
case. Here again we can use the molecular-chaos
approximation whenever appropriate, replacing4" by its velocity average (4 "&, defined as in
(38), with one-particle states (29) replaced by two-
particle states (44), and f(q) replaced by

f (qi)f (q,) =f(q)f (Q), (50)

where q and Q are the momenta for the relative
and center-of-mass motions of the pair. With this
substitution, Eq. (49) is reduced to the set of in-
ternal (discrete) atomic states. It should be kept
in mind, however, that this reduction follows after
the projection onto the subset of coherences, with
all the measure-dependent considerations of the
previous discussion still prevailing.

The effective interaction 4'2 is the only term in
(49) which may have nondiagonal elements in both
atom 1 and atom 2 (and in n& and n2 as well). It
forms a necessary step in the creation of many-
atom coherence effects in continuous-wave (steady-
state) spectra. ~e Without it, the reduced density
matrix in (49) would simply factorize into a product
of two uncoupled one-atom coherences. In the di-
agrammatic language of Paper II, this would lead
to the appearance of disconnected diagrams, of
vanishing contribution. Of course, in transient
phenomena, many-atom coherent excitations can
occur without the mediation of collisions, with the
coherent radiation providing the phase-locking
mechanism.

So far the two atoms were treated as distinct par-
ticles. In self-broadening we have to take into ac-

count the effects of indistinguishability of the par-
ticles. Let

s~ a=~b&, n& (j=1,2) (51)

specify all the quantum numbers of the one-atom
coherences. The two-atom density matrix should
remain invariant to exchange of the labels 1 and

2; i.e. ,

pit2 g ~it 2
2 p (52)

i—p "(f)= [r-'+ ~' (i0)]
~ a f

at S

+ ' +"( 0 ()p "(((
where

(54)

& @i,g K4, is 2g (55)

Note that when (55) is contracted over one-particle
states in order to produce the self-energy, we
project on both sides with (P'(k). In self-broad-
ening, this means picking up any of the two par-
ticles and labeling it "1." Therefore we must dis-
tinguish between the case in which the same par-
ticle is picked up on both sides and the case in
which the two particles are different. The 2 factor
in (55) then drops out and

Z' =N„ trs(es po) (56)

results as the self-energy modified by resonance
exchange.

We shall later on encounter situations where the
effective interaction is further contracted on either
side (or on both sides) by projecting onto the one-
dimensional coherence vaccum state described by

(P = Ipo»«ll, (57)

where p, and I refer to the entire gas sample. In
this case one may no more distinguish between two
possibilities of labeling the particles, and there-
fore either only the foreign-gas-like part, or one-
half the symmetrized form of the effective inter-
action should be used.

V. RADIATIVE-BATH EFFECTS

Coupling to the radiative bath can be treated by
the same formalism. "'" In discussing effects of

where an N-particle symmetrization operation is
defined by

s. lsi, ",s.»=g ls&, " sy, » (»)
perm

summing over all N/ permutations. In other
words, a further reduction of the basis is required,
replacing (P'2(k) by (Ps'2(k), projecting onto the
symmetrized subset of two-atom coherences. So,
Eq. (49) is replaced in self-broadening (in the
binary- collision Markovian approximation) by
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the radiative bath we should distinguish between
two kinds of phenomena": The first kind is con-
cerned with the interaction of individual atoms
with the radiation bath, leading to radiation
damping effects. These involve self-energy ma-
trix elements such as

«bb 0I~'(e) l«0&&

=&(»;0
I
tr.[&"(e —&o) '~"po']

I
«; 0&&,

(58)

where B stands now for the radiative bath, with

Zp = Zp + Zp Elements diagonal in the internal
states (a= P) represent radiative ("natural" }
decay of the level o' by virtual emission of photons.
Elements with P v et(Eo &E ) represent cross re-
laxation from & to Pby emission of true photons
(cascading). oo

The second kind of effect is concerned with the
transfer of radiation from one atom to another"
introducing, for example, effective- interaction
matrix elements such as

«b1ao bP2 0ilo& I
I trs[ U ' (z —zo) 0 '

Po 1 la(bo, bPo, l)0„i », (59)

where now L'rp= Zp+ 2p+ Zp o According to the
Power- Zienau transformation in quantum elec-
trodynamics, these elements are one and the

same, at short interatomic separations, as those
of the first-order multipolar electrostatic interac-
tion between the atoms. In the electric-dipole ap-
proximation they are equivalent to the first-order
dipole-dipole (-o' ) interaction. Thus, these ele-
ments should be treated as collision-broadening
(rather than radiative-damping) phenomena. How-

ever, at larger interatomic separation, owing to
retardation effects, the true radiative (-r ') char-
acter of these couplings is revealed. Such radia-
tive-transfer elements play an important role in

radiation trapping. In very dilute gases (where
the mean interatomic separation is comparable to
the transition wavelength or larger), the two-atom
contributions should be augmented by higher-order
N-atom contributions leading to a highly nonlinear
density dependence of the self-energy. '~ At higher

I

densities, these effects become completely masked

by short-range (collision-broadening-proper)
phenomena.

Owing to the extremely short memory (correla-
tion) time associated with radiative decay, o' o the

truly radiative effects, such as radiative damping,
and the retarded (Iong-range) radiative-transfer
elements, are completely dominated by the lowest-
order perturbation terms, such as (58) and (59),
and one need not be concerned with the incorpora-
tion of u's, or ~'" (interaction with the applied

modes), in the resolvents.
First-order electrostatic dipole-dipole effective-

interaction elements, though properly belonging
under collision broadening, should be handled with

care owing to their relatively long range, and we

therefore discuss them briefly here. The element
described in (59) represents a resonance-exchange
contribution, to be distinguished from the foreign-
gas-type element

&( Po bPo l fOo I Itr [ u ' (z ~o) U '
Po ] laPo, bubo, li0o I&& (60)

Owing to the nonisotropic irreducible-tensor char-
acter of the interaction, 4' the latter element
vanishes on performing the integration over the
interatomic radius-vector r. The resonance- ex-
change element (59), however, does not vanish.
In a two-level system, its elements (in momentum

space) are independent of the initial momenta and,

though the radial integral extends over magnitudes
of r comparable to the wavelength, it is indepen-
dent of the magnitude and orientation of k. It re-
sults in a (velocity-independent} frequency shift

6 = —vN„(e/~. o I,) (6l)

where y„ is the radiative decay rate (the Einstein
A coefficient) of the upper level. Higher-order
contributions of the dipole-dipole interaction modi-

fy this value only by a few percent. The long-
range nature of these first-order dipole-dipole
interactions makes it likely, as with the radiative-
transfer terms, that they play an important role in

introducing cooperative many-atom eff ects, 43 al-
though unambiguous experimental evidence is still
missing.

VI. MANY-ATOM COHERENCE

As the applied radiation is made stronger, more
coherently excited atoms are likely to interact
with each other, and the rank N of the coherent
excitation may become increasingly large, by suc-
cessive application of 4'~, 4~3, etc. Therefore
reckoning a fixed number (N) of distinct atoms,
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we can write the master equation for N-atom co-
herences,

p1 ~ ~ N (N i ) 18 p1 ~ »N
N (63)

where 8„ is defined in (53), Therefore the sym-
metrized forms

K@,ft& gf gfS ~ S~ (64)

should replace those in (62).
Coherences of a lower rank N' &N can be derived

from the density matrix for rank-N coherences, as
subsets of a lower measure, by projecting onto the
ideal-gas equilibrium state of the remaining N—N
atoms. However, as the number N„of atoms in
the sample is macroscopically large, 0(L ), N is
practically unbounded in strong radiation fields.
We must therefore find a way of dealing with N as
a varying number, rather than a fixed one.

There are various ways of dealing with the
variability of N. One such procedure is to use a
second-quantization (Fock-space) formalism,
superimposed on the complete set of one-atom
double-space vectors (in the extended Floquet
space) as the underlying Hilbert space. As N is
practically unbounded from above, this quantiza-
tion must obey boson commutation rules (see Ap-
pendix 8).

In practice, equivalent results can be obtained by
the use of projection operators. In the equation for
N-atom coherence (with a fixed N), 4 ', Z, and
(implicitly) U' are treated as isomorphic map-
pings, projecting the O(L2") coherence space onto
itself. We can, however, exploit the fact that
lower-rank coherences have a vanishingly small
overlap with this space, to construct a hierarchy
of coupled equations, with a varying N=O, 1, .. . ,
by the help of introducing vertex operators, such
as

+ (k)U ' s' »p (k)& &p 0' ' (k)4 ' + (k) (65)

or

i—p ""' (f)= [~ +~'(20)t
. a

Bt f

+ F»"(o&}»'--"»& w »&-
f&E

(62)

in the Markovian binary- collision approximation.
In denser fluids, where M-body collisions (M~2)
may occur, 4' is replaced by a succession of M-
body effective interactions 4~~'""~& (with M
=2, . . . , N) expressible in terms of M-body scat-
tering amplitudes.

As in the two-atom case, the density matrix in
self-broadening must remain invariant to the in-
terchange of two-particle labels; i.e.,

&p1 ~ 2 (k}@1»26» (66)

already included in (62). In self-broadening, all
operators in (65) and (66) not having the vacuum
projection 8'0 on either side, should be augmented
by the resonance- exchange contributions.

Treating the various ranks of coherence as ortho-
gonal subspaces, the hierarchy of coupled equa-
tions will have the general structure

a
'8f pN= XN. ~-zpN-z (N=l»2» "»M~N}

=-2

(68)

in the binary-collision Markovian approximation.
Here we have used p„=-p"'""for shortness, and
X„,„„arethe various upgrading (M& 0}, down-
grading (M &0), and isomorphic (M=O) opera-
tions. Note that the ideal-gas distribution p, should
appear in the right-hand side of (68), upgraded not
only by 'Ui'", but also by Z and 4 ', as it is not a
constant of the motion (even in the linear-response
approximation). In the previous discussion we did
not take note of the identities

(p gi (p.@,is 2 (p gisR O0 0 0 (69)

when applying the finite-state summation to a com-
Plete basis of coherences, as such sums involve
the trace of a commutator. In dealing with reso-
nance processes, we generally project on a limited
basis (the resonance set22) as, for example, in the
rotating-wave approximation. We therefore should
better keep these terms in the equations. This
would also mean that an equation for the coherence
vacuum N = 0, with (P0Z (P0 as the isomorphic
driving term, should be added to the resonance-
set hierarchy of equations. The single equation
(62), for a chosen N, is obtained by an approximate
truncation procedure, taking out all coherences of
a higher rank, and incorporates all lower-rank
coherences as subspaces of the rank-N coherence.

Further details of the structure of (68) become
relevant in constructing diagrammatic solution
methods. Such a method is developed in Paper II
(Ref. 26) for dealing with steady-state properties
of the system. Under steady-state conditions, only
the Markovian limit (z=i0) matters. Expressions
are derived in Paper II for the continuous-wave

acting as rank' uPgxading operators, the first ones
raising N by a unity, the last one —by two. Simi-
larly, rank downgrading vertex operators are
formed by interchanging the order of projection
operators in (65) and (66). All these operators
should join the isomorphic ones,

s"(k)'U' s"(k) (P'(k)z'a"(k) (P' (k)C'&' (k)

(67)
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emission (or absorption) of radiation in any (in-

cident or scattered) mode of the dressing fields,
including the effects of coherences of a rank higher

than one.

VII. DISCUSSION

Cooperative coherence effects in the two-level-

atom model are usually treated with the help of

pseudospin master equations. " In this method, the

upper and lower states of the atom are treated as a
spin- doublet, and the absorption and emission of

radiation are related to the pseudospin raising and

lowering operators, J, and J, respectively, where

(70)

N

n (72)

is the resultant pseudospin of the sample, obeying

ordinary angular momentum commutation rela-
tions. The raising and lowering operators con-
serve the total pseudospin quantum number J (J
invariance). In Agarwal's equation, ~'" radiative
damping and transfer are also treated as J in-

variant. Also translational effects are not in-

eluded, the space coordinates xf being treated
merely as parameters.

Walls's comment regarding the necessity of in-

troducing J-noninvariant relaxation processes, '

brings to mind a situation similar, in some senses,
to the one we faced on introducing the N-varying
vertex operators to the hierarchy of master equa-

tions. In order to see the analogy, recall first that

the single-atom pseudospin- doublet is replaced,
in the density matrix formalism, by a pseudospin-
I triplet (the Bloch triad)'3'44

(7l)

in the two-level rotating-wave approximation (in

addition to an invariant singlet representing the
total population). In the hierarchy of equations

presented here, the Floquet numbers n, obeying

the sum rule

the total J quantum number in the density-matrix
formalism. Each step (with fixed N) in the hier-
archy is therefore analogous to a J-invariant sub-

space (a Bloch sphere '3), and J-noninvariance
is counterparted by the vertex operators.

There are, nevertheless, certain fundamental

differences between the two approaches. In the

pseudospin formalism, in wave vector space, the

lower (P) state and upper (&) state play a sym-

metric role. Calling the state of total excitation

(J =0+ N„) a maximum-coherence" state, and

the ground state (J,= —,'
N„)-a "minimum-co-

herence" state is, in a way, misleading. They

represent two polarly opposed points on the maxi-
mum- J Bloch sphere, and are therefore equally

coherent. Although this is perfectly legitimate
and useful in a two-level model, the moment other
levels, or other degrees of freedom, enter the pic-
ture this symmetry becomes meaningless.

The starting point used here, in which the gas is
in a coherence vacuum state represented by the

ideal-gas distribution po, introduces into the prob-
lem a fundamental asymmetry of the kind essential
to the treatment of irreversible phenomena. The
results of this asymmetry become evident the mo-

ment we introduce into the description such ef-
fects as translational relaxation (as in Doppler-
limited saturation spectroscopy3~), or internal re-
laxation (as in real atomic and molecular spectra).
It also becomes evident in low-frequency (far-
infrared and microwave) spectra, when the upper-
level equilibrium population is not negligible.
Needless to say, our method is not limited in ap-
plicability to the two-level model.

Another important distinction is provided by the

variability of N. In pseudospin methods, the total
number of participating atoms (N„) is treated as a
fixed number, and therefore the total pseudospin
J has a maximum value. In our approach, one can
let the thermodynamic limit (N„—~) be reached,
and treat the coherence rank N as an unbounded

number, as implicated in the diagrammatic repre-
sentation of Paper II.+

therefore play a role analogous to that of the J,
numbers in the density-matrix formalism. The

isomorphic projections of

ACKNOWLEDGMENTS

The author is grateful to K. Burnett, J. Cooper,
P. Kleiber, and D. F. Walls, for stimulating dis-
cussions.

gR gf~ R (73) APPENDIX A: EQUIVALENCE OF COHERENT
RADIATION TO CLASSICAL FIELDS

are analogous to the J,-dependent radiative cou-
plings in the pseudospin equations. However, it is
easy to see that in a two-level model, in the ro-
tating-wave approximation,

Therefore the coherence rank N is analogous to

This equivalence is discussed in detail else-
where, ~' but it shall be briefly reveiwed here
for the convenience of the reader. Suppose that,
in the absence of interaction between the applied
beam and the sample, we can represent the co-
herent beam by a pure Glauber-state45 projection
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( )= II ( }=II'
kE beam

is the Glauber unitary displacement operator, and

&(t) =(&,(to=(o' e"""). (A3)

For example, an optical mode (with gv, »ksT,
where k~ is the Boltzmann constant and T the
temperature), is represented in p„by a factor
~0~)(0~~, which is transformed into

~ n~)(n, I by
(Al). Let

Il=H. + V~ (A4)

be the Hamiltonian of the entire system, with V
representing the (second-quantized) coupling to the
applied-beam modes. Then (A2) obeys the identi-
ties

U. (t, t')&(&(t')}=&(&(t))U.(t, t'),
v "D(&(t))=D(&(t))[ v"+ v"'"(t)]

where

(A5)

(A6)

operator ~n, }(o,~
(or a direct product of such

operators in case of several-mode beams), and
the sample by an equilibrium density matrix p„
defined on all degrees of freedom, including in-
ternal (spontaneously emitted) photons.

Switching on the interaction between the beam
and the sample, it is Postulated that the initial
condition at to- —~ can then be represented by the
"in asymptote"

p,.=D(o(to))p.,D'(o(t, )) (to-- -),
where

pendence can now be removed from the classical
interaction by the Floquet method, expressing p(t)
in the extended basis of Eq. (7) (using a and 5 for
the states of the entire system). Then

i —p(t)= (X+'U ' + i!")P(t), (A13)

APPENDIX B: SECOND QUANTIZATION
IN LIOUVILLE SPACE

A Fock- space second-quantization procedure
can be applied directly to the Liouville space of
the dressed (sample-plus-beam) system, as the
underlying Hilbert space. Let

s =ah. n (Bl)
denote all the quantum numbers of a dressed one-
atom double-space vector (not necessarily limited
to the momentum-constrained coherence states).
The coherence rank N can serve as the "occupa-
tion number" in the superimposed many-particle
Fock space. As N is unbounded from above (in
the thermodynamic limit}, the quantization field
operators must obey boson commutation rules
("coherons"). One can therefore introduce a set
of annihilation and creation operators, 8s and 8„
respectively, obeying

where X is obtained from H by (10), '0~ is the
time- independent radiative-driving superoperator,
and & is defined by (9), with p„as the initial
state (belonging to the n= 0 subspace).

U, (t, t') = exp[ —iH, (t —t')I], (A7) (B3)

and

v" "(t)=( (t) I

v"
I (t)&

~ ~is the classical-field interaction. In the Schro-
dinger picture,

(A8)

p(t) = U(t, to)p (t~) U(t, to), (A9)

with U obtained from (A7) on replacing H, by H.
Letting to ——~, and using (A5) and (A6), we get

p(t) =X(t, —~)p,~ X (t, —~), (A10)

with X(t, t') obeying

A second-quantized form of the coupling to the
radiation U~ and the intermolecular couplings U

is given by the usual prescription, 4~

((sir" it))a', 8„
Sv

(B4)

(B6)

((sfSQ~V ' ~t~t2)}Q, g, Q, tt, . (B5)
S~Sgq t~fg

The density matrix can then be expressed as a
superposition if Fock space,

ik t X(t, t') =[H+ V" ~(t)]X(t, t').a
(A11) where N is an eigenvalue of the number operator

(coheron number)
Equation (A10) can be brought into a superoperator
form, N=P n', n, . (B7)

p(t) =X(t, —~}'X (t, —~)p~ = aft, —~)p„—(A12)

replacing ordinary Hamiltonian operators in X by
the equivalent superoperators in X. The time de-

The separable (ideal-gas) equilibrium distribution
(~po)) } and the identity operator (((I ~) serve, re-
spectively, as the bare vacuum" (N=0) ket and
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bra double-space vectors. Therefore, steady-state
rates can be expressed as vacuum-expectation
values, and calculated by the method of zero-
temperature Green's functions, 6 with each one-
particle contraction involving a thermal averaging
over the one-particle distribution po. This ap-
proach should ultimately lead to the diagrammatic
analysis used in Paper II in the binary-collision
gadder) approximation, with momentum-conserva-
tion constraints, symmetrization effects, etc. ,
automatically taken care of.

This second-quantization procedure should not
be confused with theories of spectral line shape
using a Fock-space formalism superimposed on
the ordinary (wave-vector) Hilbert space, and em-
ploying finite-temperature (imaginary-time)
Green's function methods. 4'4 In these theories,
particle-hole pair propagators play the role of an
individual double- space propagator in Liouville
space. The use of Liouville-space methods has,
however, two advantages: First, self-energies
are related to familiar dynamical quantities (bi-
nary-collision scattering amplitudes). Second,
the treatment of initial correlations by Burnett
et &l. ' clearly shows how to distinguish between
radiative transitions induced during a collision and
those induced betsveen collisions, thus convenient-

ly enabling one to treat the quasistatic limit in
collision broadening, collision- induced absorption,
radiative collisions, etc. , as distinct physical pro-
cesses.

A second-quantization procedure based on the
idea of converting thermal averages into vacuum-
expectation values has been described by Taka-
hashi and Umezawa. 4~ Instead of using the Liou-
ville representation in which both row and column
quantum numbers represent equally "physical"
states, these authors attach to each physical state
in ordinary wave-vector space a fictitious image
state in order to create a double-space formalism.
The quantization procedure suggested in this ap-
pendix does not take into account the quantum sta-
tistics of the interacting atoms. For binary colli-
sions, however, this can be incorporated by a
proper symmetrization proced'ure. ' This sym-
metrization should not be confused with the one
introduced in Sec. III as a reflection of the two

ways in which the trace over one-atom states can
be taken. When states symmetrized according to
the Pauli principle are used, the symmetrization
indicated by the label S is attained by simply
multiplying the corresponding unlabeled term by
2.
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