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Sum-rule-constrained classical binary-collision model for inner-shell ionizations
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A model calculation of cross sections for inner-shell ionization by electrons is described. This model is based on
the classical binary-collision model and modified with the application of several sum rules. It is found that the model
predicts quite accurately generalized oscillator strengths and cross sections for inner-shell ionization of atoms. A
comparison is made with experiment and other theoretical results.
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Differential and total cross sections for inner-
shell ionization of atoms by electrons form part
of the basic input for electron transport calcula-
tions. A formal theoretical construction of these
quantities involves detailed evaluati'ons of the
wave functions of the atomic systems. This treat-
ment is generally quite cumbersome and unrealis-
tic for, especially, large-2 atoms.

At a more empirical level, the classical-binary-
collision (CBC) model provides a simple analytic
method for the calculation of atomic ionization
cross sections. ' The model has enjoyed much
attention since the work of Gryzinski'. established
its relevance to the properties of atomic and
molecular systems. However, it is well known
that the CBC model yields poor results at thresh-
old and very high energies. ' In such cases there
is an appreciable contribution to the cross section
from the range of small momentum transfers
where the CBC model is most unreliable.

In this paper, we deal with the failure of the
CBC model at small momentum transfers. A
scheme will be proposed to calculate generalized
oscillator strengths (GOS) and hence cross sec-
tions for inner-shell ionization of atoms. Our
treatment will be based on the CBC model and sum
rules of exact theoretical formulations. We will
apply our model to several materials and compare
results with experiments and other theoretical
calculations.

II. GOS FOR THE CBC MODEL

The GOS associated with the ionization of an
atom from the ith shell is defined by"

df 2m(0
l(d

where Ik is the momentum transfer, I~ is the
energy transfer, m is the electron mass, and

Here 5~,. is the binding energy of the jth shell and
~0) and ~A, E) are, respectively, eigenkets of the
ground state and the ionized state which is speci-
fied by its energy E and a set Q of all the other
requisite quantum numbers. The sum over r.
runs over all coordinates of electrons in the ith
shell of the atom.

In the CBC model, it is convenient to define the
GOS per electron as

(3)

where N,. is the number of electrons per atom in
the ith shell. Using a hydrogenic speed distribu-
tion of electrons in the atom, it is found that'

(
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where t)=hk/(2mE„))i' ', e =fr/E„, and e, =h&u,./
E„.are dimensionless variables related to, re-
spectively, momentum transfer fk, energy trans-
fer I~, and binding energy 5&' Ep is the mean
kinetic energy of electrons in the ith shell, and e
is the step function.

For a given (n, l) state E„is given in the .Slater
rule ass
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Ry is the Rydberg energy, Z is the atomic num-
ber, N, , is the number of electrons in the
(n = I, I=j) state, 5, , is the Kronecker 5 function,
and a*=1, 2, 3, 3.7, 4, and 4.2 corresponding to
&=1, 2, 3, 4, 5, and 6, respectively.

The GOS of Eq. (4) suffers from an oscillator
strength deficiency at small momentum transfers

This can be seen from the pth moment of the
GOS defined by

$(p) = d' —de.df
dc

Oz

QS

0.5

It is easy to prove that the p, =0 and 1 moments of
the GOS of Eq. (4) satisfy

Scsc (0) = [(a+4)z+3ap+y]/v (8)

Scsc (1)=([a(rP —4)+8t) )~+3a(t) + ~~)p

+ (n'+ ', )y)/~-,
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p = 2t)/3(a'+ 4t)'),

y = v —tan ~(-a/2t)) .
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FIG. 1. The @=0 and 1 moments of the CQC mode].
GOS as a function of momentum transfer g for ~; = 0. 5
and 1. The p = 0 curves use the left ordinate scale;
the p =1 curves use the right ordinate scale. The hori-
zontal line at height 1 and the q~+ 4 curve are theoretical

3
sum-rule requirements.

However, in the absence of electron correlation
the sum rules for the p, =0 and 1 moments of the
GOS are given by"

$(0) =1 (14)

$(1)=t) +~. (15}

HI. SUM-RULE-CONSTRAINED GOS

To remedy the deficiency of the GOS of Eq. (4)
at small momentum transfers, we add several
terms to the numerator of the equation, viz. ,

Figure 1 shows the results of Scarc (0) and S~ (1)
as a function of momentum transfer g for g,. =0.5
and 1. It is seen that these two moments of the

GOS agree asymptotically with the sum rules, but

deviate significantly from them as g «1. Experi-
ment shows that these moments should be nonzero
there for optically allowed transitions. '

tions. Here we will determine A„B, and C by
three sum rules, namely, $(-1), $(0), and $(1).

The sum rule for the p, = -1 moment of the GOS

leads to '

$(-1)= [I —(I+ -,'q') -']/q'. (18)

Equation (18) is expected to be unrealistic for
g-shell ionization and even worse for outer
shells. In these cases, we must evaluate $(-1}
using more realistic models, e.g. , the Hartree-
Slater potential model or the Hartree-Fock
model. 9

Integrating Eq. (16) and then combining it with
Eqs. (14), (15), and (17), we obtain A, B, and C
in terms of Eqs. (8), (9), and (19}-(21). Here

(17)

where S~, (t)) is the incoherent scattering function
used in x-ray physics. For the K shell, we will
use the hydrogenic result for S(-1), which is
given by'

[A(q) + eB(t)) + e'C(tt)] .
de df

(16) S~c (-1)= (an + 3ap +y)/ rp, v (19)

Although we could include more terms to the ex-
pression, it seems that the present form is con-
venient and flexible enough for several applica-

S~ (2}=([n(g' —12) +4(3q' —4)]a

+ [3a(q'+ 4) + 64]P

+ (q'+ 4)yg'/w, (2o)
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FIG. 2. Plot of GOS for carbon E-shell ionization as
a function of momentum transfer q for several values of
energy transfer ~. Solid curves are the results of pre-
sent calculations; the dot-dash lines are McGuire's re-
sults of the Hartree-Slater model; the dashed curves
are calculations from the CBC'model of Eq. (4).

FIG. 3. Plot of GOS for oxygen K-shell ionization as
a function of momentum transfer g for several values
of energy transfer &. Solid curves are the results of
present calculations; the dot-dash lines are McGuire's
results of the Hartree-Slater model; the dashed curves
are calculations from the CBC model of Eq. (4).

&csc (3) =j[a(g' —24' +16)+16''(~' 4)]n

+ [a(3g'+ 24'' —60) + 256t} ]p

+ (r}'+4)'y)rP js . (21)

Figure 2 shows a plot of GOS for carbon g-shell
ionization as a function of momentum transfer g
for several values of energy transfer &. A similar
plot for the oxygen K shell is shown in Fig. 3. In
both figures, we have plotted the numerical re-
sults of McGuire" which were calculated from a
Hartree-Slater potential model ~ It is found that
the present model predicts GOS for K-shell ion-
ization quite well compared to the more detailed
theoretical calculations.

Figure 4 shows the results of GOS for nitrogen
L~-shell ionization versus momentum transfer g
for several values of energy transfer &. Here we
have calculated $(-1) from McGuire's tabulations
on GOS. ' Figure 5 shows a similar plot of GOS
for sodium L,-shell ionization. The $(-1) function
was obtained by a fitting of Eq. (16) to the McGuire
data on GOS. In both cases, our model ha, s

IV. CROSS SECTIONS FOR INNER-SHELL
IONIZATION BY ELECTRONS

The differential cross section for an incident
electron having energy E to transfer energy 5&
and momentum 5k to an atom in ionizing the ith
inner shell is given in the Born approximation
as

d a,- 8ma+, df
d'g d6 ggCEO) d6

(22)

improved the CBC model for the GOS at small
momentum transfers quite significantly. The
differences between this calculation and the
Hartree-Slater result are due to the uncertainty
on S(-1}and limited terms included in Eq. (16}.

The model applies badly to the I.» shell and
outer shells at the region of very small momen-
tum transfers. Again, this is due to the restric-
tion of limited sum rules used. This restriction
seems unavoidable at the present time because of
the lack of data on the higher-order sum rules at
the optical region.
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FIG. 4. Plot of GOS for nitrogen Q-shell ionization
as a function of momentum transfer q for several val-
ues of energy transfer ~. Solid curves are the results
of present calculations; the dot-dash lines are McGuire's
results of the Hartree-Slater model; the dashed curves
are calculations from the CBC model of Eq. (4).

FIG. 5. Plot of GOS for sodium Q-shell ionization

as a function of momentum transfer g for several val-

ues of energy transfer ~. Solid curves are the results
of present calculations; the dot-dash lines are McGuire's

results of the Hartree-Slater model; the dashed curves

are calculations from the CBC model of Eq. (4).

(23)

where ao is the Bohr radius, g, is the number of
electrons per atom in the ith shell, $ = E/E«, e«
=E„/Ry, and all other variables have been de-
fined previously. Note that the GOS in Eq. (22) is
the GOB per each electron in the ith shell.

Given d'0, /dred&, the total ionization cross sec-
tion for a given shell is obtained by integrating
over allowed energy and momentum transfers as

2gWg g d2g
o'] = dg df

Tf

where g, =v$ +(( —e, )'~'. The stopping power of
the atom is given by

20
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q+

(SP), =E«dg e de
7) dg dE'

Substituting Eqs. (16) and (22} into Eqs. (23) and

(24), we obtain 4 6 8 10
E/ Ek

20

~+
o;= @2 dgg2A gIog +BgI~&

Of

+ c(q)l, (q)] (26)

FIG. 6. Electron ionization cross sections for the K
shell of C and 0 as a function of electron energy in units
of K-shell binding energies. Solid curves are the re-
sults of present calculations. Dashed curves (Ref. 11)
and experimental points (Ref. 13) are taken from Ref. 12.
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FIG. 7. Electron ionization cross sections for the
Lg shell of C and 0 as a function of electron energy in
units of Lq-shell binding energies. Solid curves are
the results of present calculations. Dashed curves are
the results from numerical calculations using McGuire
GOS data (Ref. 10).

211' E T

(SP),. = +; " d&&'[~(q)1, (q)
3$&o;

+ B(q)f, (rj) + C(q)f, (ri) ],
(26)
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FIG. 8. Plot of stopping power of 0 versus electron
energy. The K and L, results are the present calcula-
tions; the L2 3 results are from numerical calculation
using McGuire GOS data (Ref. 10). Some semiempiri-
cal results g (Ref. 14) along with theoretical Bethe-
Bloch results (Ref. 15) for electron energies E~ 10keV
are taken from Ref. 16 for comparisons.

where

(27)

V. DISCUSSION

We have considered a model calculation of
cross sections for inner-shell ionization by

2
f dE

f„(q) =
[(e n')'+ 4@'—1'

'

The integration in Eq. (27) may be carried out
analytically.

Figure 6 shows the results of our calculations
of the electron ionization cross sections for the
K shell of C and Q. Experimental measurements
of Glupe and Mehlhorn" and Hink et al."are also
plotted for comparisons. Figure 7 is a plot of the
electron ionization cross sections for the I,, shell
of C and Q. Theoretical results from numerical
calculation using Mc Guire GOS data" are also
shown in the same figure.

The total stopping power of Q shown in Fig. 8 is
the sum of stopping powers using the present
model for K and L„ ionizations and the numerical
calculations from McGuire GOS data' for the

~ 3 ionization. Some se mie mpiric al results"
along with theoretical results based on the Bethe-
Block theory" for electron energies E ~ 10 keV
are also plotted for comparisons.

electrons in the nonrelativistic limit. Using
scaled energy and momentu m variables, we have
obtained GOS and hence ionization cross sections
from a procedure based on the CBC model and
several selected sum rules. The model was ap-
plied using the mean kinetic energy of atomic
electrons from Slater's rules.

The model has the advantage that several sum
rules are satisfied automatically. As a conse-
quence, it yields a stopping power and total cross
section which reduce to the correct Bethe forms
for large energies of the incident particle. " The
model is capable of being applied to outer atomic
shells by the addition of more terms to the GOS
of Eq. (16). In such applications we will need
theoretical or experimental data on the higher-
order sum rules, especially near the optical
region.
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