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Almost degenerate perturbation theory for scattering in a laser field
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Earlier derivations of approximations for electron-atom scattering in a low-frequency laser field are generalized to

account for the effectively strong interaction of the field with groups of nearly degenerate states of the atomic target.

The basis of the derivation is a reformulation of the scattering problem, obtained with the aid of a gauge

transformation, which allows one to extract the strong-field effects explicitly in the form of dressed-atom and

dressed-electron states. The effects of the weakened residual interaction can then be included in perturbation theory.

The result obtained by working to first order in this modified perturbation theory has the simplifying feature that it

involves as input the scattering operator in the absence of the field. This first-order approximation is studied in some

detail in the dipole approximation, with the final target state taken to be one of a pair of nearly degenerate states.

I. INTRODUCTION

The analysis of electron-atom scattering in a
laser field is simplified considerably in the low-

frequency limit. It will be shown here that earlier
versions of the low-frequency approximation' '
can be viewed as representing the leading terms
in an expansion based on a perturbation theory
modified to account for the appearance of near
degeneracies. These will certainly be present
at low frequencies since an electron incident with

a given momentum p has available to it a sequence
of energy levels with spacing S~ where Sar is the

laser photon energy, assumed to be small com-
pared to the kinetic energy K =P'/2y. As will be
seen, this approach can be extended in a natural
way to take into account the effectively strong
coupling between the laser field and states of the
atomic target which are nearly degenerate. It is
assumed that the field intensity is low enough so
that ordinary perturbation theory suffices for
those virtual transitions involving nondegenerate
intermediate states. The basis for the theory is
developed in Sec. II, below. The first two terms
in the modified perturbation expansion are worked
out in Sec. III and analyzed in greater detail, in

the context of a particular model, in Sec. IV. ' It
will be clear from the discussion that higher-
order corrections to this generalized low-fre-
quency approximation can be obtained in a sys-
tematic manner.

As a guide in setting up an approximation scheme
it will be useful to consider, in a qualitative way,
the sizes of the various coupling strengths and

physical parameters which will be relevant. A

measure of the intrinsic strength of the field is
provided by the ratio

eA,
C

where A, is the amplitude of the classical vector
potential corresponding to a laser beam of inten-
sity I and frequency co, i.e. ,

Writing

I K (d

and choosing Io = 10"W/cm', Ko = 10 eV, and h &uo

=0.1 e7 we find the constant C to be of order unity.
One sees then that 5, will be a small parameter
under a wide range of conditions of experimental
interest. Other small parameters in the theory
are 5, =Su/K and 5, =P/pc. Terms of second order
in 53 should, for consistency, be neglected at the
outset since the atomic system is. treated nonrela-
tivistically.

In the construction of the states describing the
free electron in the laser field (this calculation is
reviewed in Sec. II) one finds as the effective coup-
ling strength the ratio of the interaction energy to
the photon energy, a quantity of order 0,/5, . This
ratio is taken to be of zeroth order. That is, the
electron-field interaction in asymptotic states is
treated to all orders; this is the near-degeneracy
effect mentioned above. The field also interacts
with the target asymptotically. For the purpose of
the present discussion we assume a classical elec-
tric field of amplitude E, and treat the interaction
in the electric-dipole approximation. Eigenstates
of the isolated target satisfy

IIr I x;& =e
I; Ix;&.

The matrix element of the interaction, taken be-
tween states Ix,) and Ix,), is

(T)

eg(x, Ir, -E, Ix,&,
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the sum running over all target electrons. If one
writes

(x2 I rf I xl& (el 82& '&X. I[ rf HT) I xl)

the matrix element of the interaction takes the
form

is the vector potential appropriate to a quantiza-
tion volume 1.'. It will be convenient to treat the
scattered electron as distinguishable from the tar-
get electrons with the understanding that antisym-
metrization will ultimately be imposed by taking
the proper linear combination of direct and ex-
change amplitudes. The asymptotic states satisfy

(H —Es& IC'8& = Vs I@8& e (2.3)

This interaction is of second order (i.e. , of order
5,52), assuming the target states to be nondegen-
erate so that K(d/(8, —82) may be treated as a first-
order quantity. A similar argument indicates that
the interaction between the field and the electron-
atom system in intermediate states of the scatter-
ing process is of second order. In this case one
should introduce an average excitation energy in
place of the level separation E'y c2 It is assumed
here that there are no scattering resonances in the
energy range under consideration.

If the states IX,& and IX,& are nearly degenerate
the preceding discussion breaks down and nonper-
turbative methods are required in general. For
example, when

I 8, —8, I«g(d it is the ratio of the
interaction energy to the photon energy which pro-
vides a proper measure of the strength of the
coupling (as shown explicitly in Sec. IV) and this
ratio should be treated as a parameter of zeroth
order. Approximation methods for solving such
"dressed-atom" problems have been described
previously' and further discussion in the context
of the scattering problem will be found below.

As a final general remark it should be noted
that in the preceding discussion the electron-
field interaction was assumed to be of the "p X"
form while the target-field interaction was taken
to be of the "r E" form. This is justified form-
ally, in Sec. II, with the aid of a gauge transforma-
tion. Such a transformation was employed pre-
viously in the derivation of a low-frequency ap-
proximation' and it provides a convenient starting
point for the more general derivation given here.

H. GAUGE TRANSFORMATION

The Hamiltonian of the electron-atom system
in the presence of a plane-wave laser field of pro-
pagation vector k, frequency ~, and polarization
X is

where P is a channel index representing the set
of observables which defines the state. These in-
clude the photon occupation number, the electron
momentum, and the quantum numbers specifying
the state of the target. (We are assuming here
that the field interaction is switched on adiabatical-
ly before the scattering event and then switched
off afterwards. The observables mentioned above
are well defined in the absence of the field inter-
action and serve to label the states when the inter-
action in on. ) The index P also distinguishes the
projectile electron from the target electrons. In
Eq. (2.$) Vs represents the net interaction between
projectile and target. The transition amplitude
takes the usual form

TB'8 (@8'I[Vs Vs « -» '&s)I 4 8& (2.4)

g=(ie/hc) QX(0) ~ r, . (2.5)

To determine its effect on the Hamiltonian we
first observe that

pe ——X( e) =e'
(p,

——[X(r ) —X(D)])e '. (26)

The transformed field Hamiltonian may be ex-
panded in multiple commutators as

e'H~e '=H~+[ g, Hr)+ —,[g, [g, Hf ))+ ~ . ~ .1

(2.7)

Since the double commutator is a c-number the
terms shown explicitly are actually the only ones
which contribute. We find that

with Es. =E8 and E =E8+io.
An equivalent representation of the transition

amplitude which is more convenient for our present
purposes is obtained by introducing a unitary
transformation represented by e~, with

2

H = Q pf ——X(rf) / 2fx +Hf, + V' .c (2.1) [p, H eg[(0)2 (2.8a)

Here V represents the sum of interparticle Cou-
lomb potentials, H~ =Irma~a is the field Hamiltonian
in the occupation number representation, and

where

(2.8b)

)
8 (~ efk 1 + etXe)ee-fk'r ) (2.2) represents the electric field at the origin. Note
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that the operators a and a~ may be thought of as
quantities of order Wn where n is the photon num-

ber of the incident beam. On the other hand, the
double commutator

e '
I
c 8) = e 'e

I
4 e& . (2.18)

An analogous relation is obtained for the final-
state wave functions using the appropriate decom-
position g=gr+g, . Now Eq. (2. 11) implies that

4 e' 2

lg, [g,H. ]l =
f (2.9) (E H-) '=e'(E H-) 'e ' (2.19)

e'(H» —e+E(0) r, )e '=H».
f

(2.10)

This, along with Eq. (2.6), allows us to write

which represents a level shift arising from spon-
taneous emission and absorption, is independent
of the external field strength. Terms of this order
will be consistently ignored in the following. We
have then

lt follows that Eq. (2.4} is equivalent to

7', ,=&e "@eI[&8+&8 (E H-) '1'8]le "@s&

(2.20)

A formal procedure for constructing solutions
of equations of the type (2.16}has been described
previously" and will now be very briefly reviewed.
One first solves the projectile-field Schrodinger
equation

H =e~He '
y

where

2

+H»+V,

—
Pf . rf — 0

f
2

+ g 2, [A(r&) —A(0)] —ep E(0) ~ r,

(2. 11)

(2.12)

(H, +H»+H, ) I P.»& =E.
» I y.p& (2.21)

corresponding to a state I P &
which goes over

into the unperturbed state
I
m) lp& containing m

photons and an electron of momentum p when the

field interaction is switched off adiabatically. The
solution can be expressed in the form'

(2.22)

The expansion coefficients are represented as

Returning to Eq. (2.3) we rewrite it as

(H. +Hr+H» +H }l@e& =E8
I @8& (2.13)

2 fl

r, (p) =
2

e"'f,(%),
0

where

(2.23a)

where H, is the projectile kinetic-energy operator
and H =H, +H~ represents the interaction of the
field with the projectile and with the target. (A

channel label specifying which of the electrons is
the projectile is omitted for notational simplicity. )
Consider now the transformed state

f (y) e is»&4 )

and

S (p)=p sin(P+8)+asin2$.

We have introduced the notation

(2.23b)

(2.23c)

where
(r)

gr =(ie/Kc)g A(0) r, ,

(2.14)

(2.15)

2 2mhe2n '"
K&@ —hk ~ p/p. p ~L

s(x ~ ~)
2(%(o-Ik p/p, ) '

(2.23d)

(2.23e}

the sum running over target electrons only. The
Schrodinger equation satisfied by I48) is readily
seen to be

and

e' 4m Sc'
2p. c (dL

~~ (2.23f)

(H, +Hr +H»+H +H»)lee& =Esl4

with

(2.16) The ener gy is deter mined as

E = P /2g+ mk&u + 6 . (2.24)

H'„= —g
( T')

+p

Writing g=g~+g, we have

—p, [A (r, ) -A(0)]

(T)

, [X(r~)-X(0)]' —e Q E(0) r~ .
2 p.c

(2.17)

We also require the solution of the target-field
eigenvalue equation

(Hr+H»+Hr) ID, „& =E;„ID,„&, (2.25)

with ID;„)- ln& III,.& as the interaction is switched
off adiabatically. The solution may be expanded in
photon states as
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(2.26)

where the D satisfy the coupled equations

(Hr+mk(ar —E(„)ID/+ g &mlH'rim'&ID ) =0.

l@iwv&= +ID (i, n)&ly p&. (2.28)

The energy of this state is E,„-=p'/2)t +E,„+d, ,
so that the total level shift is r, +6, the sum of
the target- and projectile-field level shifts. An
index g has been omitted in our notation for these
shifts to indicate that they depend only on the in-
tensity of the incident beam and have negligible
variation from one field state to another. ' This
is reasonable since photon depletion effects are
negligible for the very high occupation numbers
we are dealing with here.

HI. FIRST-ORDER APPROXIMATION:
GENERAL CASE

The expression (2.20} for the transition ampli-
tude provides a convenient starting point for ap-
proximations. Thus, consider the resolvent
(E -P) ' in Eq. (2.20), with H given by Eq. (2.12).
In Sec. I we introduced a set of small parameters
5, and have argued that the interaction between
the field and the electron-atom system in inter-
mediate states is of second order in these param-

I

(2.27)

The energy is E,„=e,+r, +nS+, where r, repre-
sents a level shift induced by the field. The solu-
tion to Eq. (2.16), in which the projectile and the
target interact with the field, but not with each
other, can be represented by the expansion"

—= G(E —HF) . (3.I)

Since G(E} is the resolvent for the isolated elec-
tron-atom system this suggests that when cor-
rections of second order are ignored the transi-
tion amplitude can be expressed in terms of the
amplitude for scattering in the absence of the
field. Formal expressions for the higher-order
corrections can be generated by expanding the
resolvent in powers of the interaction. We shall
confine our attention to the first-order approxi-
mation in the following.

In addition to the approximation (3.1) we have,
to first order,

e '~ = I -(ie/h c)X(0) r

= 1+—X(0) ~ V
c (3.2)

where the projectile coordinate r has been ex-
pressed as an operator in momentum space. With
a similar form introduced for the final-state fac-

I
tor e ~~ we have

TB.g —B8'8 +C 8.8,
with

Hs s =&@s I[Vs+ Vs G(E -Hr)vs] l@s&

and

(3.3)

(3.'4)

eters. (Here and in the following by "second
order" we shall mean a quantity of order 6, 6J.)
We discussed only the electric-dipole interaction-
the last term in Eq. (2.12)—but one readily sees
that the remaining particle-field interaction terms
are of the same order or smaller. To first order
then,

(E —F} ' —= E —Q —V —ll )2p,

2mke' '"
[(~p+ ~v)& 4 s. I[vs+ v, ,G(E —Hr) Vs](~+ a l *)

I 4 s&).
(dL,

(3.5)

Let us first consider the contribution B8.8. Since
the asymptotic states are to be expanded in the
form (2.28) it will be convenient to introduce the
abbreviation

t. .(E;p p)

BB'8 ~g~- ~ Yg p

x t ~ [E —(m+ f)ii(o; p'

—(I+m —m')Rk, p —Rk].
(3.7)

= &p' l&D,(i', n') I[Vs + Vs~(E) Vs] ID (t, n)& Ip&. We now write t, (e; q, q) as t ~ (v, 7, g, g} with
the new scalar variables defined by

(3.6)

(For simplicity channel indices P and P have been
suppressed in the notation for the t matrix. ) Equa-
tion (3.4) then becomes

v =-'(q"/2m+q'/2V), =N' -fl)',
(' =e —q"/2p —

e&
—r, , g =e —q'/2g —e, —r, .

(3.8)



22 ALMOST DEGENERATE PERTURBATION THEORY FOR. . . 2489

8t,. p+ (n —m —l)hm + l8k
8$

~l8t. , p+, (n —m —l)h(d +(l+m —m )Kk ~—8$'

+ ™~[2(m' —m)kk (p'-p)].
8T (3.11}

The scalar variables in t ~ and its derivatives
are understood to be fixed according to Eq. (3.9).
When the expansion (3.11) is inserted in Eq. (3.7)
we find an explicit dependence on the index l. The
summation over this index can be performed using
the formulas

The t matrix in Eq. (3.7) may be expanded about
the values

) = '(f)-"/2p +f'/2p), t =rp'- T)}' (3 9}

Taking into account the energy-conservation con-
dition

E =P /2p+e, +r, +nh(d =P"/2)L+e, , +r, ~ +n h(d

(3.10)

(with the second order shift 6 ignored) we find,
to first order,

t [E —(m. +l)h(();p' —(l+m —m')hk, p —lhk)

1 8t ~(= tm m+ — [(m —m —l)hk ~ p —lhk ~ p]8v

"d0 ei(m'-m)()y*(y)f (y)~(y) (3 13)
Q

and

P (m' - m —f)r(*, — (p'}r((p)

f ef(m'-m) @f ~ ~ g ~ 3 y4)
o 7J

with S;(p) —=dSgd(I). Equation (3.12) is derived
directly from the integral representation (2.23)
and the relation

Q ei(( i()- i)i') 6(y y')
2~ l

(3.15)

A similar procedure is used to obtain Eq. (3.13),
after performing an integration by parts to arrive
at)

(3.16)

Eq. (3.14) is derived in an analogous way. The
result of the summation over l is

g i" .(ji')i (p&= f ('8" -'i-t-((-'i(f ((-)
l Q 7T

(3.12)

2 fl'

e((m'-m) $y (~)f (y}
m m' O

1 8t & p I p Bt I I w px t ~ + SAk—.—+S hk — + (n —m+S )K(d —S-hk. —
2 8v P p, P g 8g P P

~l
p 8t ~+, (n —m + S-,)h(d —S-,hk.— (- [2(m —m)hk ~ (p —p)]8$ 87 (3.17)

1

Turning now to the expression (3.5) for C8.8 we
write

can be expressed in terms of the scalar variables
as

aIl+m) =—vn Il+m —1),
at

I
l +m) =—Wn I

l +m + 1),
(3.18a)

(3.18b)

p 8 p 8 . , 8
& =————-2(T) -p) —,

2p 8v p, 8$ 8v (3.19a)

in the approximation in which photon depletion
effects are ignored. This allows us to evaluate

p 8 pV =————,+2(p —p) —.
2p 8v p 8g' 8z (3.19b)

gg &l'+m'
I r(m (p')(&a+) *at}r((p) I l+m)

Note that according to the definitions (2.23) we
have

= &ng[&r)*,.—.(p'}r)„(T))+) v),.—.rp')r) -,(p)]

2 ti'

=Wn e" ~f-(p)f ((I))()(.e'~+)(.me '~}.
Q 2F P P

The momentum derivatives appearing in Eq. (3.5)

(
2mb e'

Wn(p )(.e(~+p )(..*e (~)/y.
(dg

=(h(d —Kk. p/p)p- cos((f(+8}
I

=(h&u —hk p/g)S . (3.20)
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The last version is obtained by recognizing that the term proportional to»x in Eq. (2.23c) is of second order
and hence may be neglected. We then find

X g(d - gk ~ —$1 ~~'ft™— ~ ~ + S(d —hk S ~
~ —~™~ (3.21)

Combining Eqs. (3.17) and (3.21) for the first-order approximation (3.3) we obtain

Z', ) —QQ ~ e»» ~ ~f,(])f (p) f, +—5g (S +S ) +(n —m)h»d
d 1 Bt ~ f ~ Bt

m m' 0

+(n'- m')k»d, " +2(m' —m)hk ~ (p' —p)B) O'T j
(3.22)

It was noted earlier that the target-field interac-
tion H ~ may be taken to be of second order in the
absence of any near degeneracies in the spectrum
of target states. Thus, in the nondegenerate
case ~D»g may be replaced by )X»& ~n& to first
order. The t matrix then simplifies to

f. .(&;p' p)=0», & .(p'l(x» 1[vs+v,.o(E)v, ]Ix»&lp&;

the matrix element on the right is just the scatter-
ing amplitude in the absence of the field. The
derivatives with respect to g and $, for whose
evaluation one requires knowledge of the scatter-
ing amplitude off the energy shell, make no con-
tribution in Eq. (3.22) for n =m and n =m'. One
sees, in fact, that the first-order approximation
(3.22) reduces, as it should, to the approximation
derived previously'' for the case of nondegenerate
target states. Note that while the result obtained
in the nondegenerate case appears not to involve
the target-field interaction at all, that interaction
has in fact been included —its effect cancels in
first order. This cancellation can be seen directly
by explicit calculation. ' A useful feature of the
transformed expression (2.20) for the transition
amplitude is that the cancellation becomes mani-
fest at the outset (although a physical understand-
ing of this somewhat surprising effect is still
lacking). The off-shell contributions and infinite
sums which appear in the more general result
~'3. 22) account for the absorption and emission of
photons by the target as it makes transitions
within a group of nearly degenerate states. The
essential simplifying feature of Eq. (3.22) to be
recognized is that the dynamics of the interactions
between the field and the projectile, the field and
the target, and the projectile and target are to be
computed separately; this decoupling of the inter-
actions is not found in higher orders. To develop
further insight into the structure of Eq. (3.22)

we introduce, in Sec. IV, additional simplifying
assumptions which enable one to put the result in
more explicit form.

IV. EXPLICIT RESULTS FOR TWO NEARLY
DEGENERATE TARGET STATES

f», = (e, + e.)/2(IX, &(X, I
+ IX,&(X, I),

t»f» r =(e, —e, )/2(IX, &(X, I
—IX,&(X. I);

(4.1)

5h~ will be treated as a small perturbation. Pnly
the electric-dipole contribution to the target-field
interaction, Eq. (2.17), will be retained here.
[The first two terms in Eq. (2.17) represent mag-
netic-dipole and electric-quadrupole corrections,
as well as corrections of still higher order. ]
For the case of linear polarization the interaction,
call it h', then takes the form

Let us suppose that the initial state of the tar-
get is nondegenerate and, that of the excited final
states of the target to which transitions can take
place in the absence of the field, two of them,
call them ~x,& and ~x, &, are nearly degenerate.
The effect of the field on these two states can be
determined using almost degenerate perturbation
theory. An additional small parameter 5~ = (e, —e, )/
h(d is introduced and the calculation is carried out
to first order only. The dressed-target states
obtained in this way are used to construct the ma-
trix elements f ~ in Eq. (3.22). We shall find
that the sums over the indices m and m which
appear there can then be performed, leading to a
more explicit representation of the transition am-
plitude T8.&

A. Dressed-target states

In the two-dimensional subspace of target states
spanned by g,& and ~X, & the target Hamiltonian can
be represented as H ~ =h ~+Oh ~, where
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h' =i 3 r& ~ A. a- a (4.2) P(n} =2 Id,.„&(d.n I| q(n) = 1 —P(n}, (4. 11)

(hr+Hi, +h') ld, „)=e,„ld,„), i =1,2. (4.3)

In the absence of the perturbation 5h ~ the eigen-
value equation to be solved is

and let ld„) represent an as yet undetermined
linear combination of ld, „) and ld, „). A formal
solution of the eigenvalue equation

We look for a solution in the form

I di ) = g P a ' (i, n) lx, & lm +n&
m=-~ k=1

(4.4)

(hr+bhr+Hi, +h')ID, „)=E,„ID,„.)

is given by

I D;„)=N, „(1+g, (E,„}5k ) I d„),

(4.12)

(4. 13)

subject to the condition

I«.&- Ixi) ln& (4.5)

where N;„ is a normalization constant and g, satis-
fies the resolvent equation

q(n)(E —hr —bhr H~ —h-' }q(n g},(E) =q(n).

a' (i,n) =e ""2[4 (o)+J (o)], k=i

'."(, )=e '""-'[ (o) — (o)],

Here we define

(4.6)

coo'= X ry ~ ~ X (4.7)

(The matrix element on the right is taken to be
real for simplicity. ) The energy eigenvalue is
determined by the requirement that the state vec-
tor be normalizable"; this leads to the result

ei„= ~(e, +e2) +nhiLi.

The orthonormality relations

(4.8)

(4.9)

are readily verified using the integral representa-
tion

2
v' ei ~g -i a sino

7$ (4.10)

along with the closure relation (3.15).
To improve on this lowest-order solution we

follow a standard procedure and introduce the pro-
jection operators

Substituting the expansion (4.4) into the Schrodin-
ger equation (4.3) and projecting onto an arbitrary
basis vector, we obtain a set of coupled recursion

- relations for the expansion coefficients. These
become decoupled when they are reexpressed in
terms of the combinations a ' +a' . By compari-
son with the recursion relations for the Bessel
functions, and after imposing the constraint (4.5),
we readily find

E,„-=-,'(e, +e,}+nhid+-,'(e, —e, )Z,(2a),

E,„=—,'(e, + e, ) +nffid —~(e, —e, )J,(2o) . (4.16)

The normalized state vectors are then determined,
to first order, as

ID „)=—[1+g,(E „)bh,) ld;„) . (4.17)

For the resolvent g, we may use the lowest-order
approximation

2

(4. 18)

A straightforward calculation leads to the result
ie 2

ID;.&= I«.)+ Q Q b'."(i,n}lx~&l~+n&,
m= -~ k=1

(4.19)

with

(4.14)

Equation (4.13) will in fact represent a solution
provided E,„and ld„.) are chosen such that the
condition

{8,„—e,.„—P(n}[5h r+ bhnq, (E,.„}bhr] P(n)] ld„) = 0

(4. 15)

is satisfied.
The preceding formulation may be used to con-

struct a solution in the form of an expansion in
powers of 5h~. Working only to first order we see
from Eq. (4.15) that the level shift is determined
by diagonalizing the matrix (d, „lbh rid, .„&. But the
matrix is diagonal as it stands. Evaluating the
diagonal elements we find

bi i(i,n) =n. , e
'"' ' g —g,(2o)J, „(o)2[1+(-1)], k=i

s~ S

=n. ,e ™I'g—g,(2o)g, (a)-,'[1 —(-1) ], kvi .
sW S (4.20)
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Here s runs over all nonzero integral values and

(e, —e, )/2a&u,

l(e, —e.,)/2ku)) i =2' (4.21)

(4.23)

Since at this point we are working only to lowest
order we may drop the b coefficient in Eq. (4.23).
This leads to the approximation

2

t...= a".' „,s', n' t"e (4.24)
k =1

where

t"=(p' l(xk l[v, + ve G(E) vs]k;& Ip& (4.25)

is the on-shell amplitude for the transition taking
the target from state ly, & to state

leak&

in the ab-
sence of the field. Given this explicit dependence
on the indices m and m' in Eq. (4.22) the sums can
be performed. We are left to evaluate

2Ã d
T = g ~ e' "'~expi[S-(P) —S ()t))]

m' 0
2

X g (4.26)

%'ith the field taken to be linearly polarized, and
with corrections of order P/pc ignored we have

S-()t)) —S,()t)) = p-p. sing,

with

(4.27)

B. Transition amplitude

In lowest order the approximation (3.22) reduces
to

)' -=Q g f " e" "f (0'-)f (0)). . -
m m 0

(4.22}

with t, given by Eq. (3.6), the scalar variables
being fixed by the conditions (3.9). Since the initial
target state lx, ) has been taken to be nondegenerate
we may make the replacement lD (i,n))- lit, &5

in Eq. (3.6), the corrections being of second order.
The final target state l}t,,& is one of a pair of al-
most degenerate states. According to Eqs. (4.4)
and (4.19) we have the approximation

2

lD (i,n )) =+[a') „(i',n )+b~'. „.(i', n )] leak&.

2 2vhe'n') 'I'
ppp'=g k Ik l (p p } {4.28)

Using Eq. (4.6), along with the representation
(4.10) for the Bessel function and the relation
(3.15), the sum over m' can be carried out with

the result

with tang=a/p, and make use of Eq. (4.10) once
again. The result is of the form

2

Tsa=gr" t" (4.31)

where we have defined
2rll —rkk —g ([q +&yk]l/k) cosmp

r~ = rk'=-iJg(q-, +o')'t')sinmiI . (4.32}

The above results, along with the relations

p+ (x) =1 and p~'(x)sin2mp=0, imply the sum
rule

oe 2 2 2 2
Pl'k tkl —Q ltki lk

f'=1 0= 1 k=1
(4.33)

It follows that in this lowest-order approximation
the differential cross section for scattering into
one or the other of the two nearly degenerate
states of the target reduces, when summed over
final states of the field, to the corresponding dif-
ferential cross section for scattering in the ab-
sence of the field. ~

In arriving at Eq. (4.31) we used only the lowest-
order contribution to the dressed-atom state in

Eq. (4.23}. The first-order correction to the ex-
pansion coefficient is given by Eq. (4.20). When
this correction is included we again find the transi-
tion amplitude in the form (4.31) but with Eqs.
(4.32) replaced by

Tk, k= J) e " " ~exPi(Pp p. sin)t)}
0

x [cos(o cos)t))t' ' —t sin(o cosp)t' '],
(4.29)

Jh

where i' = 1 for i =2 and i =2 for i' = 1. To per-
form the )t) integration we write

2p- sin)t)+o cos)t) =(p -, +ok}"'

x (sin)t) cos)l)+cos)t) sing)

(4.30}

r".= r~=Z.((ppp. +v')'") cosmg+d, g J,(2a)Z „{(p—-.+o )'~ )cos[mg+s(g+w/2)],
2 1/2 1

~ S

r~ = I' = iJJ(p .+-o'}'~k)-sinm)I) —iik; g —J,(2o)J „{(pp ~ +a')'")sin[m)t)+s(p+e/2)] .
~~0 S

(4.34)
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k=1

1 at"'
x pkco p +p

ev

—p (p - p) ~ Ik
PP dT

gtkj

8$

(4.35)

[The derivation of this result is straightforward,
based once again on Eqs. (3.15) and (4.10), and the
details are omitted here. ]

The remaining first-order correction terms in
Eq. (3.22) are those proportional to the derivatives
of the t matrix with respect to the scalar variables.
The lowest-order approximation (4.24) suffices
here since the term being calculated is itself of
first order. After performing the sums over m

and m' we arrive at the complete first-order
approximation for this model':

2

In determining the coefficient of St"'/8$' we have
used the identity

(4.36)

which is easily derived from the integral represen-
tation of the I' coefficients [see Eq. (4.29)] by inte-
gration by parts. It is then evident that in the limit
o» 0 the off-shell derivative makes no contribution,
the result (4.35) reducing to the low-frequency ap-
proximation derived previously for the case of
nondegenerate target states. ' '
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