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An iterative static-exchange single-center close-coupling procedure is applied to electron collisions with molecular
ions. The method is taken mutatus mutandus from a procedure used previously to study electron neutral-, molecule

collisions. The procedure is found to be both stable and efficient for calculating static-exchange level wave functions

and eigenphases. The method is applied to electron collisions with H, +, CH, and N, +. In addition, ro-vibrational-

excitation cross sections for e + H, + collisions in the adiabatic nuclei approximation and photoionization cross
sections for H, and N, are reported.

I. INTRODUCTION

The understanding of such processes as photo-
ionization, ' dissociative recombination, 2 and ro-
tational excitation of interstellar species' depends
on a knowledge of electron scattering from molec-
ular ions. While the long-range Coulomb potential
plays an important role in this scattering process,
short-range effects such as exchange and correla-
tion must be included, especially at low energies,
for an accurate treatment of the dynamics. The
scattering of electrons by H2' has received much
attention both for its simplicity and for its relation
to photoionization of H2. Temkin and co-work-
ers " "were the first to include aspects of the
static, exchange, and polarization interactions
for elastic scattering of electrons by H2'. Their
single-center close-coupling calculations were
performed in the static-exchange and polarized
orbital approximations. In the static- exchange
approximation, the target molecule is frozen in
the ground state. No excitations (virtual or real)
are permitted, although full account is taken of the
nonlocal nature of the exchange interaction in the
elastic channel. The polarized orbital method al-
lows relaxation or distortion effects to be in-
cluded through a perturbative scheme. Recently,
Takagi and Nakamura' have included correlation
effects more accurately for e-H2' collisions
through a nonperturbative Kohn variational tech-
nique. The treatment of more complex molecular
ions has been made possible by the quite recent
development of a number of powerful computational
methods such as the iterative and noniterative'
close-coupling, R-matrix, a T-matrix, + and
Schwinger ' and Kohn ' variational techniques.
While these methods have been implemented pri-
marily at the static-exchange level, a few studies
of electronic excitation' ' have been performed.
The noniterative close-coupling method has al-
ready been applied to e-H, + (Ref. 4), N2' (Ref. 4c),

and CH' (Ref. 7) inthe static-exchange approxima-
tion. The results of these calculations have been
employed to calculate photoionization cross sec-
tions and capture widths. Endeavors to extend the
other methods to ionic systems are presently under
way.

In this paper, we extend the iterative close-
coupling method for electron neutral-molecule
collisions to electron scattering from molecular
ions. We take as our starting point the formula-
tion of the method for neutrals as described in an
earlier paper6b (hereafter referred to as Paper I)
and indicate where changes must be made in order
to extend the procedure to molecular ions. This
formulation is presented in Sec. II at the level of
the static-exchange approximation. In Sec. II we
also briefly outline procedures for calculating
vibrational-excitation cross sections in the adia-
batic-nuclei approximation and photoionization
cross sections in the frozen-core approximation.
We apply the method to three molecular ions, H2,
CH', and N2' and present our results in Sec. III.
In addition, we present photoionization cross sec-
tions for H2 and N2 and vibrational-excitation
cross sections for H2'. We reserve Sec. IV for a
summary of our findings.

II. THEORY

A. Static-exchange equations

1. Formulation

All scattering calculations were performed in
the body frame within the fixed-nuclei approxi-
mation. '" In addition, we made the static-ex-
change approximation by which the series expan-
sion of the total system wave function $ in terms
of a set of electronic state 4 of the target mole-
cule is truncated at a single state (the ground
state). The wave function 4 for the N-electron
target molecule is represented by a single de-
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terminant as

4'(ri . rN)= lei(r))' ' ' 4(rz)l (2 1)

with fII), an occupied spin orbital with spatial part
p, &(r) and spin part ~,. The continuum wave func-
tion F is likewise decomposed into spatial F(r~ |)
and spin y„, , parts. The total system wave func-
tion in the static-exchange approximation can then
be represented as

4 =A4F, (2.2)

where A is the antisymmetry operator.
We further choose to represent the collision with

respect to a single center. 4 This is accomplished
by expanding the bound and continuum orbitals in
spherical harmonics about the center-of-mass of
the molecule as

k, '(r)= —
Q

k", '(r')F,
, (r), (2.3a)

F(R)= —$ 1, (R)F,„(R), (2.3b)

(2.5a)

(2.5b)

where we have replaced r„,, with R, the coordi-
nate of the incident electron. We have assumed
implicitly in Eq. (2.3a) that the molecular orbitals
are uniquely labeled by symmetry, [e.g. , m,
=0(o), 1(w)]. In Eq. (2.3b), the orbital angular
momentum l of the incident electron forms a chan-
nel label, which is coupled by the asymmetric
field of the molecule.

Substituting Eq. (2.2) into the Schrodinger equa-
tion, multiplying through by Y& ~ (R)X„',„and in-

tegrating over angular and spin coordinates, we
obtain a set of coupled integro-differential equa-
tions which are block diagonal in m. Thus, in the
fixed-nuclei approximation for target molecular
states of Q symmetry m, the symmetry of the
continuum orbital, becomes a good" quantum
number. This set of coupled equations is formally
of infinite order. To reduce the collision problem
to a tractable form, we impose the close-coupling
approximation by which we truncate the expansions
in Eqs. (2.3}at a finite number of terms, say N&

and N„respectively. The resulting set of order
N, coupled integro-differential equations can be
written in matrix notation as

No

(6 —V)F = P, [ W;(Q(F) + 5 (2e, —k )4(P,.F)] )
i

(2.4)

where

[ W, (dtk .F}].« =-g' P, (R)g„(ll'I "I"imm, .)

YR (Q, -' F) ) I R) 1i 0

k(k, F)-=f . 'k, (r)F(r)dr,
0

(2.5c)

(2.5d)

Ol '

„(Q,-', , ) —= P)-'(r) „. . . (r) dr,
i 0 0

(2.5e)

2. Method of solution

The general method employed to solve an equa-
tion of the form of (2.4} with only local potentials
is the direct outward propagation of the solution
by some standard numerical algorithm. The pres-
ence of a nonlocal term in (2.4) obviates this ap-
proach. We circumvent this problem by solving
the set of coupled equations iteratively. " To
better illustrate this procedure, we represent
equation (2.4) in the following schematic form:

(4 —V)F= W(F), (2.6)

where W now represents all terms on the right-
hand side of equation (2.4). We begin the iterative
procedure with the solution F to Eq. (2.6) with
W=O. We then use F to calculate an approxi-
mate W(F ) which in turn is used in Eq. (2.6) to
derive a new solution F'. The iterative procedure
is continued until cross sections or eigenphase
sums at subsequent iterations agree to within some
specified tolerance &, (e.g. , io(n) —o(n-1)i (k).

with r&(r() the greater (lesser) of R and r, and g„
defined in Ref. 12. The continuum orbital F is a
N, && N, matrix whose rows are labeled by the scat-
tering channels l and whose columns are labeled
by the N, linearly independent solutions. Each
bound orbital is represented by a row vector whose
components are the N,. radial expansion coeffi-
cients. The averaged electrostatic potential ener-
gy for the interaction of an electron with the mole-
cule is given by V„. The two-electron nonlocal
energy-dependent exchange term is represented
by W. The above equations are valid for electron
scattering from either closed- or open-shell tar-
get molecules, whose wave function can be repre-
sented as a single determinant. For the open-
shell case, we assume that only one molecular
orbital is singly occupied. With this caveat, the
variable P,. in Eq. (2.4} has the following form:

r
—1, all doubly occupied orbitals

—1, singly occupied orbitals—

triplet scattering

+1, singly occupied orbitals-
singlet scattering .
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The iteratative method can be summarized as the
solution to the following sequence of equations,

of Lagrange undetermined multipliers (LUM}. At
each iteration we wish to solve an equation of the
form

(6 V)F—=0,
(b —V —V,„)F'= Q Q, X, , (2.9)

(& —V)F = W(FO)

(2.7)

where the sum runs over all bound orbitals of the
same symmetry as F', and where the A, are row
vectors of the LUM components. We find a gen-
eral solution of (2.9) of the form

F'=F. + P,.A (2.10a)

[Fn-1] -1.Fn (2.7')

One can either proceed to solve the inhomogeneous
equations (2.7) directly or one can convert each to
a local form using the identity

such that

(&- V —Vn.')F=0 i (2.10b}

(2.10c)

which is valid for the converged solution. Multi-
plying Eq. (2.7) by Eq. (2.7'), we have

(g )gFn lV(Fn-1) [ iV(Fn-1)[ Fn-1] -1+n

The A,, coefficients can then be determined from
the condition that the continuum orbital F' and
bound orbitals @, of its symmetry be orthogonal:

or (2.8) (2.11)

(g V Vn-1)F n 0

where V,"„'=W(F" )[F" '] '. Equation (2.8) is
exact only at the nth or "converged" iteration.
Thus, ea,ch inhomogeneous equation in (2.7) is
converted to a local one by the procedure in Eq.
(2.8}. We have termed the technique the WF-in-
verse or WFI method. The technique is similar to
one applied by Tully and Berry' to e+ H2 colli-
sions and is described in more detail in Paper I.

For scattering of electrons from closed-shell
neutral molecules, we found that, in the case of
a continuum orbital with the same symmetry as-
the bound orbitals, enforcing orthogonality of
bound and continuum orbitals at each iteration
greatly accelerates the convergence of the itera-
tive procedure. This may be viewed in some sense
as forcing the correct nodal structure on the con-
tinuum orbital. For closed-shell ions and triplet
scatterin from open-shell ions, we find that the
orthogonality procedure implemented for the neu-
trals is equally beneficial in accelerating con-
vergence. The procedure must be modified slight-
ly to treat singlet scattering.

For doublet (triplet) scattering from closed
(open)-shell ions, the solution of the static-ex-
change equations is independent of whether or not
the one-electron terms are included. In other
words, the cross sections calculated from solu-
tions of Eq. (2.4) with or without the (2e, —k')6(g, F)
terms will be equal. Therefore, a solution F' that
is orthogonal to the bound orbitals of its sym-
metry is a valid solution to Eq. (2.4). We gen-
erate this solution at each iteration by the method

(2.12)

where the sum runs over all bound orbitals of the
same symmetry as F'. A general solution of Eq.
(2.12) has the form

F' = E+ P,.A, , (2.13a)

such that

(6 —V —V„)F=0, (2.13b)

for all m,.=m. This orthogonality procedure is
employed as a numerical convenience to accelerate
c0nv0r'glace with iteration. A more detailed dis-
cussion of the orthogonality question can be found
elsewhere. "

For a singlet scattering from an open-shell ion,
the continuum solution is not independent of the
one-electron term arising from the partially filled
molecular orbital. This term must be retained in
some form in order to obtain the correct solution
for the case in which the continuum and singly oc-
cupied bound orbitals have the same symmetry.
For the doubly occupied bound orbitals with the
same symmetry as the continuum solution, the
orthogonality prescription of the previous para-
graph applies. The procedure which ensures the
fastest acceleration of the iterative procedure in
the present case is to force orthogonality to all
doubly occupied orbitals and self-consistency of
the LUM for the one singly occupied orbital. At
the nth iteration, we seek a solution to an equation
of the form
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(a —V —V„)P =p.. , doubly occupied

= (j),. (2&,. —k~), singly occupied.

polar) systems. With this choice of the Coulomb
Green's function, the K matrix may be deter-
mined simply from the relationship

(2.13c) K=I (~)[I (~)] (2.19)
We calculate the X,. terms by the following two
prescriptions depending on whether the. bound
orbital is filled or open:

&((L),F'}=0, (j), doubly occupied,

d. (dt)&F') = X&, Q& singly occupied.

(2.14a)

(2.14b)

These two conditions can be translated into more
convenient computational forms by substituting
Eq. (2.13a) into Eqs. (2.14) to obtain

&(Q,PR)X~= —. a(p, F), dou. bly occupied i,

(2.15a)

g [5» —4(Q~P, )] X~ =+&(dtd~F), singly occupied j ~

F(R) = G (R)I (R) —G (R)I'(R),

with

F(R) = F(R)[I2(~)]

I~(R)=1()»+f G~(r)V(r)R(r)dr,
0

LGi(R) =0.

(2.17)

(2.18a)

(2.18b)

(2,18c)

For neutral systems, we take L=4 of Eq. (2.5a).
The solutions to Eq. (2.18c) are then the spherical
Bessel (G~) and Neumann (G2) functions. For ions,
we add Z/R to L and its negative to V in Eq.
(2.16). The solutions to the new L =&+Z/R are
the regular (G~) and irregular (G~) Coulomb func-
tions. " The lowest-order long-range moment of
V is now the dipole (quadrupole) for polar (non-

(2.15b)

Equations (2.15) are solved simultaneously for
the A., terms.

Before leaving this section, we briefly outline
the algorithms which we employ to solve the
coupled differential equations of (2.10) or (2.13).
More thorough treatments are given elsewhere'
but a condensed formulation will aid in the later
description of the photoionization process.

We solve the set of coupled differential equa-
tions by converting it to a set of coupled integral
equations. We write the differential equations of
Eqs. (2.10) or (2.13) in the general form

(4 —V)F=O, (2.16)

where VF is either (V+ V",„')For (V+ V",„')F
+(f),. A general solution, to Eq. (2.16) can be
written as

We have assumed the F goes asymptotically as
[S(R) +KC (R)]/v k, where [S(R)]„,= sin(kr + fw/2
+ o, )6„and [ C (R)]„.= cos (k R + l v/2 + c,) with o,
the Coulomb phase. Equations (2.17) and (2.18)
are solved with a trapezoidal quadrature. A de-
scription of the numerical techniques employed to
guarantee stable, linearly independent solutions
are discussed in paper I and Ref. 15.

In the close-coupling approximation, we obtain
an accurate, though approximate, solution to the
infinite order set of coupled equations by sys-
tematically increasing the number of terms in the
expansions in Eqs. (2.3) until subsequent values
of the cross section agree to within a specified
tolerance. The number of terms N, or channels
retained in the expansion of the continuum orbital
[ Eq. (2.3a)] determines the order of the coupled
equations and thus the size of the matrix equations
which must be propagated in order to determine
the continuum wave function F [Eq. (2.4)]. In the
single-center expansion the order of the equations
is determined principally by the nuclear com-
ponent of the static potential V„. While the con-
tribution of the high-order partial waves (large l-
value channels) in Eq. (2.3a) to the total cross sec-
tion is small, they are necessary to ensure aa ac-
curate representation of the continuum wave func-
tion in the region of strong coupling near the nu-

clei. The exchange term W, on the other hand,
does not involve such a singularity as is found in
the nuclear interaction, and thus an accurate
representation of this term can be obtained with a
small number of terms in the expansions of both
the continuum and bound wave functions. This is
fortunate since the time to calculate the exchange
terms increases rapidly with addition of channels.
In order to describe the collision calculation, we
define the following parameters:

(1) l = maximum value of the channel label l
needed to converge the continuum orbital F;

(2) n,'" = number of continuum channels included
in the evaluation or the exchange term;

(3) n', "=number . of projects of the ith bound
orbital included in evaluating the exchange term;

(4} X =maximum order of the Legendre expan-
sion of the static potential retained;

(5) r = matching radius.

B. Vibrational excitation

We calculate vibrational- excitation cross sec-
tions for e-H2' collisions in the adiabatic-nuclei
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T(vj —v'j'(= f S,, r. (s(T(sjv„r(s(vs, (2.20)

where X„~ is vibrational wave function for a mole-
cule in vibrational state v and rotational state j.
The ro-vibrational cross sections can then be
calculated from these transformed T-matrix ele-
ments. A more detailed description of the cal-
culational procedures involved in the adiabatic-
nuclei approximation is given by Henry. '~

C. Photoionization

For H2 and N2 we present photoionization cross
sections in the frozen (relaxed) core" and static-
exchange approximations. Since the procedure we
follow to calculate photoionization cross sections
at the equilibrium separation of the neutral system
from the electron- molecule ion static-exchange
continuum wave function closely parallels those
described by Chapman and Raseev, 2' we present
only a brief outline of the method.

The photionization cross section in the dipole
radiation approximation is given by'

rr...= (2.21)
%5 p

where e is the fine-structure constant, h~ is the
energy of the incident photon in Rydbergs, and

p
is the dipole matrix element . The dipole ma-

trix element is labeled by the symmetry m and a
particular linearly independent solution lp of the
continuum orbital, which represents the collision
of an electron with the molecular ion. The ex-
plicit form of this term is given by

approximation. ' The space-fixed frame ro-
vibrational cross sections o(vj —v'j') are obtained
from the body-frame fixed-nuclei K-matrix ele-
ments K„,calculated from the methods discussed
in Section IIA, by a set of transformations. The
transformation for the vibrational excitation in-
volves an integration of the body-frame T -matrix
elements and the initial and final state vibrational
wave functions over internuclear separation. The
rotational transformation simply involves per-
forming angular momentum algebra.

The method may be implemented in the following
manner. First, at each of a set of internuclear
separations [s,.) of the target molecule, we per-
form a body-frame fixed-nuclei static-exchange
electron-scattering calculation which produces a
body-frame K-matrix, K(,, (s,.). We then convert
the body-frame K- matrix to T -matrix elements as

T(s,)= 2iK(s,.)[1—iK(s,.)]

The space-fixed frame T -matrix elements are
then found by

f (R) = 2F (R) (—i 1 +K) (2.23)

where F is given by Eq. (2.18a). The more gen-
eral form of the matrix element in Eq. (2.22)
would be &4„~r ~f4„,), where 4„,is the wave
function for the neutral &, system, f is the wave

function for the electron +&,' collision, and 4„+"2
is the wave function of the molecular ion. The
product fC„v implicitly assumes a fully anti-

2
symmetric final state function. In general, 4A
and 4„~.can be determined from independent
structure calculations which have allowed com-
plete relaxation in each system. In this case, the
dipole matrix element has a more complex form
than in Eq. (2.22) since the orbitals of the neutral
and ion need not be orthonormal. ~' We shall refer
to this formulation as the "relaxed core" approxi-
mation.

In the frozen core approximation, we use the
molecular orbitals of the neutral for the molecular
ion. In this case, the orthonormality of the neutral
and ion orbitals (since they are identical) causes
the dipole matrix element to collapse to the form
in Eq. (2.22). In this form, we need only calculate
dipole integrals over the continuum orbital and the
molecular orbital of the neutral from which the
electron was ionized. The static- exchange ap-
proximation applies to the calculation of the scat-
tering of the electron by the molecular ion. The
procedure for performing this calculation is de-
scribed in Sec. IIA.

For a system which is represented by a single
molecular orbital, for example H2, the relaxed
core approximation assumes a particularly simple
form. We obtain the relaxed core form of the
photoionization cross section in this special case
by replacing the "frozen core" dipole matrix ele-
men«~s, lrlf) by &Cs,~ IC„,,&&C„,lrlf ). »e
fully relaxed neutral and ion H, wave functions are
represented by 4 „and 4„~ respectively. We dis-
tinguish between the two continuum solutions since

~I'( - ~I'(, .&&f((, ~r~@g,.'),
l ~

(2.22)

where Y, is a spherical harmonic, Q, .' is the
radial expansion coefficient of the ith bound orbital
of the neutral system from which an electron is
ionized [see Eq. (2.3a)], the brackets represent
angular and radial integrals, and ff)p is a com-
ponent of the continuum scattering orbital (elec-
tron-molecular ion) with S-matrix boundary con-
ditions and m" takes on the values 0 or +1 de-
pending on the values of m and m, . The continuum
orbital with A-matrix boundary conditions de-
scribed in Sec. IIA can be converted to one with
S-matrix boundary conditions by
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they represent scattering in two different poten-
tials. The frozen core continuum wave furiction
represents scattering from an ionic potential de-
termined by the neutral H2 molecular orbital,
while the relaxed core f' represents scattering
from a potential determined by the molecular
orbital of the H2. ion. We shall investigate the
consequences of these approximations in more de-
tail in Sec. III.

R(a()) STO C; Orbital energy (Ry)

1 40 18' 0.59740
28'' -0.079 54
2~ 0.059 75

1.271 02
1.080 57
1 ~ 815 16

-2.566 255
(-2.568 53) '

TABLE I. LCAO-MO-SCF molecular orbitals of the
X Z~+ ground state of H2' as a function of internuclear
distance. Linear C; and exponential &; coefficients for
18282p STO basis.

HI. RESULTS

A. Electron-H2+ scattering

We present the results of static-exchange cal-
culations for electrons scattering from H2'. These
results are then used in calculations of vibrational
excitation and photoionization cross sections.

2.0 lsd 0.632 45 1.126 44
28(T -0.096 33 0.977 71
2po' 0.070 199 1.550 92

2.60 180' 0.656 92 1.042 66
2'' -0.099 143 0.907 06
2po' 0.075 51 1.360 43

Exact value from Ref. 23.

-2.203 008
(-2.205 25)

-1.949 790
(-1.950 90)

1. Static-exchange calculations

We have performed calculations of the eigen-
phase sum as a function of continuum symmetry,
energy, and internuclear separation for electron-
Hz' collisions in the static-exchange approxima-
tion. The ground X~K,' state of H&' was represented
by the linear combination of atomic orbitals-mole-
ular orbitals-self-consistent-field (LCAO- MO-

SCF) wave function of Cohen and Bardsiey. 22 This
wave function used a 1s2s2p STO basis with full
variation of the linear and exponential coefficients.
The orbital parameters are given in Table I for
three representative internuclear separations:
R=2.0ap, the equilibrium distance of H&', R
=1.4ap, the equilibrium distance of H&, and R
=2.6ap The calculated orbital energies agree
quite well with those from the exact Hz' ground
state wave function of Bates, Ledsham, and
Stewart. m' (See Table I).

We present in Table II (b) the results of a con-
vergence study for e-H2' collisions at R=2.ap for
the sigma symmetries. We also compare our one-
and two-channel4 results with those with no polar-
ization of Temkin and Va,savada" (TV) and Temkin,
Vasavada, Chang, and Silver" (TVCS), using as a
standard our six-channel calculations. The dif-
ferences between the two sets of calculations
arise mainly from the different choice of target
H2' wave functions. In the two-channel case, we
have used a slightly larger expansion of the static
potential (X =4 to X =2) than Temkin et al. Still,
the two sets of calculations are in rather good
agreement, and the predicted trends in the eigen-
phase sums are generally consistent. For the
Q„symmetries, only a modest correction to the
one-channel results is introduced by the addition
of more channels. This is due principally to the
centrifugal barrier terms that appear in all the

scattering channels and that exclude the electron
to some extent from the region of strong coupling
around the proton. For the Q, symmetries, which
have no barriers in the s-wave channel, the ef-
fects of including additional channels are more
pronounced. In all symmetries, the contribution
from the higher partial waves becomes more im-
portant as the collisional energy is increased.
This is due primarily to the deeper penetration
of the higher partial waves. From this table, we
conclude that accurate e-Hz' cross sections can be
obtained only with expansions of the continuum
wave function that are larger than two terms.

We present in Table II(b) the results of e-Hz'
collision calculations at the three internuclear
distances of Table I. The collision parameters
for g(u) symmetries were selected as the follow-
ing: l =10(11), n,'"=3, n&* ——3, A. =2l, r
= 50.0ap. This choice guaranteed a global con-
vergence' to better than 3%. Our results at R
=1.4ap are in good agreement with those of Dutta
et al. ,"who employed an iterative static-exchange
method similar to ours. We do not, however, ob-
tain very close agreement with the results of
Tambe and Ritchie'4'; however, there appears to
be some question as to the accuracy of their
results. ~4~ We have also performed static-ex-
change calculations with the above parameters at
several additional internuclear distances (R
=1.2, 1.6, 1.8, 2.2, 2.4, and 2.8ap) for use in
the vibrational-excitation calculation of Sec. IIIA1.

Z. Vibrational excitation of H&+

We calculated the vibrational-excitation cross
sections for electron-Hz' collisions in the adia-
batic- nuclei approximation by the procedure out-
lined in Sec. IIB. The body-frame K-matrix ele-
ments were calculated in the static-exchange ap-
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TABLE II. (a) Comparison of eigenphase sums for e +H2+ collisions at Req=. 2.0ao. (b)
Electron-H2+ scattering: Static exchange approximation. Eigenphase sum as a function of
energy (Rydberg) and internuclear distance (Bohr).

k' (Ry)
0.01

One channel
TV RC'

(a)
(rad)

Two channel
TVCS RC

Six channel
RC

ig
ig

3g
3g

0.10

ig

3g

3g

1.00

ig
ig

3g

'~u

-0.597
0.318

0.021
1.210

-0.609
0.325

0.00
1.150

-0.632
0.386

-0.148
0.830

L
= 0(1)

ni =1

-0.540
0.352

-0.016
1.110

-0.560
0.357

-0.036
1.063

-0.614
0.4022

-0.192
0.772

-0.356

0.243

-0.373

0.247

-0.404

0.255

= 2(3)

nf
ex

nc

-0.399
0.314

0.190
1.381

-0.417
0.330

0.186
1.328

-0.431
0.466

0 ~ 155
1.011
1.000

-0.357
0.349

0.237
1.431

-0.368
0.371

0.241
1.383

-0.346
0.534

0.257
1.084
1.000

I, = 10(11)

ni 3

ex
C

~(~0) E' (Ry)

(b)
&IIIII (rad)

iil, 'il„

1.4

2.0

2.6

0.01
0.09
0.25
0.49
0.81

0.01
0.09
0.25
0.49
0.81

0.01
0.09
0.25
0.49
0.81

-0.1631
-0.1757
-0.1938
-0.2071
-0.2098

-0.3569
-0.3682
-0.3807
-0.3806
-0.3619

-0 ~ 5071
-0.5149
-0.5172
-0.4969
-0.4479

0.1404
0.1530
0.1804
0.2231
0.2758

0.3490
0.3712
0.4134
0.4663
0.5150

0 ~ 5144
0.5380
0.5758
0.6112
0.6295

0.0235
0.0243
0.0248
0.0254
0.0272

0.0450
0.0467
0.0482
0.0507
0.0558

0.0681
0.0701
0.0720
0.0757
0.0832

-0.2479
-0.2444
-0.2386
-0.2282
-0.2121

-0.3488
-0.3397
-0.3257
-0.3055
-0.2791

-0.4430
-0.4272
-0.4036
-0.3728
-0.3364

0.3997
0.3949
0.3852
0.3712
0.3546

0.2368
0.2407
0.2464
0.2517
0.2557

0.1409
0.1599
0.1908
0.2240
0.2524

1.1116
1.0842
1.0392
0 ~ 9881
0.9381

1.4313
1.3828
1.3028
1.2125
1.1250

1.5425
1.4832
1.3848
1.2757
1.1661

0.048 13
0.056 2
0.070 3
0.088 7
0.108 8

0.091 7
0.105 8
0.1210
0.156 5
0.183 5

0.146 5
0.166 7
0.197 9
0.230 8
0.258 7

0.2100
0.2128
0.2128
0.2079
0.1986

0.1537
0.1563
0.1537
0.1451
0.1332

0.0762
0.0806
0.0791
0.0722
0.0636

Temkin and Vasavada, Ref. 4a.
This work.
Temkin et aE. , Ref. 4b.

proximation (see Sec. III A 1) at nine internuclear
distances (1.2 & R & 2.8 in increments of 0.2ao).
The vibrational wave functions were calculated in
the H~' potential-energy curve given by the SCF
X Z, wave function described in Sec. GIA1. The
energy splittings of the lowest few vibrational

states for this potential were found to be r E(v
=0-1)=2185.27 cm ' and OE(v =0 —2) 4247.79
cm '. The cross sections were calculated using
the code VIBAD' from the Computer Physics
Communications library. The singlet (o') and
triplet (o') cases were calculated separately, and
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TABLE III. Vibrational-excitation cross sections
&(v0 V'0) for e-H2+ collisions.

0 (Hy)

o(00 10) (A. )
Singlet Triplet

0.04
0.09
0.16
0.25
0.36
0.49
0.64
1.00

0.6559
0.3637
0.2169
0.1416
0.0983
0.0712
0.0533
0.0326

0.8014
0.4428
0.2646
0.1749
0.1244
0.0936
0.0735
0.0495

a spin-averaged cross section determined by (o

+3o')/4. All Z, II, b, g, and u symmetries were
included from the continuum functions.

In Table III, we present vibrational-excitation
cross sections for singlet and triplet scattering
for the v=0 to v'=1, hj =0, transition as a func-
tion of the energy of the incident electron. A more
extensive set of 4v=1 spin-averaged cross sec-
tions is presented in Fig. 1. The results for the
&v =1 cross sections are in qualitative agreement
with an earlier Coulomb-Born calculation. ~~ In
addition, the spin-averaged j=0 to j=2 (4v =0)
rotational-excitation cross sections agree to with-
in ten percent with those of Chang and Temkin.
The differences probably arise from the larger
number of terms retained in the continuum and
bound orbital expansions in the present calcula-
tions. We note that for para- and ortho-H~' 4v =1
transitions, the cross sections for 4j =0 are a
factor of two to four larger than those for 4j =2.
In addition, the b v = 1 transitions from v = 1 are
a factor of two larger than those originating from
v =0. This behavior is observed in the Born ap-
proximation vibration-excitation cross section
which scales as v+1. The &v =2 transition cross
sections are down by an order of magnitude from
those for 4v =1. Finally, we note that prelimi-
nary calculations with our iterative-exchange elec-
tronic excitation program support earlier find-
ings '" that the region from a few tenths to one
Rydberg is sprinkled with a number of narrow
Feshbach resonances which will to some extent
affect the vibrational- excitation cross section.
These resonances, which have been most recently
examined by Takagi and Nakamara, ~ do not appear
in our present static-exchange calculations since
no allowance has been made for correlation
and multistate effects. We leave the quan-
titative findings of our multiple-state close-
coupling calculations from this study to a later
paper. ~7a

I.OO

0.80—

0.60—
~g

O. IO -—

0.00 I I I I

0.00 0.IO 0.20 0.30 0.40 0.50 0.60 0.70
k' (Ryi

FIG. 1. Spin-averaged vibrationa1-excitation cross
sections 0+-v'j) for electron-H2+ collisions in the
static-exchange approximation.

3. Photoionization of H&

As a test of our photoionization program, we
applied. it to two atomic systems, H and He. For
photoionization of the 1s state of H, we obtain
excellent agreement with the analytical expres-
sion given by Sobelman. 28 For the photoionization
of the ground state of He, we compare against the
results of Lucchese and McKoy. 29 We apply the
frozen-core approximation using the Hartree-Fock
He orbital of Clementi for both the neutral and
ionic systems. The scattering calculation for
e-He' was performed in the static-exchange ap-
proximation. We obtain photoionization cross sec-
tions of 7.75 and 5.84 Mb at photon energies of
24.75 and 30.6 eV (ionization potential (IP)
=0.9034 hartrees) respectively, while Lucchese
and McKoy report values of 7.59 and 5.76 Mb at
the corresponding energies. The differences can
probably be attributed to the use of fully relaxed
He and He' wave functions by Lucchese and McKoy
and of the frozen-core approximation in our case.

We calculated photoionization cross sections for
ground-state molecular hydrogen (Hm 'Z') in the
frozen and relaxed core and static-exchange and
Coulomb wave collisional approximations. The
results of these calculations are summarized in
Table IV. All calculations employed the Fraga and



2482 W. D. ROBB AND L. A. COLLINS 22

TABLE IV. Total photoionization cross sections for
H2 in megabarns (Mb): Comparison of various approxi-
mations.

Approximation Photon energy (eV)

Frozen Core
Relaxed Core

1g2g2p/c
lg2g2p/SE
1s/SE

Dutta et cQ.

20
8.252

6.816
7 ~ 738
8 ~ 103
8.213

30
2.850

2.523
3.006
3.046
3.176

40
1.201

1 ~ 183
1.375
1.344
1.421

All approximations employ the SCF &~ H2 neutral
ground-state wave function of Fraga and Ransil for @~2.

b
4~2+ = Fraga-Ransil H2 wave function; static-exchange

collision.
4~2+ = Cohen-Bardsley H2 wave function of Table I,

Coulomb collision.
4~2+ = Cohen-Bardsley H2' wave function; static-ex-

change collision.
@'~2+ =Dutta et C. H2+ wave function, static-exchange

collision.

two calculat;ions arise from this slight difference
in the neutral wave functions and the choice of
convergence parameters. For all e-H2' collisions,
we used l =7, n,"=2, n,"=2, A. =14, and r
= 50.a,. Dutta, Chapman, and Hayes included
channels with l less than or equal to 5. We com-
pare the relaxed core-Coulomb wave results with
those of Ford et al.3' These authors used a multi-
configurational representation of the H2 and H2'

systems. At a photon wavelength of 584 A (21.24
eV), they report a total photoionization cross sec-
tion of 6.82 Mb, while we calculate for our single
configuration target functions a value of 6.80 Mb
at 20 eV. This agreement is to some extent
fortuitous as at higher photon energies our single-
configuration results are lower by a factor of 20%%up.

We note that the effects of relaxing the core, of
accurately representing the continuum wave func-
tion, and of improving the accuracy of the molecu-
lar ion wave function are most pronounced near
threshold. As the photon energy increases, these
various effects become less important.

Ransil" LCAO-MO-SCF X'Z, ground state H, wave
function at R=1.4ap to represent the neutral sys-
tem (4a,). In the frozen-core approximation, we
use this neutral wave function to represent the
molecular orbital of the ion. In calculating the
scattering potential for the electron-ion interac-
tion, we remove one electron from the neutral
orbital so that the static potential will approach
the correct asymptotic limit (—I/R). For the re-
laxed core case, we use two different wave func-
tions to represent the molecular ion (4„,). The
first is the LCAO-MO-SCF function of Cohen and
Bardsley given in Table I at R=1.4ap. This func-
tion consists of a 1s2s2p STO basis. For compari-
son, we also use the orbital of Dutta et al."which
is formed from a single 1s STO basis. Finally,
we employ two approximations to the calculation of
the continuum orbital which describes the e-H2'
collision. The first is the static-exchange (SE)
approximation which is described in Secs. II and
IIIA1. As another approximation, we represent
the continuum orbital as a Coulomb wave (CW).
We thus allow only for the distortion effects of the
long-range contributions from the full molecular
potential.

We compare our calculations with those of other
authors. The relaxed core calculation using the
H2 1s STO function is identical with that of Dutta
et al."except in the representation of the H&

neutral function. Both employ a 1s2s2p STO basis
but use slightly different exponents. The Fraga
and Ransil X'Z,' function has a total energy of
—1.13349 hartrees while that of Dutta et al. yields
—1.133 23 hartrees. The slight differences in the

TABLE V. Electron-CH+ collisions in the static-ex-
change approximation: eigenphase sums as a function of
energy for & and & scattering symmetries.

a' (Ry)
(rad)

Z
mod (7()

0.01
0.05
0.10
0.20
0.40
0.60
0.80
1.00

2.5300
g.5474
2.5615
2.5691
2.5375
2.4649
2.3880
2.3113

1.8562
1.8548
1.8583
1.8619
1.8732
1.8811
1.8882
1.8936

n~ /n~ 3

r (at))

3/3

32

3/3

32

B. Electron-CH+ collisions

We have performed static- exchange calculations
for electron scattering from CH'. We use the
LCAO-MO-SCF X'&' ground-state wave function
of Cade and Huo at an equilibrium distance of
2.137 ap. The dipole and quadrupole moments
produced by the charge density of this wave func-
tion are 0.756 and 0.281 a.u. , respectively. The
collision calculations were performed at a number
of energies with the following parameters for Z(II)
scattering symmetry: l =6, n'," =3, n&" 3

—3, X

=2l, and r =32a,. Orthogonality to all three
bound orbitals was enforced in the Z scattering
symmetry. The results are in good agreement
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l0.0—

ionization potential was taken, according to Koop-
man's theorem, to be the 3a, orbital energy. In
Fig. 2, we present the total photoionization cross
section of N2 as a function of the energy of the
ionized electron. The results are in excellent
agreement with those of Raseev et al. m'

IV. SUMMARY

0.0
0.0

I

0.5 I.O

Energy Of Electron ( Ry )

l. 5

FIG. 2. Total and partial photoionization cross sections
for N2 in the frozen core and static-exchange approxima-
tions.

with those of Raseev et al. ' for the II symmetry.
This choice of parameters guaranteed eigenphase
sums globally converged to better than 10%. We
present the-eigenphase sums for the Z and II sym-
metries as a function of energy in Table V. Raseev
et al. get a II eigenphase 1.82 compared to our
1.85, at 0.00735 eV.

C. Photoionization of N2

We have calculated cross sections for the photo-
ionization of N2 from the valence 30, orbital in the
frozen core and static-exchange approximations.
The N2 X'3,' ground-state LCAO-MO-SCF wave
function of Nesbet was used. The same orbitals
were used to describe the Nz' system with one
electron removed from the 3o, orbital. The elec-
tron-N2' calculation was performed in the static-
exchange approximation for the 'Z„and 'II„sym-
metries, the only two symmetries coupled to the
3o, orbital by the dipole term of the radiation
field. The parameters used in the collision cal-
culation were as follows: l =13, n,'"=2, nf
= 2, X =2l, and r = 85a,. We enforced ortho-
gonality of the 'Z„and 'II„continuum orbitals to
the bound orbitals of the same symmetry. The

We have presented a prescription for extending
an iterative static-exchange single-center method
for electron scattering from neutral molecules to
electron-molecular ion collisions. The procedure
is found to be both stable and fast, requiring less
than five iterations in most cases to obtain cross
sections converged to better than three significant
figures. For molecular ions, we found that the
WF- inverse procedure, by which the inhomo-
geneous exchange term is converted, at each
iteration, to a local potential by dividing through
by the continuum orbital of the previous iteration,
is the most stable and efficient. For cases in
which there are bound orbitals of the same sym-
metry as the continuum function, we find, as with
the neutrals, that the iterative procedure can be
accelerated by forcing these orbitals to be ortho-
gonal. To demonstrate the efficiecy of the tech-
nique, we have applied it to electron collisions
with H2', CH', and Nz'. In particular, we have
calculated vibrational- excitation cross sections
for e-H2' collisions and photoionization cross sec-
tions for H2 and N2.
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