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The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We
studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes
excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms
with Z (18.The calculations are based on atomic form factors and incoherent scattering functions found in the
literature. The relative contribution of each class of collision processes to the total collision cross section is examined
in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for
large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental
literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are
compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements
of atom-atom and ion-atom collision cross sections.

I. INTRODUCTION

When two complex atomic particles collide at a
high relative speed there are a large variety of
processes that can take place. For collisions in-
volving two hydrogen atoms, Bates and Griffing'
initiated a study of the various processes within
the first Born approximation. Many other pro-
cesses have been examined in subsequent work
based largely on their formalism, as reviewed by
Bell and Kingston. 2 In general, however, only the
simpler atomic systems have been treated in detail,
and little effort has been devoted to elucidating
broad systematic features of atom-atom cross
sections. We report here an initial undertaking
toward that goal. It follows up several other re-
cent studies that have been devoted in part to
the establishment of systematics of the relative
importance of various phenomena relevant to fast
ion-atom collisions.

Because there are a large number of possible
final states which need to be addressed, it is use-
ful to separate the processes into a few broad
categories. For example, in the simpler case of
electron-atom collisions, the various processes
may be classified according to the transitions of
the target atom alone, and the separation into
elastic and total inelastic collisions provides a
convenient partition. 7 For collisions involving two
complex atomic particles the diversity of the pos-
sible processes increases correspondingly. Inthis
paper we use a simple classification of the atomic
processes according to whether either of the colli-
sion partners becomes excited or not. We thus

consider four general classes of atom-atom cross
sections and our approach is similar in spirit to
other recent work primarily devoted to ion-atom
collisions. ' ' In the Born approximation at suf-
ficiently high speeds, each of these cross sections
o behave asymptotically as v 2, where v is the
relative speed. The collision strengths, which are
the same as v2cr to within a numerical factor, are
thus constants and provide a compact means of
comparing the relative importance of the various
processes.

Section II provides the general theory for the
cross sections and describes the numerical cal-
culations. A concise tabulation of the collision
strengths is included there. A comprehensive
discussion of the systematics of the collision
strengths is presented in Sec. III. Several exam-
ples are examined in detail and some results are
compared with relevant experimental data. The
question of the anticipated domain of validity of
the collision strengths calculated in this work is
treated in that section as well. Finally in Sec. IV
we present some concluding remarks and offer
some suggestions for future work in measure-
ments of atom-atom or ion-atom collision cross
sections.

II. THEORY AND NUMERICAL CALCULATIONS

A. General theory

Let us consider a collision of two neutral atoms
A and B initially in their ground (electronic)
states. The total energy of the Coulomb interac-
tions between A and h is written as
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2
v=z„z,e'z-'- z„e' IR+r, I-'

=i

where R is the distance from the A nucleus to the
B nucleus, r~ is the position of the jth electron
relative to the A nucleus, and r~ is the position of
the kth electron relative to the B nucleus. By use
of the Fourier integral, we may write Vas

2
p=(2 2) 'er Jdqq (Z„Z exp(-iq R) —Z„exp[ —iq (R+r, )]

k= i
Z Z Z

—Z, e p[ —iq (R —r, )] + exp[ —(0 [,—,+R)]).
=i

(2)

In this representation, each term in V may be
regarded as a product of functions of the form
exp(iq r&), exp(iq r~), or exp(aiq R).

Suppose that, after the collision, A emerges in
state m and B in state n, where m or n may repre-
sent the ground state or any of the excited states,
either discrete or continuum. We assume further
that the relative speed v of the colliding partners
is sufficiently great so that the first-order per-
turbation theory '(i.e. , the first Born approxima-
tion) is applicable. The domain of validity of this
treatment depends upon the nature of m and n as
well as upon the species A and B. We defer full
discussion about the validity to Sec. GIF. Within
the first Born approximation, the cross section
cr for the collision

A+B -A +B„,
is expressed in terms of the matrix element of V

taken between combined atomic states. By virtue
of the product property of Eq. (2) noted earlier,
the matrix element takes a product form. Spe-
cifically, the differential cross section do „is
given as

«~R =4 va0 (vo/v)'
I E.(K} I

'
I E.(K) I

'(I(«0)'/(«o)',
(4)

v][here ao g2/m, e2 =——0.529 x 10 8 cm and vo = h /
e~ = c/137 = 2.188x 10' cm/sec. The factor (v,/v)'
may be expressed as

( / )'=Ry/T, (5

in terms of the Rydberg energy Ry=m, e4/2h2

=13.6 eV and of the symbol T = —,'m, v2, m, being
the electron mass used in Ref. 7. Further, AK

represents the momentum transfer in the colli-
sion, and its magnitude is given by

(Ka0)2 = 2 (M/m, ) (T/Ry)

x [ I —mQ/2MT —(1 —m+/MT)' 2 cos8],

(6}

where M is the reduced mass of the colliding part-

ners, 8 is the scattering angle measured in the
center-of-mass frame, and E is the sum of elec-
tronic excitation energies E and E„ in A and h,
respectively.

Most importantly, F (K) is the matrix element
between states of atom A:

Z

P (Z)=( Z„— exp(iR. rr) 0),

which we shall call the form factors. Similarly,
Zg

( P)=Z( Z —g exp('R r ) 0). (8)

Notice that E (K) is a property of A only and

F„(K) is a property of B only. To keep track of
this distinction, we stipulate throughout that suf-
fixes m and j always refer to atom A, and suf-
fices n and k to atom B.

We also note that F 0(K} is the Fourier trans-
form of the charge density of atom A. For this
case in which the final state is the same as the
initial state, the elastic form factors are simply
related to the well-known atomic form factor
E(K), e.g. ,

E 0(K) = Z„—F(K)„.
For brevity of presentation, the present dis-

cussion will be restricted to nonrelativistic speeds
v «c. Extension to mildly relativistic speeds is
entirely straightforward and is virtually an exer-
cise in kinematics, as it is so in the Bethe theory
for structureless charged particles. ' At extreme-
ly relativistic speeds, radiative effects such as
coupling with bremsstrahlung will become appre-
ciable and the Fermi: density effect will be non-
negligible.

It is possible to integrate Eq. (4) formally over
all possible values for (Ka, )~ (or alternatively,
over all scattering angles 8) and thus to derive a
compact formula for the integrated cross section
o „for high v. For this purpose, it is important
to note the behavior of the form factor at small
K. The familiar Taylor expansion leads to
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Fo(K) = —,'(Kao)'(X'&, —~~ (Ka,)'(X'&, + ~ ~ (10)

for neutral atoms, and

F ~ o(K) =—i(Kao) (X) + (Kao)o(Xo&

+& i(Kao)'(Xo& —&(Kao)4(Xo& +

—
~ Z(Zs(m, /M) (Ry/T), because at large K the

form factor behaves as Z„or g~. We define the
collision strength as

I.i, ~( ~ &-=oo( ~ ) =( /Ry)(coo/8vaoo), (18)

and obtain to a good approximation at high speeds

where

with

(12)

f., „,(a, a) = IF. ,(K) I'IF„,(K)l'
0

no a o

Singly inelastic collisions (classes (2) and (3)I

(17)

X~ ——(K. r~)/Kao . (13)
I

Similar equations hold for F„(K) as well.
The meaning of the labels m and n for the elec-

tronic states of the atoms requires further clarifi-
cation. In what follows, we assume that the atoms
in the initial states are either spherical or ran-
domly oriented. We also imply by the label m or
n that the customary summation over magnetic
quantum numbers of the atomic final state is to be
taken. In summary we assume rotational sym-
metry for the states designated by m or n. Under
this stipulation, the squared absolute value of each
form factor is an even function of the scalar
variable K. We have tacitly used the stipulation
already when we write Eq. (4), in which only
scalar K appears.

We now distinguish four classes of collisions:
(1) elastic collisions, i.e. , m =0 and n =0, (2)
singly inelastic collisions, i.e., m =0 and nw0,
(3) singly inelastic collisions of another kind, i.e. ,
mv0 and n=0, (4) doubly inelastic collisions,
i.e. , mc0 and nc0. Let us treat each class in
some detail.

Elastic collisions Iclass (1)J

Let us discuss the case in which m g 0 and n =0.
The total cross section is given as

R max d 2

+min p

(18)

The lower limit of the integration is now non-
vanishing, it has the value

(K,„ao)o= (Eo/4 RyT)[1+ —,'(m, E /MT)

+ O(m, E /MT)o],

i.e. , exactly the same as the value for inelastic
collisions of A with a structureless particle [ Eq.
(2.17) of Inokuti ]. Simila. rly, the upper limit is
given by

(K ao)o =4(T/Ry)(M/m, )o

x [1—,'(m, E /MT) +—O((m,E /MT)o)].

(20)

From Eqs. (10) and (11), we immediately find
that the integrand is analytic for K~O. Generally
(K„,„ao)1 is'a small number (see, however, the
second. paper under Ref. 4) and (K ~o)' is a large
number. The integral may be written as

The total collision cross section is given as
2

2 Ry
o'00 —4 rap—

0

(14)
0

The lower limit of the integration is zero for
elastic collisions. The upper limit is given by

The first contribution is independent of T and is
dominant. The second contribution may be esti-
mated by use of Eqs. (10) and (11); it roughly
amounts to

(K ~o)o=4(M/m, )o(T/Ry), (15)

which is a large number because M/m, »1. The
integrand is analytic for (Ka, )'& 0. Thus, we may
write the integral as

0 ~maxa0)
2'

The first contribution is obviously independent
of T. The second contribution is approximately

—8 X X p +r: in&p)
0

= m' l(X&~ I'l(X'&o I'E'/RyT (21)

To estimate the third contribution, one recalls the
high-K behavior of the form factors

I
F (K) I

' = O((Kao) ), (22)

IF.= o(K) I

o= Z~+ O((Ka, &-4), (23)

as given by Rau and Fano. ~ Therefore the third
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contribution is only O((It' ~()) ~) and utterly neg-
ligible.

Consequently, we write the collision strength

I p (A, B)= (T /Ry(a c /8wag

F K2F . 24

the limits of the integrations are

(K.;.a,)'= [(E.+E.)'/4RyT]

x [1+Em, (E +E„)/MT

+ O((m, (E +E„)/MT)2)]

and

(28)

Notice that the quantity i F„(()K)
~

2 here plays the
role of an effective charge on atom 8, which
causes excitation of atom A. At small values of
Ka, (which corresponds to large impact param-
eters), the effective charge is negligbly small be-
cause of the screening of atomic electrons in 8.
For this reason, the collision strength lacks a
lnT term, which is familiar in the collision
strength for excitation by charged structureless
particles. Indeed, when B is an ion of either
charge having an electronic structure, a lnT term
arises and ultimately at high T dominates the col-
lision strength, as seen in Refs. 3 and 4.

The sum of v 0 over all m w0 may be called the
total cross section c,„„for collisions of class (2).
The method of Inokuti, Kim, and Platzman" may
be readily extended4 to the evaluation of o;„„,.
The ba.sis of this method is the sum rule

F = expiK r&

(If' ao)2=4(T/Ry)(M/m, )[1+0(m,(E +E„)/MT)] .
(29)

Because of Eq. (11), both form factors behave as
Ka0 for small Ka0, and therefore the integrand is
analytic for (Ka())2~ 0.

Analysis along the same lines as for singly
inelastic collision leads to

QO d
g =4ma0 — F E 4

+O((E +E„) /RST„)). (30)

The summation of v „over all m+0 and ng0 pro-
ceeds as before. The result is expressed as
o

~
and I . (A, B), given by

I, (A, B)= (T/Ry)(o, . /8wap2)

= (T/Ry) g (o g8wa(~))
mSO n

exp iK. r& (25)

d a())
~A incSA()ZBSinc, B( )

(Ka JS
0

obtained by the well-known closure relation,
where ( ) denotes a ground-state expectation value.
The entity on the right-hand side of Eq. (25) is
well known in x-ray physics;. it corresponds to the
quantity Z„S.„„(K), i.e., Z„multiplied by the
incoherent scattering function of atom A.

The summation of c,(A, B) is straightforward
by use of Eq. (25). We have

I „(A,B)= (T/Ry)(o, „„/8wap~).

=f E„S,„(E)i~F,(E)i'
0

(26)

The case in which m = 0 and n w 0 requires no new

treatment; one obtains all results by interchanging
m and n in the above treatment.

Doubly inelastic collisions Iclass (4)J

For this last case, the cross section for a fixed
set of labels m and n is given as

0 „=4ma0~ —" F K) ~ F„~ 4
Ofmlnao)

(27)

The corrections to the right-most expression
amount to O(Z„Zs Ry/T). A precise estimate is
given in Refs. 3 and 4. It should also be men-
tioned that additional corrections to these asymp-
totic collision strengths can arise from electron
exchange, Bethe ridge effects, 4' as well as non-
Born contributions to the cross sections (e.g. ,
polarization or distortion).

The principal numerica, l task of this work is the
evaluation of the momentum-transfer integrals
given by Eqs. (17), (26), and (31). Notice that the
integrands depend only on ground-state properties
of the atoms: the incoherent scattering functions
S. , (K), and the atomic form factors F(K) [via
Eq. (9)]. These functions have been studied by
many authors (see Ref. 11, for example). Since
only ground-state wave functions are required,
both S,(K) and F(K) have been calculated with
some precision for many atoms, and we can an-
ticipate that the asymptotic collision strengths de-
scribed in the next section %ill reflect this pre-
cision. Finally, remarks on collisions between
two hydrogenic systems are given in Ref. 3, and
a summary of that discussion is presented in the
Appendix.
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B. Numerical calculations

Fo(K) =FO(0) (Kao)

gS», (K) =M~», (Kao)2.

(32)

(33)

Both coefficients appearing in Eqs. (32)—(33) may
be calculated from ground-state expectation
values:

Fo (0) = ~(X ) =6 (34)

Inokuti et al. ' have given a comprehensive sum-
mary of results for M~~„, and values of Fo(0) for
Hartree-Fock wave functions may be obtained
from Fischer's tabulation of (r2) values. " Our
calculations used values for these parameters
which were estimated directly from the tabulated
form factors and incoherent scattering functions

For the calculation of the collision strengths, we
have used extensive tabulations of atomic form
factors and incoherent scattering functions given
by other workers, and it is necessary to include a
few comments regarding our choice of tabulations.
One goal of this work is to provide as accurate a
set of collision strengths as possible. However,
our primary aim was to examine the systematics
of the collision strengths, which necessitates that
results from one atom to the next be comparable
on a relative basis. Because the level of sophisti-
cation of the ground-state wave functions utilized
by others in their calculations of F(K) and S;„,(K)
generally decreases with increasing Z, these two
aims are not always compatible and some com-
promises have been made. Generally we adopted
as a starting point the tabluations given by Hubbell
et al'. ,

" and supplemented it with results based on
more accurate atomic wave functions when avail-
able. Their results for all atoms are given on a
common grid of momentum transfer, which aids in
carrying out numerical integrations with high rela-
tive accuracy. For atoms lighter than nitrogen,
that tabulation is based primarily on the work of
Brown, ' who used wave functions including con-
figuration interactions. The remainder of that
tabulation which we have used (Z ~ 18) is based
primarily on the work of Cromer and Mann, ' who
used Hartree- Fock wave functions. Additional
tables we used are the configuration-interaction
results for C 'I', N'S', 0 'I', and Ne '& given by
Tanaka and Sasaki, '4 and the results of Naon et
al. ,

"for Ar.
In carrying out the numerical integrations in

Eqs. (17), (26), and (31), we have fit the data at
low momentum transfer [ (Ka, ) & 0.1] according to
the limiting forms

according to Eqs. (32) and (33). For complete-
ness we give these adopted values in Table I,
together with appropriate results from other
sources. 6'" There are several differences be-
tween comparable cases which may be noted, par-
ticularly for Na, Mg, and Al. However, these
discrepancies have only a small impact on our
collision strength calculations. For example,
the largest differences in both M,'„, and Fo(0) are
for Na, where the discrepancies are about 3%.
However, the Na-Na collision strengths I„„and
I„, are unchanged, while I,„ is increased by
less than 0.4% if the larger values of M„, and
Fo(0) are utilized in the low momentum transfer
region. Since the numerical integrations have an
absolute accuracy of about 1'P&, improvements in
these parameters will have a negligible effect on
our results.

C. Summary of numerical results
/

In Table II we summarize the results for the
elastic (I„„)and doubly inelastic (I;„)collision
strengths based on the tabulations of Hubbell et
al. " Because of the symmetry of I„„(orI )
under the interchange of collision partners, only
an upper (or lower) triangular matrix is required
in order to specify all possibilities. Table II is a
superposition of such an upper triangular matrix
for values of I„„,and a lower triangular matrix
for values of I,.„- . For example, for the fully
elastic collision process

C(g) + Ne(g) —C(g) + Ne(g),

one obtains I„„=113(from row 6 and column
10). For the doubly inelastic collision

C(g) + Ne(g) —C(Z) + Ne(5'),

one gets I;„;„=8.25 (from row 10 and column 6).
Similarly for collisions between identical atoms
the upper diagonal gives I„„and the lower di-
agonal I-

Table III gives the corresponding results for
the singly inelastic collision strengths (I„,„). In
Table III the ordered pair subscript notation is
chosen such that atoms labeled vertically corre-
spond to the first subscript on the collision
strength, while the horizontal labels are to be as-
sociated with the second subscript. For example,
the collision strength I„,~ for the process

C(g) + Ne(g) —C (g) + Ne(Z),

(from the 6th row and 10th column of Table ill) is
22.7. On the other hand, for the process in which
the Ne atom remains in the ground state, but the
C is either collisionally excited or ionized, i.e.,

Ne(g) +C(g) —Ne(g) +C(~),
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TABLE I. Adopted values of M~& and Fo(0) for the low-Kao behavior of Fo(K) and Sj,g)
based on the tabulations of Hubbe11 et ul. For comparison, M~~ results from Inokuti et al.
and values of Fo(0) determined from Fischer's data are also given.

Atom

H

He
Li
Be
B
C
N

0
F
Ne
Na

Mg
Al
Si
P
S
C1
Ar

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1IPf~g

(Adopted) '

1
0.7525
6.00
3.96
3.52
2.94
2.92
2.53
2.25
2.02
7.97
8.99
8.74
7.91
7.17
6.51
5.90
5.42

M~o~
2

(Inokuti) b

1
0.7525
6.037 (CI)
4.046 (CI)
3.544 (CI)
2.953 (CI)
2.947 (HF)
2.550 (HF)
2.257 (HF)
2.024 (HF)
8.206 (HF)
9.190 (HF)
8.896 (HF)
8.036 (HF)
7.227 (HF)
6.543 (HF)
5.966 (HF)
5.477 (HF)

Fo(0)
(Adopted) '

0.5
0.402
3.06
2.71
2.59
2.30
2.08
1.87
1.70
1.56
4.39
4.87
5.49
5.39
5.12
4.84
4.59
4.31

F() (0)
(Fischer) '

0.5
0.3978
3.105 (HF)
2.886 (HF)
2.642 (HF)
2.299 (HF)
2.014 (HF)
1.861 (HF)
1.706 (HF)
1.562 (HF)
4.256 (HF)
4.935 (HF)
5.579 (HF)
5.377 (HF)
5.046 (HF)
4.860 (HF)
4.605 (HF)
4.339 (HF)

Based on low-%&0 tabulations of Ref. 11.
From Table I of Ref. 16: CI values for Li through C, HF values for N through Ar.

c These are obtained by using Eo(0)

=gpss=

&
(O(~r&(0), with rt, values from H, analytic, He-

Ar, Ref. 17.

the collision strength is 29.5 (from the 10th row

and 6th column).
Finally in this section we include Tables IV and

V, which give a subset of collision strengths for
the atoms 2=6—10 and 18, based on atomic form
factors and incoherent scattering functions of
Tanaka and Sasaki, ' and Naon et al." Since the
wave functions used by these authors include cor-
relation effects, these collision strengths provide
a basis upon which to examine the accuracy of the
results in Tables II and III for Z ~ 7, which are
based on Hartree-Fock wave functions. The im-

portance of configuration interactions in accurate-
ly describing the incoherent scattering function of
atoms (-20'%%uo at low Z) has been pointed out by
various authors. " " Likewise, the relative in-
sensitivity (&5%%uo) of the atomic form factor to
such effects has been discussed frequently. " "
We anticipate then that the doubly inelastic colli-
sion strengths will display the largest variations
in going from HF to CI wave functions (decreasing
in general), with I„„and I,&, ,&

showing in-
creasingly smaller variations. A quick compari-
son of the collision strengths in Tables II-V veri-
fies this expectation; we shall discuss these dif-
ferences in more detail in later sections.

As indicated previously, the accuracy of the nu-

merical integrations carried out for the results
presented in this section is about 1%. It is pri-

marily associated with the size of the momentum
transfer grid and the corresponding interpolations
which are required. However, the relative ac-
curacy of two collision strengths calculated from
atomic data on the same grid is considerably
higher. For example, the collision strengths
I,, for oxygen and flourine colliding with sulfur
(from Table II) are 17.1 and 17.0. This trend is a
real effect and the percentage different given by
these numbers is probably a reliable estimate of
the size of this change. On the other hand, com-

parison between results obtained from different
tabulations must be made with some care.

III. SYSTEMATICS OF THE COLLISION STRENGTHS

A large amount of information is embodied in
the data given in Tables II-V. Our goal in this
work regarding systematic features of these re-
sults is twofold. First, we shall examine the
most significant, broad features of each of the
collision strengths individually (Secs. IIIA-IIIC),
as well as comparatively (Sec. III D). Second, by
way of example, we discuss in Sec. IIID some of
the more detailed results which may be gleaned
from the tables and, in Sec. IIIE, some of the
applications for which the results may be utilized.
Section III F concludes with a discussion of the
anticipated region of validity of our collision
strengths.
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TABLE IV. Elastic collision strengths IeL@, and doubly inelastic collision strengths I~
for all atom-atom collisions with 6 ~ Z- 10, or Z =18. The upper right triangular matrix
gives values for I~,&, and the lower left triangular matrix gives the values of I~~; see Sec.
II C. of the text for further discussion. The collision strengths in this table are based on the
atomic form factors and incoherent scattering functions tabulated by Tanaka and Sasaki (Ref.
14) and for C through Ne, and by Naon et al. (Ref. 15) for Ar.

A. Elastic collisions, I,&,&

Among the four classes of collision strengths
which we have considered in this work, the total
elastic collision strength displays the largest ab-
solute variation with the atomic numbers of the
collision partners. Figure 1 shows a plot of I„,„
from Table II versus Z„and Z~. As is evident
from that figure, the elastic collision strength is
a monotonically and sharply increasing function of
the atomic numbers of the collision partners.
While this increase is definitely monotonic, there
are discernible undulations in the surface of

In particular, troughs in the elastic colli-
sion strength surface are clearly evident where
one of the collision partners is either He or Ne.

This is, of course, a reflection of the closed
shells of these atoms.

In general, we anticipate that the total elastic
collision strengths will have a rough dependence

0)

4l

TABLE V. Singly inelastic collision strengths Ig~
all atom-atom collisions with 6 ~ Z-~ 10 or Z =18. The
atoms labeled vertically are scattered elastically {el)
while those labeled horizontally are scattered inelasti-
cally (in); see Sec. II C. of the text for further discuss-
ion. The collision strengths in this table are based on
the atomic form factors and incoherent scattering
functions tabulated by Tanaka and Sasaki (Ref. 14) for
C through Ne, and by Naon et al. (Ref. 15) for Ar.

x
U
Z
lK

Z0
M

D ! 'I
I I I

I I III

I I I I I I II
10

Za

I

20

ZA

$0

6 18.3
7 21.5
8 24.7
9 27.2

10 29.5
18 98.4

19.3
23.0
26.7
29.6
32.4

106
N

20.5
24.7
28.7
32.1
35.4

114
0

21.1
25.6
30.1
33.9
37.5

119
F

21.4
26.2
30.9
35.0
38.9

122
Ne

36.4 C
44.1 N
51.6 0
58.1 F
64.3 Ne

205 Ar
Ar

FIG. 1. Plot of the fully elastic collision strengths
I,& &Q, B}as a function of the atomic numbers of the
collision partners Z& and Z&. These collision strengths
are from Table II and are based on the atomic form
factors tabulated by Hubbell et cl. (Ref. 11}. The elastic
collision strengths increase rapidly with atomic number,
scaling roughly as Z&2Z&2 according to Eq. (36}. Slight
undulations in the surface reflect the effects of shell
structure.
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on Z„and Z2, of the form

I,I, ,I(A, B)=8„,„ZgZ II. (36)

with a constant reduced collision strength" 8„„
=2.2x 1P-'

This scaling with respect to the square of the
atomic numbers is simply a reflection of the
dominance of the (screened) internuclear Cou-
lomb interaction. The factor N„„may be con-
sidered a reduced collision strength, and pre-
sumably should display a much reduced depen-
dence on Z„and Z~ throughout the periodic table.
In a global sense we expect it to be roughtly con-
stant, independent of the atomic numbers. How-
ever, we would also anticipate that 8„„,when
plotted as a function of Z„and Z~, to more clear-
ly display the effects of shell structure since the
gross scaling of (36) has been removed. Figure
2 shows a plot of the reduced collision strength.
The surface is indeed relatively flat (note the
significant change in the logarithmic vertical
scales from Fig. l), with well defined minima
along lines associated with closed shells. Maxi-
ma at H and B, and to a lesser extent near P, in-
dicate that these atoms are relatively large from
the point of view of elastic collisions. As a final
comment in this section, we note that the scaling
given in EIl. (36) is valid to within a factor of 5 for
all the elastic collisions considered in this work,

B. Singly inelastic collisions, I,&. and I.

The singly inelastic collision strengths from
Table III are plotted in Fig. 3, again as a function
of the atomic numbers. A monotonically in-
creasing dependence on both Z„and Z~ is ap-
parent, but the trends are not equally steep in
both directions. Undulations of this collision
strength surface are also again clear, only slight-
ly more pronounced than for elastic collisions,
the troughs again being associated with closed
shells.

For this collision strength we anticipate the
scaling with the atomic numbers Z„and Z~ is de-
scribed roughly by

(A, B)=s„, Z„'SII.
For the elastically scattered particle (A), the
scaling again reflects the strong coherent effect
of the nuclear Coulomb potential. The inelastical-
ly scattered particle (B) has a scaling linear in
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FIG. 2. Reduced elastic collision strength S,&,~(A, B)
as a function of the atomic numbers of the collision
partners, Z& and Zz. The gross scaling [Eq. (36)] of
the elastic collision strengths in Fig. 1 has been re-
moved and the general flatness of the surface reflects
the accuracy of that approximation. (Note the significant
change of vertical scale from Fig. 1.) Minima in the
surface at He, Ne, and Ar reflect the "smallness" of
those closed-shell atoms.

FIG. 3. Plot of the singly inelastic collision strength
I

& &
(A, B) as a function of the atomic numbers of the

collision partners, Z& and Zz. These collision strengths
are from Table III and are based on the atomic form
factors (particle A) and incoherent scattering functions
(particle B) tabulated by Hubbell et al. (Ref. 11). The
singly inelastic collision strengths increase monotoni-
cally with atomic numbers, scaling roughly as Z&Zz as
given by Eq. (37). Undulations in the surface are again
a reflection of shell structure. The singly inelastic
collision strengths I~~~& may be obtained by symmetry
I~ft, e)(A, B)=

Ieg~ (~(B,A).



2440 GEORGE H. GILLESPIE AND MITIO INOKUTI 22

the atomic number. This scaling arises from the
number of electrons in the atom, and reflects the
incoherent sum of all possible electronic transi-
tions in the atom. Again, we may regard s„.
as a reduced collision strength and in Fig. 4 we
display this reduced collision strength as a func-
tion of the atomic numbers. The relative flatness
of this surface attests to the general validity of the
scaling (37), although the variations in the !I„,.„
surface associated with shell effects are some-
what more apparent than for y„,„. Ridges and
valleys of relative maxima and minima are essen-
tially the same as for the reduced elastic colli-
sion strength, and all-in-all, Figs. 2 and 4 are
qualitatively quite similar. For the singly inelas-
tic collision strengths the scaling of Eq. (37) pro-
vides a reasonable description of the gross fea-
tures for 5„=4.2 x 1Q, again reproducing all
of the exact results to within a factor of 5."

C. Doubly inelastic collisions, I. .

The doubly inelastic collision strengths show
the effects of shell structure most dramatically
of the four classes of collision strengths we have

considered. Figure 5 displays I;„„„from Table II
in the same format as utilized in Figs. 1 and 3.
Shell-structure effects are so pronounced in this
case that the collision strength is no longer mono-
tonically increasing. A valley of local minima-is
present whenever either of the collision part-
ners is Ne, and local minima also occur when
one collision partner is Ar. However, the colli-
sions of O-Ar, F-Ar, and somewhat surprisingly
He-Ar and Ne-Ar are an exception; these colli-
sion strengths being somewhat larger than those
for O-Cl, F-Cl, He-Cl, and Ne-Cl. These ex-
ceptions" represent exceedingly small numerical
deviations, and while we believe this accurately
reflects the situation for the case of Hartree-Fock
models of Cl and Ar, the actual case may well be
somewhat different. All of the collision strengths
displayed in Fig. 5 for either Z„or Z~~ 7 will
shift downward significantly (several percent) if
atomic models more accurate than Hartree-Fock
are used. This is readily apparent upon comparing
Tables II and IV, for example. Nevertheless, the
primary qualitative features of I;„,„are unlikely
to be modified by more accurate calculations, and
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FIG. 4. Reduced singly inelastic collision strength
g~& &~Q, B) as a function of the atomic numbers of the
collision partners, Z& and Zz. The gross scaling [Eq.
(37)] of the singly inelastic collision strengths (in Fig.
3) has been removed, and the general flatness of the
surface reflects the accuracy of that approximation.
(Again the change in vertical scale from Fig. 3 to Fig. 4
should be noted. ) Minima near the small" closed-shell
atoms of He, Ne, and Ar are again apparent.

FIG. 5. Plot of the doubly inelastic collision strength
I&~ &,Q, B) as a function of the atomic numbers of the
collision partners, Zz and Z&. These collision strengths
are also from Table II which are based on the incoherent
scattering functions tabulated by Hubbell et al. (Ref. 11).
The scaling of the doubly inelastic collision strength is
roughly proportional to ZzZz as&given by Eq. (38), but
shell structure effects are pronounced and this collision
strength does not increase monotonically with increasing
atomic numbers.
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the clearly larger significance of shell structure
on this collision strength appears well established.

The doubly inelastic collision strength also has
a relatively simple scaling for the gross trend
with respect to increasing Z„or Z~, i.e. ,

I,„(A,B) = s,„,,„Z„Zs . (38)

The doubly inelastic reduced collision strength
is shown in Fig. 6. As we would anticipate

from the above discussion, this figure displays
significantly larger undulations in the s. . surface
than the corresponding Figs. 2 and 4 for y„„, and

However, the scaling (38) is again relative-
ly accurate for describing the overall general
trend with Z. For y. =1.3x10 ' all of the colli-
sion strengths I;„calculated in this work are
reproduced by Eq. (38) to within a factor of 5."

D. Comparisons among the four classes of collision
strengths

As is apparent from the discussion in IIIA.—
IIIC., each of the four classes of collision
strengths considered in this work have significant-
ly different general scaling laws as well as varying
degrees of variation from these scaling rules due
to shell structure. Clearly, when both Z„and Z~
are large enough, elastic collisions will be dom-

inant at very high energies. In the case of colli-
sions between two hydrogen atoms, however,
Bates and Griffing' already showed that doubly
inelastic collisions were dominant. A natural
question which emerges then is where are the
boundaries in. the Z„-Z~ plane which delineate the
different regions in which each of the collision
strengths is dominant? We now answer this ques-
tion. Figure '7 shows a plot of the domains in which
each of the four classes of collision strengths
considered here is largest. For any combination
of collisions between H, He, or Li the doubly in-
elastic collision strength is the largest. For H

colliding with any other atom, the singly inelastic
collisions are dominant, with the H atom being
either excited or ionized while the other collision
partner remains in its ground state. This colli-
sion strength is also dominant for several cases
in which He collides with atoms of atomic number
greater than three. For most of the possible
'combinations of collision partners, including all
of those with both Z„and Z~ greater than three,
the elastic collision strength is the largest.
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FIG. 6. Reduced doubly inelastic collision strength
8&~&n(4, B) as a function of the atomic numbers of the
collision partners, Zz and Zz. The gross scaling [Eq.
(38)] of the doubly inelastic collision strengths in Fig. 5
has been removed. The somewhat larger oscillations
in the surface (as compared to Figs. 2 and 4) reflect
the more pronounced effects of atomic shell structure
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FIG. 7. Domains indicating the largest collision
strength for the four classes of collisions considered in
this work. The first subscript on each collision strength
is associated with particle A, the second with particle
B. For collisions between any two atoms with atomic
numbers less than or equal tp three, doubly inelastic
collisions (I~ &

) are dominant at very high energies.
If one particle is hydrogen (and in select cases helium),
then singly inelastic collisions (I+g gn) are dominant if
the other collision partner has an atomic number greater
than three. For the vast majority of possible collision
partners however, elastic collisions (I,& &) are domi-
nant at very high energies.
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One may also ask how Fig. 7 might be altered if
elastic collisions were not considered, i.e. , which
of the remaining three inelastic collision strengths
is dominant? A quick examination of the data in-
Tables II and III shows that the doubly inelastic
domain is not enlarged; it is still only dominant
for collisions involving H, He, and Li. Singly
inelastic collisions then become dominant for all
other cases, with the collision partner of lower Z
being either excited or ionized, while that of the
higher Z remains in its ground state following the
collision.

In a rigorous sense we can only argue that the
domains indicated in Fig. 7 will correctly indicate
the largest cross section (for the four classes of
collisions considered) at asymptotically high
speeds. In particular, the asymptotic collision
strengths given in Tables II and III can only be
expected to give equally good results for all the
cross sections if the speed is sufficiently high that
our basic assumptions are satisfied in all cases.
As indicated earlier and discussed more fully in

Sec. IIIF., the velocities above which our colli-
sion strengths should give a quantitative descrip-
tion of the cross sections depends in each case
upon Z„and Za, as well as upon each of the four
classes of collisions. At subasymptotic energies
then, we anticipate that the boundaries in Fig. 7
will be altered somewhat, and at low energies
they may be quite different. Where the cross sec-
tions are falling significantly with increasing
velocity, though perhaps not as fast as v 2, Fig. 7

should still provide a reasonable guide for esti-
mating which class of collisions will have the
dominant cross section.

To further examine the relative importance of
the various collision processes considered, we
now take a detailed look at the case of carbon col-
liding with other atoms. This example is chosen
primarily because it also permits us to make
some comparisons between Tables II and III and

IV and V. Otherwise it is a fairly typical exam-
ple and permits us to display some of the results
more concretely via a case study.

Figure 8 displays the four collision strengths
for carbon colliding with neutral atoms as a func-
tion of the target atom atomic number. Three of
these curves are in essence cuts at Z„=6 through
the surfaces displayed in Figs. 1, 3, and 5; the
fourth collision strength (I- „)is obtained by
symmetry from Fig. 3 (using a cut along Zs =6).
The results shown as solid circles in Fig. 8 for
target atoms with Z~ & 7, and as open circles
for Z~~ 7, are from Tables II and III. As dis-
cussed in Secs. IIB. and IIC., these colli-
sion strengths are based on Hartree-Fock (HF)
wave functions for Z~ ~ 7, and on more ac-
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O
fz)

o "00

Iel, in
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in, in

curate wave functions that include configuration
interactions (CI) for Ze ~ 6. For comparison we
also include additional results as solid circles for
7&

ZAN &10 and Z~=18 from Tables IV and V, all
of which used CI wave functions. The differences
in I„;„and I,.„,.„between the curves formed from
solid and open symbols thus displays the dif-
ference between CI and HF model wave functions
for the target atom. This is a quantitative con-
firmation of the general expectation mentioned in
Sec. IIC. that the difference in the incoherent

1 10

ATOMIC NUMBER OF TARGET ZB

FIG. 8. The four collision strengths calculated for an
incident carbon atom colliding with neutral target atoms,
all plotted as a function of the atomic number Zz of the
target. The open circles are results for Hartree-Fock
(HF) models of the atoms and are taken from the data
in Tables II and III (Z&&6). The solid circles are results
based on configuration-interaction (CI) atomic models.
For Zz ~ 6 these results are also from Tables II and III,
but for 7 & Z~ & 10 and Z~ = 18 they are taken from Tables
IV and V. The solid lines are simply to aid the eye in
following each of the collision strengths, the broken
curves are only intended to suggest how I„,, and I,.~,,
might look for 11m Z& & 17 if CI wave functions for
these atoms were to be used in the calculations.
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scattering function for CI and HF wave functions
may affect these collision strengths. On the other
hand, the overlap of these symbols for I„„and
I „reiterates the lack of significant difference
between different atomic models. In all cases we
recommend results based on CI wave functions
wherever available, although for many applica-
tions the results based on HF wave functions are
probably adequate.

The scaling properties for the various collision
strengths discussed in Secs. IGA. -IIIC. are also
reflected in Fig. 8: I,I,I and I. „have a rough
proportionality to p~, while I,I

. and I, - in-
crease more like g~. The more pronounced ef-
fects of shell structure on I,I

- and I- . are also
apparent. The dominance of I„,. for @~=1or
2, and of I„„,for Zs~ 3 (as displayed in Fig. 7),
are put on a quantitative basis in Fig. 8 for this
case of incident carbon atoms.

E. Comparisons with electron-loss cross section data

The inelastic collision strengths calculated in
this work include transitions to all final states,
either discrete bound states or final states in the
continuum which most often lead to ionization.
On general grounds4 the asymptotic inelastic cross
sections must be strongly dominated by final
states in the continuum for atom-atom collisions.
Experimentally, ionization cross sections at high
speeds are also easier to measure than either
elastic or discrete-state excitation cross sections.
In order to compare some of our results with ex-
perimental data, we have thus restricted our
examination to total electron-loss cross sections
at high speeds. The results of a literature sur-
vey'9 24 for this data are summarized in Fig. 9,
where we display as a function of Z„and Z~ the
availability of experimental data on the high-
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FIG. 9. Summary of the available data for electron-loss cross sections in fast atom-atom collisions. This summary

is based upon data obtained from Dehmel et al, . (Ref. 19: +, Zz &3; & and +, Z& = 2); Tawara and Russek (Ref. 20:
and a, Z&=1,Z&=3, 8, and 10); Pedersen and Hvelplund (Ref. 21: &, Z& ——3; Ref. 22: o, Z&
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energy electron-loss cross sections.
As a function of increasing kinetic energy of the

incident atom, the electron-loss cross section
first increases, reaches a maximum typically in
the 10-100-keV/amu energy region, and then de-
creases, eventually falling as v 2 at sufficiently
high velocity. It is in this asymptotic region that
our collision strengths are rigorous, and we
especially sought data extending into that regime.
We have thus classified the experimental cross
section data into four categories in Fig. 9: those
for which the data is only suggestive that the max-
imum cross section has been reached, those for
which the maximum seems to have been attained
but little information on the asymptotic cross sec-
tion can be extracted, those for which the maxi-
mum is well established and one can make a rough
estimate of the asymptotic value, and those cases
for which the asymptotic cross section is estab-
lished. This latter group is clearly small. We
have found only four examples, all of which in-
volve a hydrogen atom as the projectile. Further-
more, in many cases the target atom is frequently
one constituent of either a molecular gas or a foil,
and consequently detailed comparisons must be
made with some caution. In some instances the
incident atomic beam may also have contained
some metastable states, further complicating the
matter.

Figure 10 shows the electron-loss collision
strengths for H incident on He, a case for which
the potential ambiguities cited above should not
be a problem. The open symbols are collision
strengths obtained from the experimental

data ' for o+, according to

I= (8wa2o2/I3') 'o

=P o,/(8. 75x10 cm )

where p=v/c. The solid line is the asymptotic
collision strength I;„„+I;„,;„calculated in this
work. ,The ionization collision strength (I„„„
+ I;,„;„)has been calculated previously for this
case and those results are shown for comparison
by the dashed line, and the dashed curve shows
how that asymptotic collision strength is altered
if the next-order term in the v expansion is re-
tained. 4 The experimental and theoretical asymp-
totes for the electron-loss collision strength are
in very good agreement for E,.„, o1 MeV. The
inelastic collision strength I;„„+I,„;„ofthis work
is about 18% above the ionization collision
strength, the difference arising from the con-
tribution of excitations to discrete bound states
of the hydrogen projectile.

Figure 11 summarizes the electron-loss
data 2'2@ ' "for He-He collisions. The peak
cross section is well established and data extends
to energies about one order-of-magnitude greater
than that corresponding to the maximum cross
section. The asymptotic collision strength may
be roughly estimated to be 1.3 -1.4. This estimate
of the asymptotic collision strength for the total
electron-loss process for He+He is consistent
with our result I;„„+I;„;„=1.49, shown by the
solid line in Fig. 11. Following arguments similar
to those of the last paper cited under Ref. 4, we
anticipate that the ionization collision strength
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FIG. 10. Comparison of the theoretical asymptotic collision strength with experiment for H+ He. Symbols are
(87rap+ /p ) Qp f where op ~ are the experimental cross sections for electron loss from atomic H colliding with He.
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Data are shown only for energies above that corresponding to the maximum exper imental cross section (-15 ke V), and are
taken from: v 0.05-0.18 MeV, Solov'ev et al. (Ref. 25); 0.9-1.3 MeV, Dimov and Dudnikov (Ref. 26); 14.6 MeV, Smythe
and Toevs (Ref. 27); & 0.15-0.4 MeV, Puckett et al. (Ref. 28); 1.0 and 2.4 MeV, Welsh et al. (Ref. 29); 10 MeV, Berk-
ner et al. (Ref. 30); o 0.05-2.5 MeV, Williams (Ref. 31); 0 0.05-0.2 MeV, Steir and Barnett (Ref. 32); 0.25-1 MeV,
Barnett and Reynolds (Ref. 33); o 0.1-2.5 MeV, Toburen et al. (Ref. 34); 22-45 MeV, Acerbi et al. (Ref. 23). Solid
line is the theoretical result of this work for I&,&+I;~ &

which is a rigorous upper bound to the electron-loss collision
strength. For comparison the theoretical electron-loss collision strength Ig~~ +y+ Ijgg f from Ref. 4 is given by the
dashed line, and the dashed curve shows that collision strength including next-order (low-energy) corrections.
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should lie closer to the inelastic collision strength
for He+He collisions (as compared to the 18%
difference for H+He collisions) since M~„/Mta,
=0.650 for He (as compared to 0.283 for H). Al-
though theory and experiment are consistent, a
definitive conclusion is not yet possible. A quan-
titative comparison must await data at higher en-
ergies, although we should point out that only
modestly higher energy is required; 2 MeV/amu
or so appears adequate.

Figure 12 gives results for the heavier target
atom Ar, again with H as the projectile. Exten-
sive data are available for the cross section for
electron loss from the H projectile at energies
above that corresponding to the maximum cross
section. Even at 45 MeV/amu however, the colli-
sion strength has still apparently not quite reached
an asymptotic value. We can estimate the asymp-
totic collision strength as 2.3-2.5, but again high-
er energy data (-100 MeV) appears necessary to
establish the value conclusively. The inelastic
collision strengths we calculated for both HF and
Cl Ar wave functions (solid and dash-dot lines)
are shown and lie 10-25% above the estimates of
the experimental asymptote for electron loss. The
previously calculated4 electron-loss collision
strength I;,„,„+I „,;„ is also shown (dashed line),
including the low-energy correction (dashed
curved). The experimental and theoretical asymp-
totes for electron loss are thus consistent, but in
contrast to the case of H+He collisions, the low-
energy correction does not give an adequate de-

scription of the departure from the asymptote.
This is a limitation of the applicability of the full
Born approximation to heavy-particle scattering. 39

It is tempting to suggest that the region of validity
of the Born approximation in this case is the same
as the region of validity of the asymptote alone.
Further data will be required to establish this re-
gion experimentally, however.

As a final remark in this section we should point
out that the plots of collision strength versus the
logarithm of the kinetic energy/amu, as shown in

Figs. 10-12, are a generalization of Fano plots. '
There is an important difference in the appearance
of the plots in the asymptotic region, however,
when compared to inelastic collisions of struc-
tureless charged particles. For atom-atom colli-
sions the collision strengths approach constant
values because of the absence of any long-range
Coulomb potential, whereas the traditional Fano
plot will show a collision strength increasing
linearly with the logarithm of the energy (non-
relativistically) if the inelastic transition has non-
zero dipole moment. This important difference in
the asymPtotic form of these cross sections has
been discussed many times (for example, Refs.
1-4, 8) although confusion still arises on occasion
in the literature.

F. Domain of validity of the asymptotic cross section

The (first) Born approximation may be justified
when the colliding atoms glance each other so that



2446 GEORGE H. GILLESPIE AND MITIO INOKUTI 22

I I I I I I I I I I I I I I I I

25

20

c15
O

0
O

10

~ e ~ s ~ s~ ~ ~ ~ ~ s L o ~ ~~s ~ s~ s~ e ~ s ~ ~ ~ ~ ~ ~ ~ i~e ~ ~ ~ e ~ ~

[H+ Ar (Cl)]

0 0
00

0000
0~

00
0
0

0
0000

Open Symbols: Experimental Data for
H+Ar H +e +Ar (g)

0
~goo0

I; n
.
)

+ I; n;n [H+ Ar (C))]
%mwwmmmmmmmwmmwmmmmmmmmmmmmm~mmmmmmmmmwmmmmmmmmmmmmmmmmwmmmmmm

rrrrrr
r

r
I

0I
IIII' III

0
10-2

o8
e o&~v

«Il
1 0-1

I « I

100

Elab (MeV)

i ill
10 1

I I I I I I I I

10+2

FIG. 12. Comparison of theoretical asymptotic collision strength with experiment for H+ Ar. Open symbols are
(8&a p& /p ) 0'p g where frp ~ are the experimental cross sections for electron loss from atomic H colliding with Ar. Data
are shown only for energies above that corresponding to the maximum experimental cross sections (-50 keV), and are
taken from: c 0.05-0.18 MeV, Solov'ev et al. (Ref. 25); 14.6 MeV, Smythe and Toevs (Ref. 27); & 0.15-0.4 MeV,
Puckett et al. (Ref. 28); 1.0 and 2.4 MeV, Welsh et al. (Ref. 29); 10 MeV, Berkner et al. (Ref. 30); o 0.05 MeV, Will-
iams (Ref. 20); 1.05—4.4 MeV, Schryber (Ref. 38); 0 0.05-0.2 MeV, Steir and Barnett (Ref. 32); 0.25-1 MeV, Barnett
and Reynolds (Ref. 33); o 0.1-2.5 MeV, Toburen et al. (Ref. 34); 22—45 MeV, Acerbi et al. (Ref. 23). Solid line is the
theoretical result of this work for I&, ,& I&, &, which is a rigorous upper bound to the electron-loss collision strength.
For comparison the theoretical electron-loss collision strength Igpg, ) Ijpg g, from Ref. 4 is given by the dashed line,
and the dashed curve shows that collision strength including next-order (low-energy) corrections.

the influence of the collision on atomic electrons
may be regarded as small perturbations. If the
colliding atoms come so close that their electronic
clouds overlap each other, there must be appre-
ciable effects that cannot be adequately treated by
the Born approximation. Thus, the differential
cross section do „given by Eq. (4) may be suitable
at small K values (which imply unappreciable de-
flection of the atomic motion), but will be inap-
propriate at large K values (which imply appre-
ciable deflection and thus penetration of atomic
cores). This distinction in terms of the momentum
transfer K is more crucial than the frequently in-
voked distinction in terms of the collision speed
v alone. For inelastic collisions of a structure-
less charged particle with an atom or molecule,
the importance of the momentum transfer as a
criterion for the validity of the Born approxima-
tion is well known'. For example, the Lassettre-
Skerbele-Dillon limit theorem4' tells us that the
Born-approximation differential cross section is
correct at any v in the limit K-0 (which, how-
ever, is not rigorously realizable for any inelas-

tic collision). Indeed, the basic argument applies
just as well to collisions between atoms or mole-
cules. For illustration, we may quote another
work of Huo, 2 who successfully treated transfer
of electronic excitation upon thermal collisions
between molecules by use of the Born-approxima-
tion formula. In the process Huo discussed, the
colliding partners interact predominantly at large
distances by dipole-dipole forces, and therefore
the justification of her treatment is especially
obvious.

For collisions between ground-state atoms, the
differential cross section do „of Eq. (4) is not
easily justifiable by a wave-mechanical argument,
unless v greatly exceeds the mean speed v, of the
atomic electrons pertinent to the collision pro-
cess. Nevertheless, a far less restrictive condi-
tion for the validity of the Born-approximation ex-
pression for the integrated cross section g „was
given long ago by Mott43 and Frame, 44 who showed
the equivalence of the Born integrated cross sec-
tion with the result of the semiclassical impact-
parameter treatment. The Mott-Frame result is
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best explained by Bethe and Jackiw, 45 and is sum-
marized by Madison and Merzbachex, 46 as well as
in Sec. 4.4 of Inokuti. ' To recapitulate the Mott-
frame result, so long as the momentum of the
relative motion is much greater than the mean
momentum of atomic electrons (a condition that
is far less restrictive than the speed criterion
v» v, owing to the large ratio of the atomic mass
to the electron mass in general), the integrated
cross section o „ is adequately given by the Born-
approximation formula.

The original txeatments by Mott and by Frame
were developed specifically for collisions of a
structurel. ess ion with an atom. Thus, one might
wonder whether the same argument might need a
major revision, for collisions between particles
both carrying electrons. As fax as we have
examined, no substantially new aspect appears
in this case.

In this way, we understand that the Born-ap-
proximation expression for o, as well for their
sums such as o. , „, o„„„,and o, , should be
adequate so long as most of the contributions arise
from small and moderate values of K. The pro-
viso hex'e indeed bears out for processes in-
volving inelasticity, i.e., excitation or ioniza-
tion of outermost shell electrons where Hy/T
= (vo/v)2s 1, i.e., when the laboratory collision
energy is greater than about 50 keV/amu (where
measured cross sections often show a maximum).

The asymptotic collision strength, i.e., the
constant value of the product Tc, is attained at a
much higher collision energy, i.e., Ry/T «1.
Inspection of Figs. 10-12 gives an impression
that the asymptotic collision strength applies at
Ry/T & 0.2, or at the laboratory collision energy
exceeding about 1 MeV/amu for combinations of
the lightest atoms, and even at smaller Hy/T for
heavier atoms.

The attainment of the constant collision strength
is further delayed to still higher speeds when a
heaviex' atom is involved, as seen in Fig. 12.
One reason for the apparent overestimate of the
collision strength I;„„and I;,„„,for the H-Ar
collision is probably the use of the elastic scat-
tering form factor for Ar. To understand this,
we recall that the cross section formula, Eq. (4),
may be interpreted in terms of an impulse-ap-
proximation picture. That is to say, the colliding
atoms exchange a momentum of the magnitude K,
which is mostly taken up by the atomic electrons.
These electrons, in turn, react to the momentum
transfer in the same way as they do in a charged-
particle collision, and their responses are de-
scribed in Eq. (4} by the squared form factors
I+.(K) I' a« I+.(K) I' of the two at~ms. suppose
that the second atom B is heavy and remains un-

excited after the collision. It is well known4' that,
for elastic scattering of an electron by all but the

lightest atoms, the first Born approximation is
adequate only at extremely high speed —much

greater than the speeds at which inelastic colli-
sions of charged particles are well described by
the Born approximation. Therefore, Eq. (4) could
be easily improved through replacing IF„,(K) I

by K aoIAD(K, v) I, where A0(K, v) is the elastic-
scattering amplitude (having the length dimension}
and depends upon K and v. The amplitude

I&0(K, v) I may be evaluated either from experi-
mental data on electron scattering or from theo-
retical phase shifts as tabulated by Riley et al. ,

48

for instance. This approach will result in better
evaluation of the collision strengths for processes
involving any of the heavier atoms that remain un-

excited after collision. Indeed, basically the
same idea has been used by Dewangan and
Walters49 in their simplified treatment of atom-
atom collisions by use of a quasi-free-electron
model.

Again because of the limited applicability of the

first Born approximation to electron-atom elastic
scattering, our results for I„„areless reliable
than those for other collision strengths.

IV. CONCLUDING COMMENTS

This work represents an initial undertaking
toward the establishment of a comprehensive
understanding of the systematics of fast atom-
atom collisions. Because we are interested in a
broad range of collision partners, we have had to
restrict our attention to rather simple, yet com-
prehensive classifications of the possible phenom-
ena considered. In that sense, this work is com-
plementary to other studies that examined par-
ticular pairs of collision partners in greater de-
tail. ' 6- By confining our calculations to the

asymptotic collision strengths, we also have a
convenient basis upon which to examine the sys-
tematic features and make comparisons. This
simplification of our analysis, while rigorous at
high speeds, leaves unanswered important ques-
tions at lower velocities regarding the applicability
of the systematics discussed here. Nevex theless,
we believe that many of the features displayed by
our results for very fast collisions will have com-
parable counterparts at lower energies. For ex-
ample, the imPortance of shell structure effec-ts
on the simple scaling laws for the collision
strengths should form a reasonably quantitative
basis for estimating similar effects at high, but

nonasymptotic energies.
Experimental data are lacking, not only at

asymptotic speeds but even at moderately high
speeds. A quick glance at Fig. 9 makes it obvious
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that the paucity of data on atom-atom collisions
makes any attempt to compare the systematics
discussed in this work with experiment nearly
impossib1. e. This general lack of data is partially
due to the difficulty of obtaining fast atoms (as
opposed to ions). While there is certainly more
data for ions, it is not clear that much informa-
tion about systematics of the asymptotic collision
strengths can be extracted. " Even for the im-
pact ionization of atoms by ions carrying a sig-
nificant number of electrons, the data are
sparse. s' Below, we offer a few suggestions for
future measurements which we feel could signifi-
cantly benefit our understanding of collisions at
high energies.

For any experiments involving fast ions or
atoms, we believe plots of the collision strength
versus the logarithm of the energy (e.g. , Fano-
type plots such as Figs. 10—12) can shed light on

the interpretation of the physics involved, because
in the asymptotic region, theoretically well de-
fined limits should be present. In support of this
suggestion we recall the success such plots have
achieved in clarifying the interpretation of elec-
tron-atom collisions. ' '" Secondly, we note that
for collisions involving either the excitation or
ionization of a given atom, there is a total lack
of data on the relative importance of elastic
versus inelastic processes for the other collision
partner. The differences between such singly in-
elastic and doubly inelastic collisions has been a
central part of this work, of course, and has been
examined to varying degrees in other studies as
well. ' ' ' ~" We believe that experiments on

doubly inelastic collisions, whose cross sections
can be measured utilizing coincidence techniques,
thus offer a particularly fruitful area for investi-
gation. Simultaneous projectile- target ionization
should be the simplest type of doubly inelastic
cross section to measure, and we anticipate that
the doubly inelastic cross sections obtained from
our values of I,.„,-„should be close to the double
ionization cross sections at high speeds. We

might also reiterate from Sec. IGC. that such
doubly inelastic cross sections display the

strongest shell-structure effects of the four
classes of collisions we have considered. Finally,
the absence of experimental data on high-energy
elastic cross sections should be mentioned. As
our calculations indicate that for most atom-atom
collisions this is the dominant collision process
(Fig. 7), it would seem that experimental con-
firmation of this would be among the stronger
tests of our results. Such data may be beyond
the present state-of- the-art, however, since the
experiments presumably require very high-energy,
and high-resolution differential cross section mea-
surements.

Note added in proof: E. Horsdal Pedersen and

L. Larsen have recently reported [J. Phys. B 12,
4099 (1979)] experiments on double ionization
cross sections of the type we have suggested, for
H colliding with He and Xe.
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APPENDIX: COLLISIONS BETWEEN TWO
HYDROGENIC PARTICLES

When the colliding particles A and B have one
electron each in the ground state, all the quanti-
ties appearing in the present treatment may be
readily evaluated analytically, as first noted by
Bates and Griffing, ' who evaluated the cross sec-
tions o „for various combinations of the final
states m, e. Reference 3 comprehensively pre-
sents the collision strengths I„„,I„,„, I;„„,
and I;„,.„ for hydrogenic particles having any
nuclear charges Z„and g~.

Here we summarize in 'Table VI the results for
collisions between two hydrogen atoms only. The
doubly inelastic collisions are the most probable,
the singly inelastic collisions the next most
probable, and the elastic collisions the least
probable. To understand how this ordering of
different processes arises, let us review the

TABLE VI. Collision strength (T/Ry) 0/8rao for two hydrogen atoms at large T.
Class of collision

Elastic collisions
Singly inelastic

collisions resulting
in excitation of
either one of the
two atoms

Doubly inelastic
collisions

Total

Collision strength

I~g = —=0.117933
280

I~ +I~e~ =
70

=0.4143

533—=0.6345
840

q =1.167

Percentage

10.10

35.51

54.39

100.00
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lements of the calculations. First, consider the
squared form factor for elastic collisions, i.e.,

~0=-
I ~o(K) I'= (1 —g)',

where

g = [1 + (Kao)2]

(Al)

(A2)

for atomic hydrogen. The probability for one
hydrogen atom to stay unexcited after a collision
with momentum transfer K is proportional to
zo, (Kao) 4d(Kao)2. Second, recall the incoherent
scattering function

w, =- S,(K) =1-g2. (AS)

w+ —guo
——2g(1 —g) . (A4)

The right-hand side is non-negative because 0

The probability for one hydrogen atom to be ex-
cited or ionized is proportional to co~(Kao) 4d(Kao) .

By subtraction of Eq. (Al) from Eq. (A3), one
obtains

(g ( 1, according to Eq. (A2). Thus, av -w, .
The equality holds only when g= 0 or g = 1 (i.e. ,
when K=0 or K- ~).

Each cross section for a collision between two
hydrogen atoms is, in essence, an integral of the
product of w's, according to Sec. GA. Because
w~ -wo at all K, it is obvious that u~) w~wo- wo

at all K. Thus, one sees the reason for the
ordering.

The foregoing arguments rest on the simple
relation (A4) between wo and m~, which holds
exactly only for atomic hydrogen, and roughly for
helium and lithium. For heavier neutral atoms
(which we treat in the main text), w~ grows rough-
ly as 2, while wo grows more like g, both at in-
termediate values of Kao that are decisive for the
collision strengths. Thus we understand the sig-
nificance of Fig. 7, which displays the dominant
collision strength for all combinations of neutral
atoms.
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