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Theoretical treatment of collisions of Rydberg atoms with neutral atoms and molecules.
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The semiquantal treatment of ionization in A -B(n ) collisions, based on encounters between the Rydberg electron e
and incident atom or molecule A, is derived from the full quantal impulse approximation. The useful transformation
between the dynamical variables natural to these treatments is provided. Various levels of approximation are then
deduced and necessary criteria for validity of application of the basic impulse expression to various types of A-B(n )

processes —ionization, excitation, and quasielastic —in different energy regions are emphasized, including those
associated with the additional assumption of "on-the-energy-shell" (e-A) encounters. It is pointed out for cases
involving quasielastic collisions at thermal energies that models based on (e-A ) encounters alone may not provide
either a full or proper description of the underlying mechanism. A new treatment of (in) elastic transitions via (A-
B+) encounters at thermal energies and beyond is introduced and formulated. Preliminary assessment indicates that
the proposed new mechanism is significant and could well be dominant in quasielastic A -B(n ) processes.

I. INTRODUCTION

In the semiquantal treatments previously pro-
posed' for the collision process

A(i)+ B(n) -A(j)+ B'+ e (1.1)

involving a target B(n) in a highly excited Rydberg
state with principal quantum number n, electron
ejection from the target is assumed to proceed
via a binary collision between the Rydberg electron
e and the projectile A initially in internal state i.
An (e-A) inelastic collision includes the possibility
of a simultaneous transition (i —j) within the atom-
ic or molecular system A. This treatment is suc-
cessful for ionization of B with or without simul-
taneous excitation/ionization of A in fast neutral-
neutral collisions, and it has been recently ap-
plied to ionization in excited atom-excited atom
collisions (i & n). The treatment yields the cor-
rect high-energy limit when the speed vA of AB
relative motion is»v, the orbital speed of the
Rydberg electron, is valuable for both v„-v„
and for much slower collisions with v„«v, .
The treatment is valid Provid'ed the momentum
and energy transferred to e via the e-A encounter
are much greater than the momentum and energy
imparted to e by its parent core B' during the
duration of the collision.

The basic treatment' yields the cross section
for the process in which the internal energy of an
(electron-ion) pair, or of any ion-pair system, is
changed by an amount between e and a+ d~ via the
bins. ry (e-A) collision, and as such is therefore
more suited to target ionization than to discrete
excitation of the target from level n,. to n&. Apart
from inserting' de= n&' within the formalism for
very high nf, the rigorous generalization of the
semiquantal treatment to target excitation is not
immediately obvious. Moreover, its relationship

with the conceptually similar quantal impulse ap-
proximation is not transparent, although several
authors' ' have discussed it from various stand-
points, but not in terms of its true antecedent.
Nakamura et al. ,

' in a recent series of papers
show for the simple case when the scattering am-
plitude for (e-A) collisions is a function only of
momentum change P (as in Born's approximation)
that the semiquantal treatment for this special
case follows quite naturally from the impulse and
Born expressions for ionization (1.1), as expect-
ed, since the quantal impulse (QIA), semiquantal
(SQ), and Born expressions for ionization all
coalesce in this (high-energy) limit. As previous-
ly shown, ' at very high energies the SQ treatment
yields the free collision approximation of Dmitriev
and Nikolaev, ' again as expected.

In this paper, we shall present the derivation
of the general semiquantal treatment SQ (without
any simplifying assumptions) from the full quantal
impulse approximation (QIA), its proper antece-
dent, and expose any underlying assumptions with
the eventual aim of constructing a hierarchy of
schemes, capable of systematic improvement, for
the valid description of A B(n) colli-sions. In so
doing, the rigorous generalization of SQ to target
excitation then becomes apparent.

Effort will also be made to establish and to
clarify rigorous criteria for validity of the basic
QIA and its derivatives, in contrast to intuitive
conditions, normally acceptable but with origins
difficult to trace within the various levels of ap-
proximation. This procedure entails some re-
view of the impulse procedure (originally de-
veloped by Chew, ' and extended by Chew and Wick, '
and by Chew and Goldberger, ' for high-energy
neutron-deuteron scattering) and will reveal cer-
tain implications of critical importance to A-B(n)
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collisions in general. Since most applications of
the impulse approximation in atomic collision
physics have been to high-energy e, H'-H(ls) di-
rect and charge-transfer collisions with ground-
state hydrogen (for which it is not too successful,
cf. Coleman"} this critical investigation is re-
quired for A-B(n) collisions at all impact energies.

The present investigation will also show, for
quasielastic A-B(n) collisions, in particular, at
thermal energy, that the guantal impulse expres-
sion (as commonly used) and its derivatives pro-
vide only a partial description of the basic mech-
anism by focusing attention only on the ability of
(e-A) encounters to provide changes in energy and/
or angular momentum. In angular momentum l-
changing collisions" at thermal energies, for
example, we show that a significant and sometimes
dominant contribution to the required cross sec-
tion arises from proper consideration of encount-
ers between the slow incident atom A and the core
B' of the target, in direct contrast with that as-
sumed, without examination, in other studies. ""
A new mechanism which produces electronic tran-
sitions in the target B(n) via A-B' encounters will
be discussed, and a new theoretical formulation
of the cross section for the resulting process will
be developed. The resulting theory will be im-
portant not only for l changing and other quasi-
elastic and elastic processes, but also will com-
plement expressions for the shift and shape of
spectral lines originating from highly excited
levels which are collision broadened by neutral
perturbers. This shift was predicted by Fermi"
on the basis of S-wave scattering in slow e-A.
collisions, and was generalized by Alekseev and
Sobel'man" who assumed that e-A collisions alone
were responsible for elastic and inelastic transi-
tions within the framework of the impulse approxi-
mation.

The layout of the paper is as follows. Section
II describes the basic impulse approximation and
its derivatives for most A-B(n} collisions, and il-
lustrates the various levels of approximation. In
Sec. III, useful limiting cases and validity criteria
are explored. The full and important derivation of the
general semiquantal expression from the basic im-
pulse approximation is thenpresented in Sec. IV. In
Sec. V, anewtheory of transitions occurring in A-B(n)
collisions via A-B' encounters is presented and
formulated. Its implications are then discussed
in Sec. VI. Finally, for completeness, refer-
ence, and in order to isolate an important expres-
sion which is actually more basic than the usual
impulse expression, and which is valuable to in-
terpretation of thermal energy collisions when
various distortion (A-B') effects cannot be ig-
nored, we have included in the Appendix a deriva-

tion of the full quantal impulse expression from
the two-potential formula, which permits greater
clarity of effects arising in A-B(n) collisions.

II. BASIC IMPULSE APPROXIMATION
AND DERIVATIVES

Let the center of mass of the target system com-
posed of the Rydberg electron labeled 1 and its
core C labeled 2 be at rest at the origin for spatial
coordinates r, of particle i with relative momen-
tum wave vector k,. and mass M, The impulse
approximation to the full T-matrix element,

Tq,.(k„k,') = ((j)q(F, )

x exp(ik,
' r,}

~ V(r„r, ) ~4,'(r„.r„k,)),
(2. 1)

for inelastic scattering of an incident projectile 3,
from wave vector k, initially to k,

'
finally, by pa. ir

interactions

(2.2)

with the (electron 1-core C) target atom with in-
ternal eigenfunctions (j)„(r,}k is (cf. Appendix for
rigorous derivation) obtained, in effect, by ignor-
ing the projectile 3-core C interaction V~ and by
approximating the exact solution 4,', with the ap-
propriate outgoing boundary condition for scatter-
ing under Hamiltonian H, by the exact solution for
(1-3) scattering in the laboratory frame under
Hamiltonian (H —V,c —V,c). The (1-3) scattering
in isolation is described by

(f)(r„r,;k„k }=exp(iK R)(j)(k, r),

K=k, + k~) k= (M,k, —M,k, )/(M, +M, ) . (2.3)

The electron momentum k, is, however, not con-
stant but is smeared out with amplitude,

d~(k )=(2 )
' 'f V'( )ekV(-ik, r~)dr, , (2. 4)

determined fully by its interaction V,c(r, ) with the
core so that the impulse wave function for scat-
tering in the complete system is

1+I™3/2gf(k,)4(k„k;r„r,)dk,
(27f

(2. 5)

The weak binding of the Rydberg electron is
therefore switched off during the assumed strong
(1-3) interaction between the projectile and the
Rydberg electron and, serves only to establish
the correct initial and final atomic states P,. &
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of the target system. Solution (2. 3) for the (1-3)
mutual scattering in the absence of interaction
with the core has been expressed as the product
of a plane wave for the free motion with total mo-
mentum K of the (1,3) center of mass, and of the
wave function g(k, r) for the (1-3) relative motion
at momentum k under potential V»(r) which, of
course, need not be weak (as for Born's approxi-
mation). Thus, for A-B(n) collisions (2.5) in-
cludes ungfisto~fed motion of the (Rydberg electron-
A) center of mass (which is not a valid assump-
tion at thermal energies} but effectively exact
(e-A) relative motion.

Substitution of (2.2)-(2. 5) yields the basic im-
pulse T-matrix element, "

TI, (k, , k', ) =f gI(k', )g, (k, )T„(k,k')

example, in the neighborhood of an electron-atom
resonance with the formation of a temporary-
bound negative ion, or in the vicinity of a Ram-
sauer minimum for e -Ar, Kr, and Xe scatter ing.
When the speed v, of 1 is»v„ the speed of 3, 7,
-A,n(a.u. ) where A, (a, ) is the (e-A) interaction
distance, such that during 7 the energy impre-
cision 4Ez-(A, n) ' a.u. is comparable with the
small impact energy &v', . For v, » v„however,
&Ez -v, /A, which is «2v,' the relative energy over .

which 0'» generally varies slowly.
The integral cross section for elastic and elas-

tic scattering of 3 by the bound (1,2) system, in
the center of mass of the 3-(1,2) system with re-
duced mass M», is

(k )=( "")
x dk, (6I P —(k,

' —k, )]dk',},
for this case when V,C is neglected, where

T„(k,k') = (exp(ik' r)
~
V&3(r)

~
I()(k, r))

(2.6)

(2. 7)
in which

gf k~ + P) f~3 kIi k ) g~ k1 ) ~
~di|k

(2. 11)

is the exact T matrix for potential scattering by
A consequence of the impulse approxima-

tion, implicit in the Dirac 5 function in (2.6), is
that linear momentum is conserved in the (1-3)
collision, i.e. ,

K=k, +k3=k', +k3, (2. 8)

k,
' = k, + (k~ —k~) =- k, + P, (2.9)

in terms of the momentum change P in the col-
lision. The final momentum of (1-3) relative mo-
tion is

such that the momentum of 1 after being scattered
is

A, (k, k')= ——
(

I" (T„(1,1') (2. 12)

is the (on- and off-the-energy-shell) amplitude for
(k-k') scattering in the center of mass of the
(1-3) system with reduced mass M». The com-
ponent of momentum (2. 9) of the final state f is
selected in (2. 11) in accord with the conservation
of momentum (2. 8). Interference terms are in

general present between scattering and momentum

amplitudes in (2. 11). The T matrix for elastic
scattering in the forward direction is

T .(k„k,) =f gI .(k, )gI(k, )T„(k,k)dk, ,

k' = ' (k, + k, ) —k =k+ P,
M

(2. 10} k= 'k + 'k (2.13)

where M is the sum (M, +M, ) .
The conservation of momentum (2. 8} is not a

consequence of the assumed planar (1-3) center-
of-mass motion but arises (cf. Appendix) irrespec-
tive of this assumption. As indicated by (2. 10),
off-the-energy-shell elements of the T» matrix
for free-free (1-3) scattering are, in general, re-
quired in the impulse approximation (2. 6), even
for the case (k, =k,') of elastic scattering of the
projectile 3. This originates from the effect of
switching off the core interactions V»+ V,~ during
the brief time r of the impulsive (1-3) encounter,
thereby implying that energy can only be con-
trolled to within imprecision &EI -k/v, . This also
implies that the energy dependence of the electron
1-projectile 3 collision cross section o» must not
exhibit too rapid a variation as would occur, for

in which T» is evaluated on the energy shell.
The following interesting derivatives and sim-

plifications to (2.11) arise upon use of (A) the opti-
cal theorem, (B) a plane-wave final state, (C)
closure, (D) the peaking approximation, (E) f„(P}
depending only on momentum change P, and (F)
constant f)3.

A. Optical theorem

When distortion in the scattering of 3 by the
core C is neglected in the incident wave which is
then taken as a plane wave, the imaginary com-
ponent of the full T matrix for (3-1) and (3-C)
scattering arises only (cf. Appendix) from (3-1)
scattering such that the total cross section for all
elastic and inelastic events is, with the aiQ of the
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optical theorem, given by

tr„,(k,)=(—)(, )T„()'&,k ),.

which, with (2. 13), yields

(2. 14)

k,', is therefore

dk'A- =I ™Pl- O' Ig, (k,}l'If.(k, k }I
3 1 13 3

(2. 19)

;., )&.)= —' f III,. )&,))I*).„&;,).„))d&„
"3

(2. iS)

B. Plane-wave final state of particle initially bound

When the bound electron is ejected from the
atom, and is described as a plane wave,

1 «f
Qf(rp) —

( 3/2 exp(iKy ' rg) (2. 16)

then (2.4) yields

gq(k', ) = 5(k,
' —K', ), (2. 17)

such that (2. 6) reduces to
I

Ty, (k, & k,') =g, (k,)T„(k,.k'), k, = K,
' —P . (2. 18)

The differential cross section for scattering of
the incident particle 3 into solid angle dk3, and for
ejection of the initially bound electron into the con-
tinuum with momentum in the interval dk, about

where 0„ is the total cross section for 1-3 scat-
tering at relative speed v», and v3 is the speed
of the incident atom 3. No interference terms are
present in (2.15). This cross section is an upper
limit to any collision process satisfying specific
criteria for validity of the impulse approximation
(see Appendix) and shows that the rate (v,v„,) for
all A-B(n) elastic and inelastic processes is es-
sentially limited by the total rate of free Rydberg
electron-A. collisions, with free-momentum am-
plitude specified by the momentum wave function
for the initial state of B(n). While the validity
criteria for application can in general be satisfied
by most energy-changing processes in A-B(n)
collisions it is worth noting at this stage that the
appropriate mechanism may be not fully described
by a (1-3) impulsive encounter alone. For exam-
ple, in angular momentum / mixing within the
same principal quantum number n, under con-
ditions normally met in the experiments, any de-
scription based on the above impulse approxima-
tion (2. 11), or its limit (2. 15), or on further
simplification to (2. 11), appears" to be quite in-
adequate for correct interpretation of the current
experiments on l-mixing collisions. These col-
lisions in fact demand a mechanism quite differ-
ent from that based on the Rydberg electron-pro-
jectile atom collision alone, which in fact may
contribute only a small percentage (-10%) of the
measured cross section.

gk) „kk dk, .

k "= (k, +k ) —k', (2.2i)

provided (a) that the incident momentum k, is suf-
ficiently high to excite all the atomic states in-
cluding the continuum and (b) that k,', which is
(k', —2', /M„s)' for a given i -f transition of ener-
gy e&, , can either be replaced by k, or by some
average k, . Realistic averages at high k, may be
provided by choosing e&,. to be either zero, or the
logarithmic mean energy,

In(ez, )=Sf„lm., ,/Sf„ , (2. 22)

where f,.&
is the oscillator strength for i -j excita-

tion in the target system. Note that interference
terms present in (2. 11) have disappeared in (2, 21).
This approximation is necessarily a high-energy
approximation with projectile energy E3» e&f.

D. Peaking approximation

When the (1-3) scattering amplitude f» in the
basic impulse expression (2. 6) varies slowly with

This approximation, in addition to the "impulse"
requirement, assumes that the effect of the core
is acknowledged only in the preparation of the
initial state i, and is "switched off" thereafter.
It is this quantal result (2. 19) that leads directly
to the semiquantal theory previously proposed (see
Sec. IV). Moreover, the total cross section o„,
for all elastic and inelastic events in A-B(n) col-
lisions as obtained from the "semiquantal" origin
(2. 18) yields a result identical with that (2. 15)
deduced from the full quantal impulse expression
(2. 6). If the incident projectile A is an atom or
molecule which undergoes a transition & -P while
interacting with the Rydberg electron, then the
above relations (2. 6), (2. 11), and (2. 19) hold,
but with T» being the T matrix for e-atom inelas-
tic scattering such that If»I' is replaced by If„~I'.

C. Closure

Since the momentum eigenfunctions g„(k,) form
a complete set,

Sg&(kg)gf(kf ) =5(k,' —k, ), (2. 20)
f

with the result that the differential cross section
for all elastic and inelastic transitions in B from
the initial state i, and for scattering to within
unit dk,

' is, by closure on (2. 11), given by
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k relative to the product g&g,. of the momentum
amplitudes, assumed to be peaked about k,

' -=k,
+ P =0, then it may be taken outside the integral
(2. 6) to yield the peaking approximation, "

T~,.(k„k,) =F~,.(P)T„(k,k ),
where

(2.23)

Eq,.(P)= fdic(k, +P)d,.(k, )dk,

-=(gz(r) l exp(iP. r)
~ g,.(r)) (2. 24)

is the inelastic. form factor for i-f transitions in
the target atom. The differential cross section
for scattering of 3 accompanied by discrete tran-
sitions in the target is then

if AB 3 + P 2 k kI 2

3 13 3

(2. 25)

For target ionization, when the continuum elec-
tronic wave function is normalized to ~(k', —KI),
a,s in (2. 16), then (2. 25) yields the required cross
section per unit interval dk). Although the peaking
approximation (2.23) has enjoyed much popularity
in nuclear physics (via the neutron-deuteron prob-
lem) and although its success in O'-H(1s) atomic
collisions is somewhat limited (cf ~ Coleman' ),
it has not as yet been tested for A-B(n) collisions
involving highly excited Rydberg states.

E. T13= T13

When the T matrix for (1-3) scattering is a
function only of momentum change,

P=k —k=k, —k, =k~ —k', (2. 26)

which normally holds only in the Born high-energy
region, then it can be taken outside the integral
in (2. 6) to give

T. (k„k,') = T„(P)F~,.(P). (2. 27)

When Ti3 is described by the Born approximation
for e-A scattering, then (2.27) becomes,

T,"((P)= Tka3(P)F~,.(P) (2.28)

which is identical with the actual Born approxima-
tion to A-B inelastic scattering. Because of this
identity, a quick and simple (although less satis-
factory) method of deriving the impulse approxi-
mation for A-B scattering is simply to replace in
the Born approximation for A-B inelastic scatter-
ing the inherent Born T matrix, T» for e-A scat-
tering, by the actual T matrix T», a procedure
which yields the peaking approximation (2.23). The
basic impulse expression is, of course (2. 6), rath-
er than its simplified version (2. 23) or (2.27).
The version (2. 27) for use in A-B(n) collisions

involving Rydberg atoms is, in addition to the
impulse requirements, restricted to situations in
which e-A scattering is a function Only of P and is
that used extensively by Matsuzawa" some in sit-
uations where it may not describe the actual state
of affairs, either in terms of validity" or in mech-
anism. '

In the former case,"the rapid energy variation
of the cross section for resonant formation of A
negative ions at thermal incident speeds when

v3 vi is alien to the spirit of the impulse mechan-
ism which, because of its violation of total energy
conservation due to neglect of e-core and A-core
interaction energies during the collision demands
that the energy variation in the (e-A) encounter
be sufficiently slow throughout the appropriate
range of free momentum of the Rydberg electron
[see also (A16) of the Appendix]. The latter case'
involves only an (e-A) encounter for qua. sielastic
scattering at thermal energies when the (B'-A)
encounter also plays a significant role (see Sec.
VI), and when the impulse procedure for l changing
may not even be valid [see Sec. IIIC (iv)].

The full impulse expression (2. 11) and both the
semiquantal derivatives (2. 19) and (2. 21) provide,
via a general f»(k, k') a scattering description
much more general than (2. 27).

F. Constant T,3

When the e-atom scattering amplitude f» is a
constant scattering length A, then (2. 11) yields
the integral cross section

J,. ld, (k, )l*dk,
3

47/A V3 oo Vi

Ok..(~ ) - ( ) 4nA', v, «v,
3

(2. 30)

(2. 31)

(2. 32)

where (v, ) is the mean speed of the Rydberg elec-
tron. However, at high impact speeds V„T» is
never constant such that (2. 31) is never attained
in practice.

III. LIMITING CASES AND VALIDITY CRITERIA

Some simplification to the basic expression (2. 6)
for the impulse T matrix occurs in the following
two limits of v, » vi and v, «v„respectively.

d(k)="" *' f IF);(P\I*PdP,3» (q3-q,')

(2. 29)

while, (2. 15) for the total cross section gives
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A. v3)) vI

M,M3k= (Vk —V3) -Mk~v3 (s. i)

k M13v3 + p (3.2}

When the incident speed v, is much greater than
the orbital speed v, then by inserting the momen-
ta

y

free collision model introduced intuitively by
Dmitriev and ¹kolaev,' and used by Victor" in
electron-loss calculations. Here we have shown
that the model is a natural consequence of the
quantal and semiquantal impulse approximations with
the above appropriate simplifications (3.4)-(3.6).

Also, in this limit, v3»v„ the total cross sec-
tion for all elastic and inelastic events is, from
(3.4), simply

and &~, (v, ) =c„(v,), (3.9)

k, =k1+ P, (3.3)

in the basic integral (2. 6), the impulse T matrix
reduces to

T~, (k„k ) = T~(-M,v ,3M,v3+ -P)Ey,.(P), (3.4)

such that in the (1-3) electron-atom collision the
electron can be considered as moving towards the
stationary projectile with the same velocity as
the incoming fast projectile. In the limit of fast
incident speeds, T» can be described in terms of
the Born (real) amplitude,

f;,'(P}=—,"[F,".(P) -Z,6., ]/P', (3.5)

F-,(P) =g, (k/' —P) =g;(k$), (3.6)

the momentum amplitude of the initial Rydberg
state. The cross section for scattering into dk3,
accompanied by electron ejection into all of the
continuum, is

M
if ~ (P) i' ig,.(k,

' —P) i'dk,',
3 13 3

(3.7)

where I'~ is the inelastic form factor for the tran-
sition (& -P) in the projectile A of nuclear charge
Z. Also, in this limit, ejection of the Rydberg
electron can be described by a plane wave, such
that the bound-free form factor F&,. for the target
B becomes

B. vI)) v3

The mean relative speed of the (A B) syste-m
with reduced mass M» in atomic mass units
(amu),

1.15&10 3

M'" 300
(3.10)

at temperature T (K), is much less than the or-
bital speed v, of the Rydberg electron for prin-
cipal quantum numbers,

n &~ 870M», /2 300
T (3.11)

which is sufficiently large so as to be satisfied
in most cases of interest for thermal atoms A.
Hence,

k =M„(v& -va) =M&,v, =k& (3.12)

and

k'=k+P =k, +P,
so that (2.6) and (2.11) yield

T(k„k') =f dq (k, + P)d (k )T„(k„k,+ P)dk

(s. i4)

the total cross section for e-projectile collisions.
This is an upper limit to cross sections obtained
from (3.4) for any process at high energies.

in which dk1:dk1 for fixed P, such that the in-
tegral in (3.7) is unity. Hence the integral cross
section for electron loss in the target is

and

U Aa

(3.8)
b3+v3&

o, (v, ) =—, if, ~(P) i'PdP,
v (v3m3 )

the final speed v,
' of the projectile being chosen

consistent with ionization of the target and pos-
sible excitation of the projectile, and is thus iden-
tical, as expected, with the cross section for col-
lisions between a stationary atom A and an elec-
tron moving initially with speed v„ in which suf-
ficient momentum is transferred so that detach-
ment of the electron from B occurs, together with
possible excitation of A. This is the basis of the

2

X gy k1+ P)g,. k1f13 kl, k1+ P)dk1

(3.15)

with interference effects between the amplitudes
included. Under quasielastic conditions when the
momentum transfer P is small in comparison with
the orbital momentum, f» is evaluated on the en-
ergy shell. The scattering amplitude f» for e-A
collisions with low wave numbers k-1/n can then
be written as the first few terms of the partial-
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——', aAk' ink + O(k'), (3.17)

where A is the zero-energy scattering length, and
where & is the polarizability of the atom. Also,
for small phase shifts for l & 1,"

tan6, sin5, (aok)
k k [(2L —1)(2L+ 1)(2L+ 3)]

+ O(k'(I = 1),k'(I & 1)}, (3.18)

with the result that the (1-3) scattering amplitude
is

f„(H)= -(A+ ink+ ~ oAk'Ink)(1 —iAk)

,vnP+ Sak+ O(k'—), (3.19)

where the momentum change P in (3.19}originates
from the use of the identity

P, (cosH)~ (2L —1}(2L+3}
(3.20)

Although the ima, gina. ry component of f», which
is included in (3.19) to O(k) via 6, alone, is small
in comparison to the real component, it neverthe-
less ensures that the optical theorem is satisfied
in the zero-energy limit. Either (3.16) or (3.19)
can be substituted directly into (3.15) for deter-
mination of the appropriate cross section. Finally,
the integral cross section for al! elastic and in-
elastic events, for the case V, »v, is

&to, (vs) =— lg;(ki) l'v, uxs(v, )dvi —= —'

wave expansion,

f»(k, k') =—g (2L+1)e"~si n6, P, (cosH), k=k'
k,

(3.16)

where the phase shifts 5, (k} are in general tabulat-
ed functions of l and k as for the case of ground-
state rare gases. " Alternatively, according to
effective-range expansion theory at low ener-
gies, "

tan'5 p s ln ~p
377 Q

k k

tron-atom collisions in the energy region with

v3 ~~ v, . Both results of course represent the lim-
iting cases of (2. 15}, predicted both by (2. 6} and

(2. 18) the full impulse and semiquantal expres-
sions.

Although the expressions (3.4) for v, » v, and

(3.15) for v, »v„ together with their derivatives,
can be applied to a wide selection of A-B(n) ener-
gy-change processes, it is worth noting that the
(1-3) binary encounter impulse mechanism may
not furnish a full or even correct description of
the process at a given impact energy, particularly
in those ca.ses when the measured (accurate)
cross sections exceed the specified maxima (3.9)
and (3.21) to the impulse cross sections (see Sec.
vr).

I-vv-l~ &l"= 3n I+, )
(3.22)

Since the orbital period T„of the Rydberg electron
-n' a.u. , then

C. Validity criteria

The customary validity criteria for justifica-
tion of the impulse approximation to 3-(1,2) col-
lisions (where the core C and 2 are synonomous}
are as follows:

(i) The (1,2) separation R»=n'a, »A», the scat-
tering lengths, or amplitudes, for (1-3) and (2-3)
collisions at relative speeds v» such that 3 never
interacts simultaneously with 1 and 2, which
therefore behave as separate scatterers.

(ii) The reduced wavelength X-k ' for (1-3) rela-
tive motion «R», so that the amplitude f» for
1-3 scattering is not affected by the presence of 2,
(and vice versa), i.e. , the scatterers are indepen-
dent, and interference effects from scattering by
each center can be ignored.

(iii) Contribution from (2-3) collisions to inelas-
tic scattering is neglected.

(iv) The momentum P transferred (impulsively)
to 1 during the collision time &, -(A/v&3) must be
» the momentum imparted to 1 during the same
time via the interaction V„with the core, i.e. ,

(3.aS) T, «T„(i+ —,')P. (3.23)

the averaged rate for electron-atom collisions
divided by the projectile speed v, . Thus (3.21)
is therefore an upper limit to cross sections for
any process in this energy region (v, » v, ). This
expression can also be uncovered (via the optics. l
theorem) from the analysis of Alekseev and Sobel'-
man' for the width and shift of lines originating
from excited levels perturbed by neutral particles.
The bound (3.21) is in direct contrast to (3.9),
which is limited only by the cross section for elec-

If V» varies sufficiently slowly (but need not be
necessarily small)) over the range A, of the col-
lision interaction V», such that the force
F(=-&V») due to the core is small in comparison
with the impulsive force (-VV») due to the Rydberg
electron-projectile interaction, then (3.22) is
satisfied; in this sense Vg2 can be regarded as
"quasiclassical. "

For ionizing collisions, P - 1/n, then r, «T„
for circular orbits (L-n), and r, «T„/n for highly
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eccentric orbits (l-0}. Hence the requirement,
r, -A, /v» «n', covers electron ejection from all
orbits. With aid of the factor -exp(iet/h) (appear-
ing in time-dependent theory), this condition im-
plies that the energy e transferred during 7',

( h/-r, »
~ e„~

- nk/ T„) must be much greater than

the energy e„ imparted to 1 via V». This condition
is obviously more restrictive than the condition

7,«T„, which is commonly assumed, and which is
only va, lid for l-n and P-1/n.

For nonionizing collisions, P by (3.22) cannot
become arbitrarily small, as could occur for
quasielastic or l-changing collisions. At thermal
energies, the electron speed v, -1/n a.u. is great-
er than the incident speed v3-10~ a.u. of A for
most n of interest, and the collision time &, A1s
for e-rare gas atom scattering [where A, -(1-7)ao]
such that (3.22) implies that P»A, /n'(l + ~). The
angular-momentum change (for fixed n) due to
(e-A) impulsive encounters at R» from B' must

satisfy,

r L P(R„-) .'P[S-n'—t(f+-1}]

,[3n' —l (l + 1)]/n'(l + r)

(3.24)

which is, in general, fulfilled only at the highest
initial l when the permitted &L»A, /(1-n). Small
initial L require large changes &L»A, for validity
of the impulse model (since then the momentum

imparted by the core on the highly elliptical orbits
becomes considerably strengthened over that for
circular orbits). The above considerations are
absent in any previous l-changing study. ""

Conditions (i) and (ii) combined imply separate
independent scattering centers, such that R»
»XA„which in turn, implies negligible effect
arising from multiple scattering, the amplitude
of the scattered wave emanating from 1 being neg-
ligible compared with that of the incident wave

when both reach the spectator particle 2, and vice
versa.

Although the above conditions (i)-(iv), (deduced

intuitively), a.re consistent with various assump-
tions in the derivation of the impulse approxima-
tion, their origin within the mathematical descrip-
tion requires further cia,rification (cf. Appendix).
As shown in the Appendix, there are two distinct
classes of interaction which satisfy the impulse
approximation, i.e. , those associated with the
quasiclassical character of (slow-varying) V»,
[which is equivalent to condition (iv)] and those
which satisfy the "weak-binding" condition E»
» ~e„~. The weak-binding condition is sometimes
unnecessarily restrictive (cf. Appendix). The
further neglect of core distortion on (1-3) scatter-
ing implies conditions (i) and (ii) while assump-

tion of core inertiality implies condition (iii).
While the basic impulse approximation (2. 6}and

its derivatives (2. 19}, (2.21), (2. 24), (3.4), and

(3.15) do not insist on conservation of energy in

the (1-3) binary collision, tacit assumption is
nevertheless usually made, both for simplification,
and for possible use of measured and calculated
e-atom cross sections, which essentially provide
only on-the-energy-shell contributions. This
assumption entails considerations, in addition to
these (i}-(iv}above.

D. On and off the energy shell

The energy transferred to particle 1 in the (1,3}
collision is

where

-(u,"-I ', ),
2M,

(s.25)

'K+ k" (3.26)

in terms of the conserved momentum K of the (1,3)
center of mass and of the momentum k"' as-
sociated with the relative motion before and after
the collision. The energy departure from on the

energy shell is

&T,(1,3) =
2

(k" —k')
13

e ——K ~ P (3.27)

where P is the momentum change (k' —k). The

magnitudes of

k=M„(v, -v, )
—=M„g, (3.28}

and of

k'=k+ P,
are in general different, except when

P = 2M, 3g13 sin 2$

(3.29)

(3.30)

w here ( is the angle of scattering in the (1,3) cen-
ter-of-mass reference frame. Hence, evaluation
of T»(k, k') on the energy shell implies that the

energy and momentum charges are related by

&=V13' P (s. sl)

'where V» is the velocity of the (1,3}center of
mass. Thus,

2~13v3 sin ~g, v3 && v 1

2M»v, (sins~/)/n, v, » v,
(3.32)

for the above cases of limiting speeds. For ener-
gy changes, e-6/n', where 6 ranges from the quan-
tum defect for E-changing transitions within a given
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principal quantum number n, to 1 for transitions
between neighboring energy levels, and to n for
ionizing transitions, then the former case (v, » v, )

demands scattering mainly in the forward direc-
tion

interval de about

per unit momentum-change interval dP about

(4. 1)

sin~g= ~ —«1, v3» vy (3.33)
P =k, -k3=k, -k, , (4. 2)

with momentum change P-e/v„asituation easily
achieved for all of the above types of transitions
induced by fast heavy projectiles of speed v, im-
pinging on effectively stationary electrons. Al-
though the latter case, vy»v„ is satisfied for
thermal incident pa. rticles for n given by (3.11),
the momentum Marvy is still «M,v„ in general,
such that the (1,3) center-of-mass speed is de-
termined by v, in both cases. Thus evaluation of
T» on the energy shell alone implies that, for the
latter case,

per unit initial momentum interval dk, about mo-
mentum k, of the bound Rydberg electron. Thus,

ldk, dk, = de dPdk, , (4. 3)
dkd$ t

' ' dedPdk,

and each partial cross section is related to the
other by the 5 x 5 Jacobian of the appropriate trans-
formation. The momentum k, of incident relative
A-B(n} motion is taken along the Z axis of a space-
fixed spherical polar coordinate system, with

k&(k&s 8&k(((k()s k&(k»8&s (t(()s k3'(k3s8&'s(t(3'). ThuS,

cos8, =k, k, = (o'k', + (8'k,' —k')/(2opk, k, ),
v,sin~g= —» — v» v
2v n n'

3
(3.34} (4.4)

for energy-changes 5/n'. Thus ionization (5 = n)
will essentially be prohibited (as expected), and

excitation here will arise only from those scatter-
ing angles with P» sin (1/n), i.e. , for collisions
with momentum change P» n '. Quasielastic and
elastic scattering (as for.small 5 in l-changing
collisions) demands the full angular range, but
the inherent small momentum changes P may vio-
late condition (3.22). Moreover, as mentioned
previously, and discussed in Sec. VI, the substan-
tial contribution to l-changing collision arises not
from Rydberg electron-projectile A impulsive en-
counters, but from quite a different mechanism
(cf. Sec. V), such that the above case v, » v, of the

impulse treatment is only of partial utility. More-
over, it is important to note that the assumed neg-
lect of the distortion of the incident atom due to
the core within the derivation of the impulse ex-
pression [see (A8)] is generally not valid for slow
incident atoms with v, «vy This deficiency, im-
plicit in recent theoretical accounts of l mixing,
can, however, be remedied by a proposed new

scheme in Sec. V.

can be replaced as independent variable by k.
Hence,

(
do' do'

ddPdk, dkd(k ' d(e os,
'ed(kd kd( esse)d ',k)

8(cos8„$„k„cos8„$,)

(4. 5)

Substitute the full impulse expression with the
plane-wave final state, i.e. , (2.19}for infinite

M2, into the rhs of (4.5) with the result,

d&dPdk&dkdfi ss k3 M»

where f» is the scattering amplitude for elastic
or inelastic collisions of the Rydberg electron by
the projectile atom or molecule A. The Jacobian
of the five-dimensional (P, e, k„k, (tk, -k,'ek', )

transformation is

s(P, ~, k„k, @,) (4. V)

IV. DERIVATION OF THE SEMIQUANTAL
EXPRESSION FROM THE QUANTAL IMPULSE

APPROXIMATION

For ionization, quantum mechanics naturally
provides the cross section for scattering of the
projectile A into solid angle dk„accompanied by
ejection of the target Rydberg electron into mo-
mentum interval dk, about k, . Classical mechan-
ics (as used in the semiquantal theory') naturally
specifies the'cross section per unit energy-change

P'(cos8, ) =k,'+k,"—2k,k,'cos8, , (4. 8)

such that,

eP k3k~
8(cos8,') P (4. 9a.)

which is now determined by the following (a)-(d)
series of steps.

(a) From (4.2),
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and

8P
( )

(4.9b) k', (P ~k,', O'„Q'„O'„Q,') =k,"+P' —2k',k, cosO',

+ 2klk3 COS +13 (4. 16)
where i denotes the remaining (Q,",k,', 8„$,) var-
iables.

(b} When T» is evaluated on the energy shell
(cf. Sec. IIID},

where, in addition, implicit dependence on the
independent variables (only 8', ) arises via P. Hence
in terms of B, C, and D above,

k =k + 2M,3+3, (4. 10)
s(cosO,') k, ' upk, '

where &3 is the energy absorbed or released by
the internal state of the projectile A via an (e-A)
elastic/inelastic collision. Since

k'= nk', —Pk3,

8k, k',k,

(4. 17a)

(4. 17b}

P= ', M=M, +M3,

then,

k'(k,', 8„8„$,}= u'k, '+ p'k, '

(4. 11)
8$,' k, j 8$,

8k,rB -=

(4. 17c)

(4. 17d)

—2upk', k,
' cos u» + 2M»&, , (4. 12)

where n», the angle between k, and k'„ is given

by

cosu,', = cosO, cosO', + sinO', sinO,'cos(P', —P3) .(4. 13)

Thus, k is expressed as an explicit function
k (k,', 8,', P'„8,', P,') and,

F=, = ~ — ' cos8l+ ~ cosa.'l3.

(4.17e)

(d) On resolving the initial momentum k, along
the X and Y axes, Q, can be expressed as a func-

/ I g / f Aysing', + A,'sin&3
tang, (k„8„$„„$,) =

XlcosrPl + A.3COSCP3

sk k',k,
' s(cos u„)B=-, , =-nP i

i i
= -uP ' ' sinO', sin&, sin(g,' —Q,'),

k

in which

X,'(k,'. , 8,'. ) =k,'. sinO', . (i = 1,3) .

(4. 18)

(4. 19)

BkB=-—
8@, '

sk k,k, 8 (co su,',)
s(cos8,'} k 8 (cosO,')

sk k&k,
' s(cosu»}

s(cos8,') k s(cosu', }

i = Q —&P ~ COS+l3 .

(4. 14a)

(4. 14b)

(4. 14c)

(4.14d)

(4. 14e)

It can then be shown from (4. 18}that

(4. 20)
84'

Derivatives (J, K, L, for example) with respect
to the remaining variables (8'„k'„8',) are not re-
quired because of the relationship existing be-
tween those already determinedwith each other
and with these below.

(e) Finally, since e is expressed in (4. 1) as a,n

explicit function of k„and implicitly of all the
variables via k, (k'„8'„$„8'„Q,'),

k, =k,' —P = k,' —(k, —k' ), (4. 15)

such that the initial momentum can be expressed

Note, as Q,'(or Q~) spans its full (0-2v) range,
that a given value of u', 3 in (4. 13), and hence k in

(4.12) is passed through twice, for fixed k', , 8»
and 8,. On integration over k between its limits,
(4. 14a) and (4. 14b) will therefore be multiplied
by a factor of 2 to acknowledge this weighting.

(c) With the aid of momentum conservation,

8~

Sk,
i =Vl Vl

8~
, =-v,C',

s(cosO,')

8e
i ——V lyB,

8Q,

( s)
—— v,D-

8Q,

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)
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TABLE I. The 5&&5 Jacobian for the (k3, kg=P, &, kg,
k, IIC)&) transformation. It reduces to ABv ~(C++pC) which,
from (4.17a), i.s (-v &kqk3AB/k, ).

k(

(1-2) internal energy from e,. to e& is

e = (eq —e,. ) = ~pM„[(vI —v, )' —(v, —v, )'], (4. 29)

where v, is the unaffected velocity of the "specta-
tor" core 2 relative to the (1,2) center of mass,

P

k1
k

A
(-v,D')

D+

D
J

0
(-vs)

yB
-B

(1-G)

0
(v', -v, F)

E
K

0
(-v, C+)

C
C
L

0
(v pB)
(-~B)

B
6

1.e. ,

Mi
v~ ~

M2
(4. 30)

With the aid of (4.27), (4. 30), and (4. 10), the

energy change (4. 29) is

'Table I provides a schematic representation of
the completed Jacobian J», which finally reduces
to

2

E=M~3V~3 ' (g —g) +
(

g ' (g —g)
M~ + M2)

M@1,
(M, + M, )(M, + M, )

(4.31)

J„=ABv,'[C'+yC]=-v,' '' ~k+B,' k, ]
(4.22)

i.e. , with the a.id of (4. 9a), (4. 14a), a,nd (4. 17a),

k,kP

(4. 23)

I 2 l2 l2 l l I
g = v~ + v3 —2v, v, cos @$3 (4. 24)

from (4. 12), such that, with the aid of (4. 13), it
can be shown that

This must now be expressed in terms of the var-
iables (P, e,k„k, P, ) if the quantal —semiquantal
transformation is required (as is the present ob-
jective); or in terms of the variables (8,', P,', k'„
O'„P', ) if the inverse transformation is needed.

In terms of speeds v,' ', v,' ', and g' ' associated
with the momenta k,' ', k,' ', and k' ', respective-
ly,

and

g' = v', + v,' —2v, v» (4. 34)

it follows that

cos8,' = [2e + P'/M, + M, (v', + v3 -g )]/(2M, v fv, ) .
(4. 35)

From (4. 8),

While the present analysis holds for arbitrary
masses M„M„and M, moving with arbitrary
velocities, we confine our subsequent analysis,
in order to preserve clarity, to the case of in-
finite M, (tacitly assumed in Sec. II), and of zero

3 the resulting formulas can be readily general-
ized to cover all M, and &,. Thus,

e = V, ~ P = (M,v, + M,v, ) '(M&/M)(v&' v&), (—4. 32)

and since

(4. 33)

sin'8', sin'8', sin'(Q, —P,') cos8, = (v', + v~ —P'/M', )/(2v,'v, ) . (4. 36)

where

= (1 —S)'+ 2S cos8', cos8', —(cos'8', + cos'8', ),
(4.25)

With the use of (4. 35) and (4.36) it can be shown,
after much lengthy analysis, that (4. 25) can be
expressed (and generalized so as to cover arbi-
trary M, and &,) as

S= (v", & v,"-g")/(2v', v', ) . (4.26) sin'8, 'sin'8, ' sin'(P, ' —P,')

(4. 27)

and

In terms of the (constant) velocity V» of the
(1,3) center of mass,

vi" =V»+ (M»/Mi)g"

P2= 4M. .. ,. ~ [(g'-g')(g'-g'-)] (4 37)
3V~ V3 V3

where the limits to the relative speed for given
energy and momentum changes are

v,"' =V» —(M»/M, )g "', (4. 28)
g' = ,'B + [(B/2)' —C]—'i' (4.38)

for the initial (unprimed) and final (primed) velo-
cities of both particles 1 and 3, respectively.
Since, in the impulse approximation, the elec-
tron (I)-core (2) potential energy is "switched-
off" during the brief encounter, the change in the

in which

B(GAP, V»v, ) = » + vg+ v) +v3+v3
(&+ p) M]3

4e(e+ &,) (4.39)P2
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and

g M 13

+ '(v', +v,')+ ~'fv', (e+,)-e, ,v,].
13

(4.40)

The mass-ratio parameter is defined as

the differential cross section for ejection of a
bound particle with initial momentum k, in the in-
terval dk, d(t), about (k„Q,), with initial speed g
relative to the projectile in the interval dg about

g, such that the energy e and momentum P gained
as a. result of the (1-3) collision are in an inter-
val de and dP about e and P, respectively.

For a hydrogenic system in state (nlm), the mo-
mentum wave function

M2M3 M3
(4.41) g,.(k, ) =g„,(k, )Y, (8„$,) (4.46)

while the speeds of 1 and 3 after the collision are
determined from,

vg ——v, + 2e/M„M, = M, (1+M, /M, ) -M, , (4.42)

such that the average over m states yields,

() f Q I(;,.(k, l (*dk='ag*„,, ((, ,l.
m=D

(4. 47)

and

v,"=v', —2(e+ &,)/M„s.
Hence from (4.23) and (4.37),

(. [(g g)(g 2)] (/2

55 13 3 3

(4. 43)

(4.44)

Introduction of the normalized speed distribu-
tion,

(4.48)P„,(v, )dv, =g„', (k, )k',dk, ,

we therefore have, on averaging (4.45) over the
initial m states and on Q, integration,

such that (4. 6) yields

d~dP Ig, (k, ) I'k', dk, dP,
M»V3

If„(k,k') I2dg'

[(g' -g')(g'-g'-)1'" ' (4. 45)

dedP F„,(v, )dv, fl»(P, g) I'dg

I:(g' -g')(g'- g'-)1'" '

(4. 49)

Thus, the integral cross section for energy
change in the range c1 E'2 is

"
F„,(v()dvi '+ If»(P, g) I'dg'

(4. 50)
13 3 &1 y V L&g+ . g ~~g

where the e-A scattering amplitude f»(k, k ) is general, being written in terms of P and g, and where a
multiplicative factor of two has been inserted to acknowledge the fact, as (t),

' (or (f),') spans the full (0- 2v)
range for fixed k,', 8,', and 8,', that g passes through its full (g -g, ) range tzoice, as previously noted from
(4. 12) and (4. 13). This final expression (4. 50) is identical to that derived from a different approach de-
fined as the semiquantal treatment. ' The limits, P' and v„ follow from the requirement that g, in (4. 38)
are real, and can be shown to be'

P'(e, v, ; v, ) = min[M(v, '+ v, ),M„s(v,'+ v, )],
P (e, v, ;v, ) = max[M Iv,' —v~ I, M~e I

va' —vs I] )

with the provisor, P ' & P, and

v'„(e) = max[0, (2e/M)], a ~ ~0.

(4. 51)

(4. 52)

(4. 53)

In ionization, for example, 61 is the binding energy I„of the Rydberg electron, and e, is the maximum
amount (&M»v, I„) of kinetic ener—gy of relative motion available for electron ejection.

ln situations where it may prove more convenient to express the general (1-3) scattering amplitude
f»(k, k') as a function of relative speed g and scattering angle (I), rather than of g and P as in(4. 50), then
the above analysis can essentially be repeated, but with

P' =k "+k' —2kk ' cosy y
(4.54)

such that the Jacobian of the appropriate transformation is

&(cos(I),e, k„k, @,) P s(P, e, k„k, Q, )
8(cos8,', (()),', k,', cos8,', (j),') kk' s(cos8,', Q,', k,', cos8,', (t),')

(4. 55)
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We can then show, again after much analysis and reduction, that

sine, 'sine, 'sin(Q, ' —Q3') =, , [(1+a)(v,'+av,') —ag']'~'[(cosg' —cosg)(cos( —cosg )]'~'kk'

1 3 3

for use in (4.23). The angular limits g' can be shown to be

cosg'(e, v„g;v, ) = ~ '(n'+ p') '(n(n+ ) + p[~'(n'+ p') —(n+ E)']'~'},

where m is g'/g in terms of the final relative speedg', and where

1-a
lsgi 3» 1 3 i+a

(4. 56)

(4. 57)

(4. 58)

and

P(vi, g;v, ) = 2™»[(2v',+ 2v', -g')g' —(vi —v', )']' ' (4. 59)

are determined by parameters prior to the collision. The energy

aE=E+
(
') +~ (4. 60)

assimilates both the energy change e in (1-2) binding and the change &, in the internal energy of the incident
atom (or molecule). For small energy transfers 7,

and

cos g' = 1 —P/2p'+ O(e '),

cosg = 1 —2(P + ne}/(n + P }+O(P),

(4. 61)

(4. 62)

such that quasielastic (e- 0, &,=0) or energy-resonant collisions (e =0) imply g' —0 and g -(n' —p')/
(n'+ p') .

The Jacobian (4. 55) can be written as

k k'k'
J,', (c,v„g, ()= ' ' ' S(v„g;v,)[(cos(' —cos()(cosg —cosg )]'~',

1 1

in which the function

(4. 63)

S(v„g;v, ) = " [(1+a)(v,'+ av,') —ag']'~'= " [(1+a)(v,"+av,")—ag "]t~2 =(d + p )' ~2/gM, 3 2 2 2 1/2 13 (4. 64)

(4. 65)

is invariant to the transformations (4. 42), (4. 43), and (4. 10) between the post and prior collision speeds.
Hence (4. 6) yields

"
F„(v~)dv~

'
g dg '

~f~,(g, ~) ~'d(cov«- S(v„g;v,), [(cosg' —cosP)(cosg —cosg )]'~' '

x+ dx

g X+ X X X»
(4. 66}

which is the required semiquantal result, ' when

allows, nce is made for the fact, as P,' (or Q,')

ranges from 0-2m, that g passes through the

(P —(') range twice. Although the analysis for
the Jacobian assumed infinite core mass M„ for
simplicity, i.e. , a=M, /M, in (4.41) the general-
ization for arbitrary M2 can be readily made with
the result that both (4. 50) and (4. 65) follow with
the mass ratio a taken as in (4.41).

Many simplifications to (4.50) and (4. 65) follow,
as in cases when f» is simply a constant, or either
independent of g or g, when use can be made of
the integral

for x =cosg and g', respectively. For example,
when the scattered amplitude f» depends only on
the momentum change P (as in Born's approxima-
tion) then (4. 50) yields

Os(~, ) —— d~ "' f„(P) 2dP .

(4. 67)

Although this simplified result could have been
deduced more directly from the impulse expres-
sion (2. 19) with the assumption f»(k' —k), the full
analysis given here is essential to general scatter-
ing amplitudes f»(k, k'), i.e. , the transformation
from (2. 19) to either (4. 50) or (4.65).

Although the complete expressions (2.19), (4.50),
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and(4. 65) havebeendesignedforA B(n) neutral-neu-
tral collisions in mind, since the impulse criteriathat
(A-e) and(A-B') interactions be short range relative
to the (e-B') interaction are well satisfied, it is
worth pointing out for A' B-collisions when

1f„1'
is (45 /P~a~~), the differential cross section for
on-the-energy-shell Coulomb scattering which
depends only on momentum change P, that (4. 67)
reduces" to the standard expressions of the bi-
nary encounter theory" for charged particle-atom
collisions. For this special case of Coulombic
scattering amplitude f»(P) associated with charged
particle-atom col1.isions, Vriens" derived the bi-
nary encounter expression from the quantal im-
pulse formula. Bates and McDonough" have de-
rived the binary encounter result from Born's ap-
proximation with o»(P), and from the classical
Thomas differential cross section" [which essen-
tially involves the initial element ~(g/t, )&»(k, k')
xdk'd(cos8, )] for scattering of two free particles
with general differential cross section o»(k, k').

In summary therefore, the present analysis in
this section has provided the valuable transfor-
mation from scattering variables (k,', k3) for the
ejected and scattered particles, 1 and 3, respec-
tively, which naturally occur in detailed quantum-
mechanical treatments to the set of dynamical
variables (e,P, k„k, P, ) or (e, g, k„k, Q, ) which

represents the natural choice in semiquantal, bi-
nary-encounter, and classical treatments. Within
the basic impulse approximation the essential as-
sumptions underlying the semiquantal description are
a plane-wave descr iption for the ejected electron
and evaluation of the general scattering amplitude

f»(k, k') only on the energy shell as in (4. 10).

V. THE (A-8+) ENCOUNTER IN A-8{n)
COLLISIONAL TRANSITIONS

In the full Tz, -matrix elemen. t (A10) for 3-(1,2)
collisions, the contribution from (3-2) encounters
is nonvanishing only for elastic scattering (k,
=k„ i =f) so that inelastic transitions originate
solely from (1-3) encounters, the second term of
(A10), in which the distortion effect of the core
interaction V» on the incident wave g' is neglect-
ed. Inelastic transitions can, however, arise indi-
rectly from (3-2)encounters in the basic impulse
expression (A6) which properly includes this dis-
tortion but which is much more complex for com-
putation, a nine-dimensional integral rather than
a three-dimensional integral as in (A10). Inclusion
of inelastic transitions arising from direct col-
lisions with the core demands the reformulation
of the impulse procedure so as to acknowledge
noninertiality of the core, i.e. , finite M, rather
than infinite M, as assumed in Sec. II. The refor-

mulation in essence spoils the basic attraction of the
original method, and involves solution based on
approximate (perturbation) procedures. Effective
allowance for inelastic transitions from (2-3)
coLlisions can, however, be obtained within the
sudden approximation, and in a more elaborate
new treatment proposed below.

(5. 1)

such that its projection a& onto a final state g& for
the electron relative to a fixed core gives the
probability 1($&1$,.') 1' in the sudden approximation"
which yields,

P„= lu, I'=1(~,(r) Iem(-i}}f,v -r/~) lq, (r)) I'

-=1z„.(M,P/M„)1', (5.2)

for transition i -f. This mechanism can alter-
natively be viewed as originating from an instan-
taneous change of the electronic Hamiltonian,
from one without motion of the center of mass
(c.m. } of the electron shell to one with both rela-
tive and c.m. motions described by (5. 1). The
required cross section for collisional transitions
is therefore,

Q,.&
——

P& exp i ' P, $& dg

=—2m E&,. M,P M») 'pdp,
0

(5.3}

where the maximum impact parameter p, deter-
mined by the effective range of V», must be well
within n a„which is generally the case (cf. Table

A. Sudden approximation

Let the (3-2}encounter be sufficiently fast so
that the collision time w, «T„, the orbital period
of the Rydberg electron. The wave function g,.(r)
in state i relative to a fixed core is therefore un-
affected. Require, in addition r «n'ao/v» such
that, during the encounter, the nucleus remains
essentially fixed within the dimensions of the Ryd-
berg atom. The (3-2) encounter suddenly trans-
fers momentum P to 2 which then moves with velocity
v = P/M» after time r, The. electronic state g;
is relative initially to a fixed core, and finally
to a core moving with speed v. The overlap be-
tween the fixed and traveling orbitals provides
the desired probability of transition, and can
be obtained either in the coordinate system in

which the nucleus is initially at rest, or more
conveniently, in the system in which the nucleus
is moving. Here, the initial wave function (with

core traveling backwards with velocity v) is,

g,.(r)=q, (r)exp(-. il,v r/g}
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II, Sec. VI), and where (do2~&/dQ) is the differentiaI
cross section for (2-3) elastic scattering.

Although this paper essentially describes neu-
tral A-neutral B(n) collisions, because the (3-1)
and (3-2) interactions are . short range (-polariza-
tion attraction) in comparison to the (1-2) Coulom-
bic binding interaction, it is interesting to note
that the impact parameter p is related to the angle
(j) for scattering (in the 2-3 center-of-mass sys-
tem) under the Coulombic interaction (n/R») at
relative energy E by

X—= — V& — V)t+ V„(R') ——,(5.8)
e'

R'=R+ (M, /M)r, M=M, +M, , (5.9}

such that the (2-3) interaction can be expanded as

V„(R')= V»(R) + (M, /M)r ~ VV»(R} +

where thevector R' of 3 relative to 2 is, in terms
of its position R relative to the (1,2) center of
mass, and r the (1-2) vector separation, given by

p= ((2/2E) cot 2(j), E = 2M»v', , ,

and that the momentum change is
]

2~23v23»n 2$

(5.4)

(5.5)

(5.10)

The full scattering solution for X can be expand-
ed in terms of the target basis (Q„(r)), as

such that the integral cross section (5. 3) is given
in the sudden approximation by

)It(r, R) = g F„(R)(t)„(r), (5.11)

q$ I y g) 2 (5.6)
where the unknown F„ for the (2-3) relative motion
can be shown to satisfy the standard set of coup-
led, three-dimensional differential equations,

8m''
IF„(P)I'

32 P

P ™23(23 23

(5. I)

which arises solely from the (1-3) interaction.
However, (5.6) permits momentum changes P
which are a. factor of (M, /M») smaller than those
allowed in (5. '7), i.e. , P „=(M,/M23)(ef —2,. )/v23
at high energy, thereby causing a non-negligible
contribution to the overall inelastic cross section.
This treatment (5.3) can be generalized to inter-
mediate and thermal energies as follows.

B. General treatment of inelastic transition via (2-3)
collision

In the absence of the interaction Vy3 between the
incoming projectile 3 and the Rydberg electron 1,
the Hamiltonian for the complete A-B(22) system is

I

where the maximum value of P, the momentum
change 2Myv23sin&g corresponding to an electron-
ion collision at speed v», is P,„=2MIv2„and the
minimum „is ill determined by g „correspond-
ing to p= p in (5.4), or else is approximated
by M, (v,'3-v») where v» is the final speed deter-
mined by energy conservation of the complete
scattering system. Although multiplied by (M, /
M»}'; the form of (5. 6) is identical with the usual
inelastic Born cross section,

[Vit+ yf'(R)]Ff(R) = (2M„~/ff')Q Vf„(R)F„(R))
~f

where

(5. 12)

(5.13)

are the local wave numbers for relative motion
under the static interactions Vff(R), the diagonal
element of the matrix,

Vf,. (R) =
V23 (R}6f,.

+ '
P& r) r P,. r) &V23 R)+

(5. 14}

A hierarchy of approximations readily follow
from solution of (5.12) to various orders of sophis-
tication. In particular, the multichannel eikonal
treatment designed by Flannery and McCann"
(for e-atom collisions) and the multistate orbital
treatment of McCann and Flannery" (for heavy
particles at thermal and higher energies, as
here) represent efficient semiclassical methods
of solution. As shown by McCann and Flannery, "
the multistate-orbital treatment within a common
trajectory for all static interactions V&&(R)
yields

i 1/2
f„,(8 ) =B,(p, t - ) ee)t (-— ( vtt (R(t)) e R P ( t)]dt

tp
(5.15)

where (dc»/dA) is the classical differential cross section per steradian for scattering by the optical poten-
tial,



22 THEORETICAL TREATMENT OF COLLISIONS OF RYDBERG. . . 2423

a.„((((((}=+ (a„(((l*„+Pa;(((a„(((v,„(p(((\}e p( ~(V'a)),
n f

(5.16)

which effectively couples the response in (5.11) of the Rydberg atom to the interaction V»(R (f}) in (5.10)
back to the relative motion, and vice versa. This response is measured in terms of the transition ampli-
tudes B&(t) which are solutions of"

ig '
(p, t) =Q B„(p,t) V~„(R(t)) exp( „e~—„t I,

f
(5.17)

where the time t, introduced in the stationary state description, is merely a dummy variable invoked only
to represent variation along the trajectory specified by R(t). This trajectory common to all excitation
channels is determined by the solution of Hamilton's equations, "

and

BQ) BH
f=sP

Ap
(5. 18)

(5. 19)BP; BH s'U„, gg „(} ( }
BV,„(Q,) i

t „ t exp

for variation with time t of the generalized coordinates Q
—= (X, Y, Z) of R(t) and of the associated con-

jugate momenta P& for motion of a particle of reduced mass M» with Hamiltonian,

H =Q 2
P)(R}+'V, ,(R) .

AB
(5.20)

The solution for relative motion in (5.18) and (5. 19) is coupled to the solution of (5.17) for the transition
amplitudes B„via the optical potential (5. 16). An essential feature of scattering by this effective potential

U„, is that total energy of the system is conserved at all times throughout the collision, as is confirmed
by showing with the aid of (5. 16)-(5.20) that dH/dt = SH/ St= 0.

When the trajectory is computed without the second term in (5. 14}, and when it is single valued, i.e. ,
a specified scattering angle 8 originates from one impact parameter p, then the required cross section is

where the classical differential cross section is obtained from V»(R), and where Bf is obtained by standard
numerical procedures from (5.17), solved subject to Bz(p, t= -~) —= 5z, The above equations represent the
present treatment of inelastic transitions arising from 2-3 encounters.

That this treatment yields the correct high-energy limit (5. 3) immediately follows by invoking the sud-
den approximation to the coupled set (5.17}. This entails ignoring the exponential pha. se factors (iez„t/ff)
in (5.17), (since the collision time t is assumed small in comparison with the time I/e&„ for transition be-
tween highly excited states n and f). The resulting set of coupled equations can then be solved exactly"
to yield

t
( , a)=p( p() ppap i(' ' f vv„(a(()& a( p(r(, . (5.22}

which can be verified by direct substitution in

(5.17}. Since F» —-&V», such that the impulse

F33dt =M33(v33 —v33) —M3v
(3O

(5.23)

is the momentum M,v transferred to the core 2,
the probability of transition is therefore,

IBy(p, t--)I'= I(@,(r)lexp(iM, v r)I@,( )) Ir'

(5.24)

in accord with (5.2). This derivation is rather
instructive in that it clearly identifies the role of
the impulse within an elaborate quantum-mechan-
ical description of the collision process. Since the
right-hand side of (5. 24) is the inelastic form fac-
tor squared which when summed over all final
states f yields

(5.25)
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unity for any momentum change P, thereby imply-
ing probability conservation for ~Bz ~

in (5.24),
such that the total cross section for all elastic and
inelastic events is therefore,

tot0'.f
——0'2~ .

Thus, the cross section 0',.
&

of any process based
on the (2-3) collision mechanism is limited by the
integral cross section o» for (2-3) elastic scatter-
ing, which can be rather large. The detailed
treatment is represented by the solutions of (5. 17)-
(5.19}with interaction matrix (5. 14) in the expres-
sion (5. 15) for the inelastic scattering a.mplitude
f«(8) in (5.15). When more than one impact pa-
rameter p,. yields a specified classical scattering
angle 8, then interference effects occur between
the phases associated with the various trajec-
tories p,.(8}. Also, for scattering in the vicinity
of the rainbow angle 8, i.e. , where d8/dp-0, an
infinite number of trajectories p,. form a caustic as
8-8„, and special procedures involving Airy func-
tions are required. To cover both of these possi-
bilities, McCann and Flannery have provided
a three-dimensional uniform approximation, a
direct generalization of the one-dimensional elas-
tic scattering analysis of Berry" to inelastic
events, which replaces (5. 15) by a summation
over all the contributing trajectories p,.(8) with
appropriate phase factors arising from the action
(or eikonal) associated with each trajectory

VI. PARTICULAR APPLICATION: I MIXING
IN RYDBERG-ATOM-RARE-GAS THERMAL

COLLISIONS

The above quantal impulse, semiquantal, and
multistate-orbital treatments for the cross sec-
tion o,.& of A-B(n) collisional transitions based on
both (A-e) and (A B') encount-ers find extensive
application, particularly to excitation and to ion-
ization processes which involve momentum and
energy changes in (A-e) encounters sufficiently
large in comparison with the momentum and energy
imparted by the Rydberg electron-core attraction
during the (A-e) collision time. For many high-
energy, weak-binding situations (E,» )„~), (A-e)
encounters alone provide the dominant contribution
to 0',.

&
and yield the correct high-energy Born limit

for heavy-particle collisions when the Born cross
section for (e-A) scattering is adopted. ' Other
cases such as quasielastic, l-changing collisions
at thermal energy involve small momentum changes,
and, because of the limitation (3.24), and of
on-the-energy-shell considerations in IIID, in-
troduce severe tests of the hypothesis based on the
sole (A-e) binary encounter. Important and some-
times major contributions then arise from the

1.0688 x 10' " ao, (6.1)

where a a', is the polarizability of the neutral, and
k, (a.u. ) is the momentum of relative motion of
the (A B') -system with reduced mass M» (amu).
Expression (6. 1) is obtained from the semiclas-
sical phase shifts, "

M~ V„(R)dR
7g ( 3) k2 [k3 (I + I)2/R2]l/2

(6.2)

for the polarization attraction V» ——-(ne /'2R ).
Cross sections calcuiated from (6.1) for Na'-rare
gas Rg collisions at 430 K are presented. in the
fifth column of Table II.

In an effort to assess whether the binary (A-e)
and (A B') mech-anisms discussed here offer real-
istic interpretation of the recent experiments" of
I mixing in Na(nl)-Rg collisions at thermal ener-
gies, i.e. , when the orbital speed v, -1/n» v„
we note from (3.21) and (5.26) that the total cross
section for all elastic and inelastic events at a
given impact speed v, is

where 0» is the integral cross section for e-A
elastic and inelastic collisions consistent with the
speed v„which is sufficiently small (-1/n) so as
to allow (e-A) elastic scattering alone.

The minimum temperature T, corresponding to
energy —,'kT of relative motion, required to cause
n n+ & exc-itation and ionization of H(n) are

T, (K) = (10/n)'~(300) (6.4)

T, (K) = (23/n)'&(300), (6. 5)

respectively. Since the quantum defects for s and

p levels of ga are 1 35 and 0. 855 ~ jt js reason

mechanism based on A-8' encounters, discussed
in Sec. V, and limited by the (A B'-) elastic scat-
tering cross section 0'» which can be rather large
at thermal energies.

The full quantal and classical investigations of
Flannery and Morrison" on O', Na', K'-rare
gas (He, Ne, Ar, Kr) elastic collisions show,
as the momentum k, of (2-3} relative motion in-
creases, that the elastic cross sections 0», are
large (-10' A ) at thermal energies, and oscillate
on a decreasing background. The amplitude of
the quantum oscillations diminishes at energies
~ thermal where a very accurate representation
of 0,3 is given by,

c23(k3) -=2I sin q, df
4W

0
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TABLE G. Maximum cross sections got for Na(10 l)- rare gas gg collisions at 430 K,
based on (g-gg) elastic encounters with cross section e~, and on (Na+-gg) e]astic encounters

with cross section o
&&

. The relative speed, momentum, and polarizability of the incident

Rg atom 3 are v3, k3, andn, respectively.

Rg tf 3(10 a.u.) k3 (a.u.) e (a(}) o
&&

(A. ) o~&3 (A.&) +tot (A ) exp(~')

He
Ne
Ar
Kr
Xe

7.471
4.208
3.611
3.248
3.119

4.641
8.240
9.601

10.68
11.11

1.384
2.666

11.07
16.74
27.26

3.03x 10~

6.87x 10~

1.96x 10'
2.78x 103
3.95x10'

(6.67-7.64) x 10
(0.75-2.33)x 10'
(2.20-0.43) x 10
(1.91-0.39)x 1p4

(6,89-1.01)x 10

(0.97-1.1)x 10 2.2 x 10
(7,6-9.2) x 1Q 7.7x 1Q

(4.2-2.4) x 1Q 3.7x 1Q

(2.2-0.7) x 103

(7.3-1.4) x 1p4

able to assume" that Na(10d}-Rg collisions at
430 K will strongly couple only those angular mo-
mentum in n = 10 with l ~ 3.

The electron rare-gas elastic cross sections o~3

can be obtained from recent phase shifts calculated
in the polarized-orbital, local-exchange approxi-
mation by Yau et al." The cross sections were so
normalized as to reproduce measurements (when

available) of the scattering length A, since, for
He, Ne, and Ar, the calculated scattering lengths
were 13% lower, 11% lower, and 40% higher than

the respective measurements. " The cross sec-
tion o,",,

" a, rising from (1-3) collisions is pre-
sented in the sixth column of Table II. Here the
first value in the range corresponds to &y3:4m''
at zero electron-energy, while the second value

is associated with k = 0. 1 a.u. This k range cor-
responds to orbital electrons in levels n & 10.
Within this range, a rapid decrease" due to the
Ramsauer-Townsend effect occurs in o» for Ar,
Kr, and Xe, a situation ill suited to the impulse

treatment, as discussed above in Sec. II. The
cross sections &t",,"are lower than the measured
l-mixing cross sections for He, Ne, and Ar in

column 8 of Table II by factors of 3, (3-10), and

(1.7-8), respectively. This inadequacy may be
attributed to the neglect of distortion of the in-
cident wave by the core interaction V~ (cf. Ap-

pendix), an effect not expected to be important
during (e-A) interaction when v3«v, , and to the
incomplete description of the l-mixing mechanism.
The latter omission, remedied as detailed in Sec.
V, can be assessed by the maximum contribution

from (2-3) collisions. We note from Table II

that o p 3 indeed contributes significantly particular-
ly for the lighter systems, to the overall cross
section o'„„which then becomes more consistent

with the measured values. " Also the (A B') col--
lision tends to offset the dramatic effect exhibited

for the Ar case by the Ramsauer-Townsend effect.
Although o'~3' is large, the effective scattering

length for (2-3) elastic collisions alone (-5, 7, 13,
15, 18 A for He-Xe, respectively) is still much

less than the orbital radius (-88 A) for the n=10
Rydberg electron, so that core distortion during

(e-A) scattering can indeed be neglected. Limits
to the cross section v„, ior higher n can be ob-
tained from Table 0 by stealing, by a factor n '
which arises via v& in (6.3).

Also, it is worth noting, since the cross section
o „," represents the upper l.imit to cross sections
for all processes based on the impulse treatment
(2. 6) of (e-A) encounters in A-B(n} collisions, that
cross sections '~ based on any derivative of (2.6}
which exceed o t",," have somewhat limited reliabil-
ity.

A detailed theoretical account of l-mixing col-
lisions, therefore, demands both (1-3) and (2-3}
coll.ision mechanisms. The former mechanism
at low energy v, «v~ could involve proper acknow-

ledgment of the distortion of the incident wave by

2, within the appropriate impulse expression,
i.e. , the nine-dimensional integral (A8) rather
than the three-dimensional integral (A10). The
latter mechanism based on noninertiality of the
core would demand the full treatment presented
in Sec. V or appropriate reformulation of the im-

pulse procedure. Such investigations are under-

way. It is interesting to note for the special case
of Rydberg atom-parent atom collisions that Janev
and Mikajlov33 recently introduced a mechanism
based on quasiresonant energy exchange within

the quasimolecular ion lying within the orbit of
the Hydberg electron. The mechanism proposed
here is in a sense general to this in that the nuclei
need not be identical.

VII. SUMMARY AND CONCLUSIONS

In this paper we have derived the semiquantal
treatment from the quantal impulse approxima-
tion (2. 6) via appropriate transformation between
the sets of dynamical variables naturally associat-
ed with each treatment. The actual transforma-
tion represents in itself, a very useful and valu-
able procedure. In so doing, the assumptions in-
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volved with the semiquantal description become
apparent and are a plane-wave description for the
ejected electron in the process,

A(i)+ B(n) -A(j }+B'+e (7. 1)

and evaluation of the general scattering amplitude
for Rydberg electron-A encounters only on the
energy shell. The semiquantal method represents
a very efficient procedure for calculation of in-
tegral or energy-differential cross sections for
(7.1), rather than from the corresponding quan-
tum expression (2. 19) which is valuable for angu-
lar differential cross sections. The total cross
section o, , in the semiquantal treatment (2. 18)
for all elastic and inelastic events yields a result
identical to that (2. 15) obtained from the full
quantal impulse expression (2. 6).

The full impulse description (2. 6) of A-B(n) col-
lisions is justified in two cases when (a) the inter-
actions of e andA with the core B'are quasiclassical
in that they exhibit a variation slow in comparison
with that of the (e -A }interaction within its range f&3
and when (b) a weak-binding situation exists, i.e. ,
when the incident energy E, » ~e„~(f»/i(}, where l(.

is the reduced wavelength of incident relative mo-
tion. The former case (a) necessarily implies
that the force on e due to the core B' is negligible
in comparison with the impulsive force of the (e-A)
interaction, or that the momentum transferred to
e during the (e-A) interaction time 7, is much
greater than the momentum imparted to e via the
core B' during the same time r, . Case (b) reflects
essentially a high-energy situation. Both cases
are further restricted by the condition that dis-
tortion to the motion of A by the core B ' can be
neglected. When this distortion is strong, as in
thermal energy collisions with vy» v„ then the
more basic expression (A8) which is much more
complex than the standard (and still fairly com-
plicated) impulse expression (2. 6) or (A10) must
be used.

The above requirements are necessary for valid
application of the impulse procedure (2. 6) to
A-B(n} collisions. Those collisions involving
small energy and momentum cases require par-
ticular scrutiny (as for l-changing collisions).
The derivatives of (2. 6) given in Secs. II and III
involve additional considerations for validity of
application, and the associated cross sections
cannot exceed o« in (2. 15). Evaluation of f» only
on the energy shell requires the energy and mo-
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APPENDIX: IMPULSE EXPRESSION,
QUASICLASSICAL, AND WEAK-BINDING

VALIDITY CONDITIONS

Basic Expression. Although the quantal impulse
approximation has been derived from many formal
quantal directions"'" "and from generalization
of Born's approximation, "perhaps the method
most natural and transparent for A-B(n) collisions
is based on the exact two potentia, l expression"
for the T-matrix element for scattering by inter-
action (V»+ V,c) of the incident particle 3 (as-
sumed without loss of generality to be structure-
less) with the Rydberg electron 1 and core C.
In order to clarify several issues important to
application for processes involving highly excited
states, we will follow that direction. The two-po-
tential formula" yields

T„=«, I V„(r,) I X,'&+ «yl&„ I X,.'&,

where

(A1)

mentum considerations of Sec. IIID.
More importantly, however, particularly for

quasielastic transitions at thermal energies is
the failure of the standard impulse result (2. 6) to
acknowledge the possibility of electronic transi-
tions via direct A-B' encounters a new quantal
description of the underlying mechanism has been
formulated here. Preliminary assessment in-
dicates that this additional mechanism yields im-
portant and perhaps dominant contributions to the
overall cross section. This mechanism is in ef-
fect complementary to the impulsive (e-A) mech-
anism in that it provides a description of the col-
lision at lower impact energies in situations where
the momentum and energy transferred is sufficient-
ly small so as to violate the essential criteria
for the impulse approximation.

In conclusion, the combination of the quantal

impulse approximation Sec. II, or of its deriva-
tives in Secs. II-IV when valid, and the new

mechanism in Sec. V based on A-B ' encounters
provide interesting and complementary theoretical
accounts of A-B(n) collisions.

C& (r„r,) =
(f&& (r, )

exp�(ik~

~ r~), (A2)

(A3)
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and the operator

1

(H +V ) V +. »x (A4)
0

the core are neglected and the free-particle ener-
gy is used instead of the total energy of the sys-
tem. The second term of (Al) is then

2

H = — V', — &', + V, (r, ) —= ic + V,
2M1C 2M3C

(A6)

where k describes free motion of 1 and 3. The
impulse approximation replaces t» by

1
13 13 13 v. ~ » 13 y

~
—& —"13+&

(A6)

which is taken over intermediate eigenstates of g

with energy E„, i.e. , over

Q„-(r„r,) =
( }, exp(ik, r, )exp(ik, ' r, )

is taken over distorted waves g', which are scat-
tering solutions of (H, + V,c}, with total energy E
for the A-B(n) system and with appropriate in-
going and outgoing boundary conditions. The first
term in (Al) is nonva, nishing only for elastic scat-
tering. 'The Hamiltonian for the isolated collision
partners is

(X, lx,.lx,')=f d dxx ,X'I4': », .'x

x (y„-. I t '„'I @„-)-„-,(4„- I x,'}t&,-,

(A8)

the T matrix for free-particle scattering by V13,
weighted by the probability amplitudes that the
actual initial and final states of the total scattering
system have free total momentum components
K and z ', respectively. Because of the R inte-
gration in (A8), t ~™,' connects only those free-
particle states Q„- in (A7) which satisfy momentum
conservation (K=K') expressed by 5(K —K'). The
six-dimensional element du is either dk, dk, or
dk dK. The amplitude (Q„- I x,.'}of the free-particle
states is, from (A2) and (A7), simply the product
of Fourier transforms of the atomic orbital P,.(r, )

and of the wave x'(k„. , r, ) distorted by V~. If this
distortion is neglected, then the probability of
amplitude of finding the initial state with free mo-
mentum (k, + k„.) is determined solely by V,c, i.e. ,
by

, exp(iK R)exp(ik r),2v}3 (A7) (0; I x,.'&=g,.(k, )6(k, —k„.), (A 9)

where K and k are the respective momenta of the
(1,3) center of mass at R and of relative motion of
1 and 3 separated by r. In (A6), interactions with

I

where g, is the momentum eigenfunction (2.4)
for the bound state.

Upon integration over dk, dk,' in (A8) the full T
matrix (Al) is therefore,

&~;(k„k,') = [(exp(ik,' r, ) I v~ I x '(k, ; r, ))p

d,dk1g~ k,')g, k, exp ik r t13 exp ik ~ r 5 p —k1 k1) (A10)

1 2M~~

3
(All)

which therefore yields the total cross section for
all elastic and inelastic events as

in which P is the momentum transfer (k, —k,'} or
(k' —k) such that the 6 function expresses the mo-
mentum conservation which originated in (A8}.
When the distortion of g' is also neglected in the
first term of (Al) or of (A10), then this first term
simply reduces to the Born T matrix —the Fourier
transform of V3~ —for scattering of 3 by the core.
Being real, it makes no contribution to the optical
theorem,

I

tion (A12) is an upper limit for processes as-
sumed to occur via the impulse mechanism, and
is certainly valid for v3»v, . For incident speeds
v, «v„however, distortion of p' by Vsf.- may not be
ignored, such that the first term of (A10) will, in

general, be complex and may therefore make a
significant contribution to (A12).

Basic Assumptions. (a) The error introduced
inthe basic impulse approximation (A8}is assessed
by the difference between t» of (A4} and t',3'
of (A6). From the inverse-operator difference
relation, A ' —B '=A '(B -A)B ' it follows that

1
t —t~m, V"E —(H, + V~ ) —V„+ie

txxg( 3) [ gg(kg) I 'Uxg» ( $3)dk, x

V3
(A12)

x [E,+ (V,c + V,c) —E]i

where 0'„is the cor responding cross section for
(e-A) collisions at relative speed v». Cross sec-

1x . V„,E„—g —V,3+ ge
(A13)



M. R. FLANNKRY 22

which vanishes when the sum V~ of the core inter-
actions, V,~ + V~, is constant over the range Ri3
of interaction of V». The- basic impulse expres-
sion (AB) is, in general, therefore valid when Vc
varies only slowly (and need not be necessarily
small) over 8», i.e. , the binding is quasiclas-
sical and the force -e'/n'(I+ 2) due to the core is
small, in comparison to the impulsive force,

~Vi3 due to the Rydbe rg electron -pro jectile
interaction. This assumption implies condition
(iv} of Sec. III, and is important in regulating the
permissible changes in energy and angular mo-
mentum. It also regulates the energy variation of
the (1-3}collision cross section —too rapid a var-
iation as in the vicinity of a Ramsauer minimum
or a negative-ion resonance is alien to the neglect of
the energy imparted to 1 by the core during the colli-
sion [cf,discussion following Eqs. (2.5) and (2.28)].

(b) Reduction of (A8) to the impulse expression
(A10) normally adopted originates from the as-
sumption that the distortion effect of V~ on the
motion of 3 while interacting with 1 is negligible.
This assumption implies that 1 and 2 behave in the
two-potential formula (Al) as separate and in-
dependent scatterers [cf. conditions (i) and (ii) of
Sec. III]. Although multiple scattering, which
arises in &kq It~ I)iq') from V~ of (A3) with (A4), can
now be neglected, the impulse a]&proximate
&Cq If p,

'
I 4,.) can be used for &4z 'I»

I 4,.) in multiple
l.

scattering sequences. If, in addition, (2-3) dis-
tortion is neglected in the first term of (A10), as
is the custom, the contribution to (A10) from (3-C)
collisions is real such that (All) provides an upper
limit to any collision process which satisfies speci-
fied criteria for validity of the impulse approxi-
mation.

(c) Inela, stic transitions in J3 are prohibited in
direct encounters with the core (which is assumed
to be inertial) whether or not core distortion is in-
eluded. The formulation of the impulse model
underlines (1-3) encounters as providing the basic
mechanism and includes inelastic effects from
(2-3) encounters only indirectly insofar as they
affect (1-3) encounters, as in (A8). This pro-
vision may not furnish a full description particul. -
arly at thermal energies. The impulse treatment
can, however, be generalized so as to cover ar-
bitrary M, (rather than infinite M, as assumed in

the present derivation) and hence include inelastic
collisions via direct collision with the noninertial
core. This involves repla. cing V~(r, ) in (Al)-(A4)
by V~(r, + (M, /M)r, ). The separation (A3} in r,
and r, variables is, however, no longer possible,
and approximate procedures must be used to ob-
tain g', . When distortion —the second term of
(A3)—can be neglectedth, enby, expanding V~ as
in (5. 10) and by proceeding as before we obtain,
in place of the first term of (A10),

T&& (k3, ks) = &Q&(r, ) exp(ik, ' ~ r, ) I V,c(r& + (M&/M)r, }I p, (r, )exp(ik, ' ~ r, ))

= &exp(its ' r3) I Vac(rs) I exp(i"3 ' r3)) 4» + (Mi/M)& @~ I
r

I e~)«xp('"s '~}I &V»(r~) I
exp(ik3 r3)) (Al'4}

for the contribution of (2-3) collisions to inelastic
transitions. The structure of (A14) bears a
marked similarity to that obtained in Sec. V, par-
ticularly when the integral over the force (-VV»)
can be replaced by the momentum change (M,v} as
in (5.23).

The above requirements (a)-(c) can be well
satisfied for A-B(n} collisions at sufficiently high
n and incident speeds e3»v, . However, for p,
» v„conditions associated with (a)-(c) may be
seriously violated (cf. Sec III and VI}.

There are two distinct classes of interactions
which justify the replacement of ti3 by ~ ~is ~

class is associated with the "quasielassical" con-
dition (a) which is sufficient for validity of (A8).
The other class satisfies the weak-binding con-
dition" that the kinetic energy E, of relative mo-
tion,

is large relative to each of the averaged potential
energy (or energy shift «, due to the core) and
kinetic energy, taken, in general, of the order of
the binding energy Ie„ I. The impulse replacement
may then still be valid in situations where the
weak-binding condition (A15) is severely violated.
According to Goldberger and Watson, " for ex-
ample, the impulse replacement is satisfied for
the case (A15) in which the contribution to (A8)
arises mainly from on the energy shell, when the
fractional error,

(A 16)

where k is the reduced wavelength (-k, '}of the
projectile particle 3 and ~here f» is the scatter-
ing amplitude for free Rydberg-electron j.-pro-
jectile 3 collisions, with time delay Q. In the
absence of resonant scattering (@=0),

(A15} 13 e (& jl~ I

Es
(A17)
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which is less stringent than the weak-binding re-
quirement (A15) above, by allowing the possibility
that j» can be greater than or less than X.

In summary, therefore, the impulse replace-
ment t» by t ~™,' is. valid for the two distinct situa-
tions of quasiclassical potentials (V,c + V,c) and of
weak binding. While the case v, »v, may satisfy

the quasiclassical condition, the neglect of distor-
tion by the core in the incident wave as assumed
in(A10) and the assumption of core inertiality may,
however, be unrealistic. The more basic expres-
sion (A8) must then be used, and/or reformulation
as in Sec. V or in (A14) must be performed.
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