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Correlation energy of doublet and triplet electronic states is formulated in terms of many-body diagrammatic -
perturbation theory through third order. Applications are presented for BH, and NH, radicals and the computed
correlation energies are compared with data obtained with the same basis set from configuration-interaction
treatments covering singly and doubly excited configurations. It is shown that the two approaches give

correlation energies close in absolute value.

I. INTRODUCTION

Recent progress'™* in closed-shell correlation-
energy calculations by means of many-body Ray-
leigh-Schrédinger perturbation theory (MB-RSPT)
stimulated our attempt to find whether the same
level of success may also be achieved with open-
shell systems. Our goal was to formulate the
method which would retain all merits of the MB-
RSPT formulation of the closed-shell correlation
energy. For this reason we decided to adopt the
restricted Roothaan-Hartree-Fock (RHF) formal-
ism® and to apply it to MB-RSPT through third or-
der. Although the use of the unrestricted Hartree-
Fock (UHF) formalism affords a straightforward
formulation® of the problem, the necessity of
handling two sets of orbitals (with a and B spins)
brings about considerable storage requirements
and computational effort. A disagreeable circum-
stance encountered in configuration-interaction
treatments covering singly and doubly excited con-
figurations (CI-SD) is the rapidly increasing num-
ber of configurations (considerably more than with
closed-shell systems) as the size of the basis set
is increased. Another disadvantage of the open-
shell CI-SD, as of course of any CI-SD approach,
is the size inconsistency.®"® It was our opinion
that MB-RSPT in the RHF formalism might avoid
all above-mentioned drawbacks. A point in favor
for UHF approach was raised recently by Roos
and Siegbahn® who showed that UHF-CI-SD calcu-
lations are superior to RHF —-CI-SD calculations
for systems far from the equilibrium geometry.
We tend to believe, however, that the use of the
RHF approach might be profitable even in this
case. The experience accumulated with closed-
shell MB-RSPT treatments suggests that a justi-
fiable preselection of important terms from higher
orders of MB-RSPT should also be tractable for
open-shell systems. With the use of this specific
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and appealing feature of MB-RSPT, the drawback
of the RHF approach should be eliminated.

II. THEORY

The most important concept of MB-RSPT is the
normal product form of the Hamiltonian. Using
the second quantization formalism we can write
the Hamiltonian

H=Z+V, (1)

where Z and V are its one- and two-particle com-
ponents, respectively, in the normal product
form as follows:

H={&,|H|8)+ 2 (A|f |BIN[X}X;]
AB

+1 2 (AB|v|CDN[XIX1XpXc].  (2)
ABCD
Here X (X;) are creation (annihilation) operators
defined on the one-particle spin-orbital basis set
|AY, |B)...,N[*+*] is the normal product of crea-
tion and annihilation operators, operator f is the
Hartree-Fock operator

occ

f=h+z;(JA,-—KAi)’_ . (3)

v is the electronic-repulsion operator and |q>0) is
the Slater determinant given as

occ

|eo= ] x [0 (4)

The open-shell RHF method developed by
ARoothaans can accommodate certain types of open-
shell configurations. We shall restrict ourselves
here to the most common of them, viz., to those
that may be referred to as the half-closed-shell
case.® Examples of half-closed-shell systems are
nondegenerate doublet states that are the lowest in
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energy for a given symmetry, the ground triplet
state of the O, molecule, the lowest triplet state
of any closed-shell molecule if the excitation is
from a nondegenerate to a nondegenerate orbital,
the atomic N*S state, and the a*>" state of the CH
radical (30 17? configuration). A characteristic
feature of all these states is the open shell con-
sisting of singly occupied, complete degenerate
sets of orbitals with all the spins being parallel.
The respective Hartree-Fock operator, f,, has
the following form:

Fr=h+ X (2, =K)+ 2, (J,—%K,)
a€D mES

+PrQ+QPr-@Q, (5)
where the operators P, and @ are defined as
Q=2 Kn, (6)
meS

=Y |a <a + )
a€D
Here the summation over D means that both spin
orbitals |a)| @)= |A) and |a)|B)= |B) are included
in |$,), and the summation over S means that spin
orbitals |m)|a) are included in |&,) and that
|m)|B) belong to unoccupied spin orbitals. Here-
after we use consistently lower-case characters
for orbitals and capital letters for spin orbitals.
In this notation the f, operator (5) over spin or-
bitals becomes

1
2

J

fa=h+ 2 ([u-K)+ 2 Jg

AGDu BGD‘s
w5 2 (u—K)+: 2 dy
HGSG NESB
+P3Q%+Q*Pg -Q*, (8)

for a spins and

fr=h+ Z (Jo =K+ 2 Jg

A€Dg BED,
3 Y durt X Wy-Ky)

“ESG NESB
+P3Q%+ QPPS - @°, (9)

for B spins.

Now the application of MB-RSPT to the RHF ap-
proximation means that we have to express the op-
erator f,(5) in the form*°

fr=f+U, (10)

where f is given by Eq. (3) and U is some new one-
particle operator. The form of the latter depends

on the particular case of the electronic configura-
tion. Considering

le0=JT x2 . xt, Hx |0, (11)
a€D

the general form of U can be obtained by subtract-
ing the operator f from fp. Thus, substituting Eqgs.
(3) and (8) into (10) gives us

U°‘=(h+ Z (Ja =K+ Z Jp+3 ”Zs (Ju —Ky)+3% Z Jy+ P§ Q°‘+Q°‘P°‘ Q°)
3 NES,

A€D, BE Dy

- (h" E (Jo =K )+ 2 (Ju —Ku)+ Z (12)
A€D, BEDg
On applying U< to a spin orbital jA)- |a)| @), we obtain
Ue ‘ A= [(% E Jy+ PEQ% + Q*Pg _Qa) -3 Z (Jy —K‘)] 'A) , (13)
NESy MES,
which gives us
=4 D Ky+PEQ+Q°PE-Q". (14)
MES
Similaﬂrly, by substituting into Eq. (10) from (3) and (9), we obtain
(h*' 2 (Jo-Ko)+ 2 Jp+z 2 Ju+z Z (- ~)+P%QB+QBP§—QB)
A€D, NESg
( Z (Jg —Kp)+ 2 Jut z Ju) (15)
BEDB
On applying U® to a spin orb1ta1 |B)= |b) |B) we obtain _
0 1B=(5 T Gp-Ki -t T Jur P @H-@)|B), (19)
N€Sa ll€Sa

which gives us
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UP==% ) K+ P3Q°+Q°P% —@Q°. (17)
NESB
Combining U® and U® we arrive at the final form
of the U operator

U=t ) Ky-% D Ky+PrQ+QP,-Q. (18)
o NESg

Once the expression for U is available,! it is pos-

sible to rewrite the Hamiltonian (2) in the form

H= <‘I’01H|‘I’o>+ 2 EAN[X X, ]
A

+1 ) (AB|v|CDIN[X X X, X, ]
ABCD

- Y (Alu|BIN[X1X,], (19)
AB

where ¢, are the eigenvalues of the f operator.

The actual calculations of the correlation energy
of open-shell systems by means of MB-RSPT can
be made along the same lines as for the closed-
shell systems.'*'® We define

K|¥)=k ¥y, (20)
K=H-(&,|H|%,, (21)
as the perturbed (exact) eigenvalue problem and
Ko|®p)=ko |8y, (22)
K o=H, - (®,|H, | %y , (23)

as the unperturbed eigenvalue problem, and
K=K,+W=U. (24)
Comparing Egs. (19), (21), and (24) we obtain

W=% D (AB|v|CDIN[XX1X,X,] (25)
ABCD
and
U= 2 (Alu|BN[X}4X;]. (26)
AB

By means of the Rayleigh-Schrddinger perturba-
tion expansion through third order we can
write!®13
k={3,|(W - U)Qy(W=-U) | &)

+(0 [(W = U)Q(W - U)Q(W -U) |8y,  (27)
where the first term on the right-hand side of Eq.
(27) represents the second-order contribution to
the correlation energy, k‘®, and the second term
of Eq. (27) the third-order contribution, 2.

Let us assign the diagrams to the following
mathematical expressions (see Ref. 13):

A~o® — —(A|u|BIN[XX5] (28)

and

A C ANt AP
panEn (29)
B D B/’\D B/"\C ’
where

AYC

i~ (AB|v|CDIN[XiX[XpXc].  (30)
EIK\D

Following the diagrammatic rules'*!3 we can ar-

rive at the diagrams entered in Fig. 1, which
gives the diagrammatic representation of Eq. (27).

A. Nondegenerate doublet state

For this case the form of the wave function (11)
becomes

|<1>0>=(H X;'axg'ﬂ)x;'alw (31)
a€D
and the U operator (18) reduces to

U=3K, 3K, +PrQ+QPr-Q. (32)

In order to be able to evaluate the whole expres-
sion for the correlation energy (27) over orbitals
we need to know how to evaluate the matrix ele-

ments

(Alu|B)=08,,F(p;a,b)a|K,|b). (33)

The value of the factor F(p;a,b) depends on the na-
ture of the spin orbitals |A)= |a)|a) and |B)

>
@ @' e
>
D D

Vil (2x) 1X (2x) X (2x)
X1 Xi Xl

FIG. 1. Hugenholtz diagrams for the second-order
(I, O) and the third-order (III-XIII) contributions to the
correlation energy of half-closed-shell systems. The
diagrams VIII, IX, and X can be obtained in two topolo-
gically different ways and their contributions must
therefore be counted twice.
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= |b)|B). The nine possible cases for a spins are
presented in Table I. The factors for B spins can
be obtained simply by subtracting 1 from the fac-
tor F(a;a,b); ie.,

F(B;a,b)=F(aja,b)-1. (34)

The explicit expressions for diagrams I-XIII
were obtained by means of diagrammatic rules
reported previously.!* The respective formulas
are summarized in the Appendix.

It should be noted that the theory in the form
given in this section may also be applied to de-
generate doublet states, such as e.g., 1/
V2)(|m®n |+ |mn®|) state, assuming |®,) as a sin-
gle determinant |m2n| and assigning to it the wave
function given by Eq. (31).

B. Triplet states

The theoretical approach presented above may also
be applied to triplet-state configurations in which
a twofold-degenerate molecular orbital is filled
with two electrons (e.g., the ground state of the

O, molecule) or to excited triplet states in which
the electron is promoted from a nondegenerate
orbital to a nondegenerate orbital. These two
types of configurations may be expressed by the
following wave function:

|®o)= (II X;'axg'ﬁ)x;'axg'aiox (35)
aE

Note that instead of the usual spin function (1/
V2)(aB+ Ba) we use the spin function aa, which
is more convenient for our purposes. In this case
the U operator (18) reduces to

U=%Km,a+%Kn,a -%Km.ﬂ '%Kn.ﬂ
+PrQ+QPr-Q, (36)

and the matrix elements of the operator can be
expressed as

(A|u|B)=05,,F(p;a,b){a|K,|b)+{a|K,|b).
(31

The factors F(a;a,b) are the same as in Table I
and, for F(B;a,b) factors, Eq. (34) holds.

TABLE I. Spin factors F(a;a,b) for the matrix ele-
ments(A|«|B). D, S, and V, respectively, mean
doubly occupied, singly occupied, and virtual orbitals.

acD acS acV
be D 3 1 1
bes 1 2 0
bev 3 0 -3

C. The use of the half-electron operator

From the point of view of computational feasi-
bility we consider it expedient to make a short
note on a different partitioning of the Hamiltonian,
viz., on the use of the half-electron operator'*:!s;

Fu=h+ 2, (2, -K)+% Y (2, -K,).  (38)
a€D mES

An appealing feature of the half-electron approach
is much better convergence of the self-consistent-
field (SCF) procedure than that of the Roothaan
open-shell procedure. Sometimes it is difficult
to achieve the convergence with the Roothaan
method, whereas the use of the half-electron
method makes such a case tractable. Moreover,
if use is made of the half-electron approach, the
evaluation of certain diagrams also becomes eas-
ier,

Following the brocedure described for the doub-
let state, we find that the expression for the U op-
erator reduces to

U=t D Ky-% 2 Ky (39)

Mes NESg

and its matrix elements are simply given by
(A|u|B)=8,,F(p;a,b)a|Q|b), (40)
where F(a;a,b)=1 and F(B;a,b)= -1.

III. APPLICATIONS TO BH, AND NH, RADICALS

In order to test the utility of the theoretical ap-
proach described in Sec. II we selected a few re-
ported RHF-CI calculations and repeated them
with the MB-RSPT approach using the same SCF
reference state, basis set, and the molecular
geometry. The systems treated were BH, and
NH, in their ground and lowest-excited-doublet
states for which CI calculations covering all singly
and doubly excited configurations (CI-SD) were re-
ported.'®!” The calculated correlation energies
are valence-shell correlation energies, because
the 1q, orbital was kept doubly occupied. Two ba-
sis sets were used. The smaller of the two, of
the double zeta quality (DZ), was the Dunning’s!®
[4s2p/2s] contraction of the Huzinaga’s'® (9s5p/4s)
primitive Gaussian set. The hydrogen s functions
were scaled by the factor 1.22=1.44. A larger ba-
sis set (DZ+P) was augmented with a set of six
Gaussian d functions centered on the heavy atom
and a single set of p functions on hydrogen atoms.
The following exponents were used: 0.7 for B,
0.75 for N, and 1.0 for H. The geometries as-
sumed are given in Table II. In Table III we com-
pare our MB-RSPT results with the reported CI-
SD calculations, and in Table IV we present the
contributions from the diagrams I-XIII for a par-
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TABLE II. Geometries assumed.?
r
Molecule State  Basis set A) (deg)
BH, 24, DZ 1.1906>  135.0°
BH, 2B, DZ 1.1906°  135.0°
NH, B, DZ 1.0439 108.37
NH, 24 DZ 1.0086  144.76
BH, A, DZ +P 1.1893 129.48
NH, ’B, DZ +P 1.0289 103.08
NH, 24, DZ +P 0.9997 143.35

2 Taken from Ref. 17 unless otherwise noted.
b Reference 16.

ticular case of the NH, radical in the B, ground
state.

IV. DISCUSSION

A comparison of CI-SD and MB-RSPT results
exhibits some similar features as the analysis re-
ported recently for closed-shell molecules.?
First, MB-RSPT gives us approximately 100% of
the correlation energy as compared to CI-SD re-
sults. Second, the amount of the correlation en-
ergy depends slightly on the size of the basis set,
the coverage being several per cent higher with
the DZ + P basis set than with the DZ basis set.
Third, we found that the third-order contribution
may be rather large. Among the closed-shell sys-
tems treated previously,?® a large third-order con-
tribution was found with the BH molecule; here
this is the case of the BH, radical. Table IIIl shows
that the correlation energy recovered ranges from
96.2% to 102.9% with respect to the correlation
energy given by CI-SD calculations. A higher per-
centage achieved with MB-RSPT in some cases
does not imply, of course, that the MB-RSPT re-
sult is more accurate than the CI one. Actually,
the comparison is encumbered by the fact that MB-
RSPT is not an energy minimization process,
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whereas CI is a genuine variational method. How-
ever, a point in favor of MB-RSPT is that this ap-
proach is size consistent, whereas CI-SD is not.
Size inconsistency of CI-SD is due to a spurious
term contained in the CI-SD energy, which has an
unphysical nonlinear dependence on the number of
electrons.” This prevents one from comparing ef-
fectively the CI-SD energies for molecules of dif-
ferent size.® Thus, the entries of Table III merely
suggest that, in actual applications, MB-RSPT
through third order and CI-SD should give similar
results. It is the authors’ opinion that MB-RSPT
might be the preferred method in applications to
open-shell systems because of a lower cost. For
a given size of the basis set, the number of doubly
excited configurations for the open-shell ground
state is considerably higher than it is for the
closed-shell ground state. With MB-RSPT the re-
spective difference does not appear to be so im-
portant. Actually, the restricted molecular or-
bital open-shell MB-RSPT calculations may be
performed at a cost only moderately higher than
the ordinary closed-shell MB-RSPT calculations.
Let us now comment on the individual contribu-
tions of diagrams I-XIII. The entries in Table IV
represent a typical result obtained for the series
of systems treated in this paper. As it is seen,
the prevailing contribution to the correlation en-
ergy is due to the second-order diagram 1. The
other second-order diagram II gives a rather
small contribution. Among the third-order dia-
grams, the important contributions are due to
diagrams III, IV, V, VI, and VII. For numerical
reasons, the contributions from diagrams with
two or more u vertices are negligible (at least
for the systems treated). The same holds for the
diagrams with one u vertex with one particle line
and one hole line (diagrams VIII, IX). This finding
might be of importance for a possible extension of
MB-RSPT to higher orders. It seems hopeful that
the number of diagrams in fourth order might be

TABLE III. Comparison of MB-RSPT and CI-SD valence-shell correlation energies (in

a.u.).
MB-RSPT D 1®
Molecule State Basisset SCF CI-SD? @) @ 4B (CI-SD)
BH, 24, DZ —-25.73958> —0.05058> —0.04042 —0.04868 96.2
BH, 2B, DZ -25.69851" —0.056 96 —0.04524 —0.05483 96.3
NH, B, DZ —55.543648 =—0.09905  =0.09555 —0.09857 99.5
NH, 24, DZ ~55.504962 —0.09425  —0.09234 —0.09387 99.6
BH, 24, DZ+P —25.752516 —0.08069 —0.07236 =—0.08293  102.8
NH, B, DzZ+P —-55.573224 —0.16083 —0.16133 =—0.16546  102.9
NH, 24,  DZ+P —55.523338 —0.15681 —0.15799 =—0.16133  102.9

2 Reference 17 unless otherwise noted.
bReference 16.



22 CORRELATION ENERGY OF OPEN-SHELL SYSTEMS...

TABLE IV. Contributions from diagrams I-XIII to the
correlation energy of the NH, radical in the ?B; ground
state given by the DZ +P basis set.

Diagram  Energy (a.u.) Diagram Energy (a.u.)

I -0.15830 VIII 0.000 81
o -0.00302 X 0.000 40
oI —0.090 43 X -0.00011
v 0.036 19 XI —0.000 95
A\ 0.03365 XI1 0.00017
VI 0.00999 X111 0.000 18
VII 0.005 96

considerably reduced under a numerical control.
Specifically, one can anticipate that only the fol-
lowing fourth-order diagrams will be important:
twelve double-excitation diagrams,® diagrams A
through D2 (notation of Ref. 3), and diagrams con-
taining one u vertex with two particle lines or two
hole lines (the fourth-order analogs of diagrams
VI and VII). In this way it is possible to expect
that the RHF approximation can provide the same
level of accuracy® as the UHF approximation in
applications to structures far from the equilibrium
geometry.

Diagram I:

1

€p+ €5 —€y =€

% Z (AIIIIIBIIJI)

A"B"IV’
Diagram II:

1 fu|Amy ——— (A" Ju|17).
AT €p —€yn
Diagram III:

1

[(AIIII |B”J') _(AIIJI IB//I/)] .
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APPENDIX

Here we present the explicit formulas for dia-
grams I-XIII over spin orbitals generated by the
RHF-SCF procedure for nondegenerate doublet
states. The electronic-repulsion integrals are
given here in Parr’s (11 |22) notation, in contrast
to the text where use is made of Dirac’s (12|12)
notation; since the former is more suitable for
computer programming whereas the latter con-
forms to the MB-RSPT formulation. Singly and
doubly primed indices, respectively, refer to oc-
cupied and virtual spin orbitals. For meaning of
(A |u|B) elements see Egs. (33) and (34) and Table
I. The expressions for diagrams VIII-X involve
the factor of 2 noted in Fig. 1.

(A1)

(A2)

[(A”I' IC”KI) - (A”K' |C"I')]

A“B"C"I'I'K’

X [(BIIJI ‘CIIKI) —(B”C” iJIKI)]

Diagram IV:
1

€pt €y —€qn—€pn

% z (AIIIIIBIIJI)

A'B"C"D"rJ’
Diagram V:

% Z (A”I/ ,B”J/)

ABETy R €p+¢€

1
Ji—€qn—€gn

Diagram VI:

(AIICII IB”D”)

(I'K' |J'L’)

€p+ € — €40 = €gu

1
€p+ €y =€y —€gn

[(AIIII IB"JI) -—(A”JI lBIIII)] .
(A3)

1

€+ € —€cn=€p

- [(CIIII lD//JI) _(anl |D"I')] .

(A4)

1
€xt €L —€qu—¢€

[(A”K’ lBIILI) _(AIILI lB”K')] .
B”

(A5)

1

Z (A”I"B”J')

(K'|u|I"
A"B"TI'K’ €

€p+ €5 = €yn—€Egn

Kt €p =€ 0~ €Epn

[(B”J’ lA”K')—(B"K' IA”JI)]_ (A6)
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Diagram VII:
Z (A”]"B”J’) 1 (B"|u|C"> 1 [(A”J’IC”I')—(A”I'IC"J’)] . (A7)
A"B"C"I'J’ €pt € —€4u—€gn €pt €y —€qn—€cn
Diagram VIII:
2 2 . (AIIII'BIIJI) 1 <C”I“l1'>— [(A”J/ IBIICII (AIICIIIBIIJI)] . (A8)
A“B"C"I'J’ €pt+ €y —€ n—€gn
Diagram IX:
1 ! 1 nyr U U d 1y’
2 D (A" |B") (B” |[u|K")——— [(A"I" |K"J") = (A"J' |K'1")] . (A9)
A"BTI'K €pt €y —€ = €gn €x—€pn
Diagram X:
1 1
-2 A"I"|B"J’ (B" |u| ") —— (A" |u|J"). A10
~A"B'Z'I‘J'( | )€l'+ €y — € 0 = lul €y =€ lul ( )
Diagram XI:
- z A”Iull’)——-(A"B”lI'J' ___1__ BIII IJ/ (All)
A"B"I'J’ €=
Diagram XII:
1
- 2 Ar e |7 (A" B = (B u |19, (A12)
A"B“I' —€p~
Diagram XIII: .
1
E A" 1) e 1 ) e 0 e ). (A13)
e

For computational reasons it is profitable to have the expressions in the orbital form. Below are listed
the formulas for diagrams for which this is simply achievable. For the others the evaluation through or-
bitals is troublesome. In our computer program, we considered it, therefore, preferable to evaluate the
diagrams I and III-VII according to formulas (A1) and (A3)-(A7) over spin orbitals using a list of inte-

grals over orbitals and an auxiliary one-dimensional array for the orbital—spin-orbital index interconver-
sion.

Diagram II:
D e [mi’)—l- (i'm |ma”). (A14)
a"€V,i'€D €y —€qn
Diagram VII:
1 1
z ” / 'b"]') (c”m Imz’)_— [zp(an " [b”]l) q(a" 21 'bll II , (A15)
a"b"c"i'j’ t €y = €pn— €y € — €cn
where the values of p and ¢ are given in Table V.
Diagram IX:
1
(a”z' b"§') ——————— (0"m mk')— 2p(a”i’ |k'j’) = q(a”j’ |k'i") (A16)
i (@ O3 e (0" m k") == (20" ) - ala” |18

where the values of p and ¢ are given in Table VI.

TABLE V. Values of p and ¢ in formula (A15). TABLE VI. Values of » and ¢ in formula (A16).
p 4 Orbital occupation p q Orbital occupation
1 1 ¢€D, j'€D, a”"eS, b"eV, c"eVv 1 1 ¢#eD, jeS, k€D, a'cVvV, b"cVy
0 1 ieD, j'eD, a*cV, b"cS, c"ev 0 1 ¢es, jeD, k€D, a’cV, b"EV
0 -1 ¢#¢eDb, j'eSs, a’€vV, b ev, c’eVv 0 -1 #¢eDb, j'€D, kR’€D, a'€Ss, b€y
i 0 #eD, jes, a"es, Y ev, c'ev i 0 €D, j€S, k'‘ED, a"€S, b €V
0 0 all other cases 0 0 all other cases
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Diagram X:
- (a”i’ |0"5') - (b"m |mi’)—-—L— (a"m |mj’). (A17)
a“,b"€V, i',j’€D €yt €5 =€ — €y € — €qn
Diagram XI:
1 z n ;! 1 npn (152 1 ” 37
-3 (a"m |mi") ——=—(a"b" |i"j') ——— (b"m |mj’) . (A18)
a",b"€V, i',§'€D €y =€ €5 = €y
Diagram XII:
1 ) n 1 n ” 1 ”n 27
3 2 'm |ma”) (a"m |mb") ——— (b"m |mi’). (A19)
a",b"EV, i'€D - €gn €4 = €pn
Diagram XII:
1 2 ” Y 1 27 3 1 3 "
3 (a"m |mi") ——— (i'm |mj") ——— (j'm |ma"). (A20)
a"€V, i’ J’€D € — € €j — €qn
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