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An approach is formulated to the problem of obtaining approximate solutions to many-body quantum mechanics.
The starting point is the representation of quantum mechanics as Hamiltonian mechanics on a symplectic manifold
(phase space). It is shown that Dirac’s variation of an action integral provides a natural mechanism for constraining
the dynamics to symplectic submanifolds and gives rise to a hierarchy of approximate many-body theories of which
Hartree-Fock, random-phase approximation, time-dependent Hartree-Fock, and the double commutator equations

of motion formalism are special cases.

I. INTRODUCTION

Two fundamental methods of obtaining approxi-
mate solutions to the many-body problem are to
truncate the Hilbert space and to restrict consi-
deration to a class of trial wave functions. An
example of the former is the shell model in which
one diagonalizes the Hamiltonian in a finite-di-
mensional shell-model space. An example of the
latter is the Hartree-Fock approximation in which
one minimizes the energy expectation in the space
of Slater determinants. Whereas the shell-model
space is itself a Hilbert space, the set of Slater
determinants constitutes a hypersurface within
the Hilbert space but is not itself a Hilbert space.
As a consequence many significant properties of
quantum mechanics on Hilbert spaces are lost,
e.g., the superposition principle. However, if
one is interested, for example, in large ampli-
tude collective phenomena like fission or heavy -
ion reactions which cannot reasonably be de-
scribed within the confines of a small linear sub-
space of the Hilbert space, this is a price one may
be willing to pay. Furthermore, some really good
approximate theories can result and more than
compensate for the losses; examples are the
Hartree-Fock (HF) approximation, the random-
phase approximation (RPA), time-dependent
Hartree-Fock theory (TDHF), and Hartree-
Bogolyubov theory.?!

In the following section, we consider many-
body quantum mechanics as a Hamiltonian mech-
anics on a symplectic manifold. Symplectic
manifolds are fundamental in both classical and
quantum mechanics because they are phase
spaces; i.e., they are real even dimensional
manifolds with a Poisson bracket structure as
discussed in Sec. II. If 3C is the Hilbert space,
the fundamental symplectic manifold of quantum
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mechanics is the projective space P of all one-
dimensional subspaces or rays of 3C. Equivalent-
ly, P3C may be defined as the space of states in
JC with unit modulus together with an equivalence
relation

|¥y=e®|¥), 1.1)

which identifies states differing only by a phase
factor. Unlike the phase space of classical
mechanics, which for N particles is of dimension
6N, the phase space P3C is infinite dimensional.
However, in practical calculations one invariably
restricts the Hilbert space to finite dimensions.
To avoid some of the pitfalls associated with in-
finite -dimensional manifolds, we therefore as-
sume that P3C is of indefinitely large but, never-
theless, finite dimension.

Now it is well known that the eigenstates of the
Hamiltonian are given by the points on PJC at
which the energy expectation is stationary. We
shall also see that the solutions of the time-de-
pendent Schrddinger equation trace out paths on
P3C given by Hamilton equations of motion. Fur-
thermore, the time-dependent solutions corre-
sponding to small amplitude normal mode vibra-
tions about a stationary point provide detailed and
precise information about the spectroscopy of the
system. Thus although P3C is not a Hilbert space,
it nevertheless supports a complete and exact
formulation of quantum mechanics.

When the many -body problem is formulated in
this way, approximate theories are immediately
obtained by simply restricting the dynamics to a
symplectic submanifold of P3C. Clearly it is at
this point that physical insight is needed to dis-
cover useful and realistic submanifolds. For ex-
ample, experimental observations often lead one
to suppose that, to a good approximation, certain
collective degrees of freedom are decoupled from
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the other (intrinsic) degrees of freedom. Thus
one might attempt a describtion of collective states
by constraining the dynamics to a corresponding
collective submanifold. Of particular relevance

to many -fermion theory is the constraint to the
Grassman manifold of Slater determinants. Slater
determinants, or simple states as we shall call
them, play a central role in many-fermion theory
fundamentally because we cannot solve the many-
body problem and so resort to independent-particle
approximations of one kind or another. It is not
surprising therefore that the Grassman manifold
has many simple and useful properties. However,
many of its properties derive not so much from its
ihdependent—particle character as from the fact
that it is a symplectic manifold. Furthermore,
being an orbit of the group of one-body unitary
transformations, it is also a homogeneous space.
And these properties are shared with other sym-.
plectic manifolds and homogeneous spaces. When
the dynamics is constrained to the Grassman man-
ifold, the stationary states are the HF states, the
normal model vibrations give the RPA and Hamil-
ton’s equations are the TDHF equations. How-
ever, there is obviously a wealth of other symplec-
tic submanifolds to be explored each of which, as
we shall show, supports it counterpart of the HF,
RPA, and TDHF theories.

II. CONSTRAINED HAMILTONIAN DYNAMICS AND
SYMPLECTIC GEOMETRY

A. Classical dynamics

A classical phase space M is a smooth manifold
with a Poisson bracket structure. If C°(M) de-
notes the smooth real-valued functions on M, the
Poisson bracket { , } is an antisymmetric bilinear
product on C*(M) that satisfies the Jacobi identity;
i.e., .

{F’G}+{G,F}=O) (2.1)

{{r, 6L 3 +{{c, &}, FH+{{k,F},6}=0, (2.2)
for any F, G, and KE€C*(M). Thus C°(M) is a
Lie algebra with the Poisson bracket for Lie
product. A classical phase space is also re-
quired to admit canonical coordinate charts.
Canonical coordinates, conventionally denoted
(p1s Pay---»4", 4% ...,), are required to satisfy
the familiar relations

{q“’qs}z{Pa,pa}zo )
{pa) qB}z GBa .
Thus an arbitrary coordinate chart (x!,x2,...,)

for a neighborhood of M is said to be locally
canonical if the matrix

ouv:{xv,xu} (2.4)

(2.3)

is of the canonical form

0 -1
(c“"):[ ] (2.5)
I 0

at each point of the neighborhood, where I is the
unit matrix. Clearly a necessary (and in fact, by
Darboux’s theorem,? sufficient) condition for the
existence of local canonical coordinate charts is
that the matrix (0*¥), defined by Eq. (2.4), is in-
vertable. A Hamiltonian dynamics on M is now
defined by introducing the Hamiltonian (energy)
function H and the equation of motion

F={H,F} (2.6)

for any F € C*(M), where F=dF/dt.

The above properties of a classical phase space
are precisely those of a symplectic manifold. The
relationship between the Poisson bracket and sym-
plectic structures has been discussed by several
authors®* and is exhibited explicitly in the follow-
ing subsection. Indeed symplectic manifolds are
the natural settings for Hamiltonian dynamics.
Furthermore, Hamiltonian subdynamics are na-
turally obtained by restricting the dynamics to
symplectic submanifolds. Again an explicit dem-
onstration of how this is done is given in the quan-
tal context in the following subsection.

B. Quantum dynamics

A Hilbert space 3C is a complex linear space with
a Hermitian inner product (\If’ &). In order to re-
gard it as a phase space, we treat it as a real li-
near space of couble the dimension, i.e., each
basis state |y,) is replaced by the pair |3,) and
ilz,b,,). There are now two natural real nondegen-
erate forms on this realified Hilbert space, name-
ly, Re( \II|<I>) and Im( \Ifl ®). The former being
symmetric and positive-definite is Riemannian
and enables one to introduce concepts of distance,
angle, and curvature, etc. The latter being anti-
symmetric and closed is symplectic and is what
makes JC and its associated projective space P3C
phase spaces.

Suppose that M is a submanifold of either 3C or
P 3 and

H(Y)=(¥|H|¥) (2.7

is the energy function on M, where H is the Ha-
miltonian. The starting point for Dirac’s for-
mulation® of constrained quantal dynamics is the
extremal condition of an action integral

5'[::2(\1:0),:‘5% -H

which yields the differential equation
dH=i((a¥| ¥y (¥ |a¥)), (2.9)

\I/(t))dt:O, ‘ 2.8)
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where ¥ =3¥/af. In terms of coordinates (x?,
x%,...,) for a neighborhood of M, this equation
becomes

oH v
=2 Im<ax“

- (2.10)

\It> = 0,,%",

where ¢ is the symplectic metric with components

2v)
ax* /]’
If this metric is nondegenerate, the matrix (o,,)

can be inverted to give Hamilton’s equation of mo-
tion

v
ax"

ou,,=-21m< @.11)

X =" aH /ax" . (2.12)

On the other hand, if ¢ is degenerate, Eq. (2.10)
and hence (2.8) do not define an equation of mo-
tion.

Observe that we have deliberately avoided speci-
fying a choice of coordinates in order to exhibit the
coordinate independence of the equations. One way
to introduce coordinates, for example, is By
means of a set of observables (X") whose ex-
pectation values x”=(¢|X“ |¢y serve to uniquely
distinguish states in some neighborhood of M (the
domain of the coordinate chart). The coordinate
derivatives 9y/9x” are then well defined at each
point in the neighborhood and are observed to be
tangent to M. Convenient ways to construct co-
ordinates in the especially interesting case when
M is a homogeneous space are given in Sec. IV.

In terms of local canonical coordinates, Hamil-
ton’s equations (2.12) assume the familiar canoni-
cal form

5a: _aH/aqa9 éu: aH/apa .

For example, if M=3C and () is a basis for 1,
canonical coordinates are given by the expansion

v=1N2) 2 (@ +ip,)y, .

(2.13)

The Poisson bracket of any two smooth functions
F and G on M can now be defined in the standard
way by

oF 3G

a7 oxh (2.14)

{F,G}=0"
However, before accepting this definition of the
Poisson bracket, one must ascertain that it satis-
fies the requirements (2.1) and (2.2). Evidently
it is bilinear and from the definition (2.11) of ¢
antisymmetric. Furthermore, it follows directly
from Eq. (2.14) that

{F, 6}, kY +{{G, Kk}, F} +{{K, F}, G}
=F*G'K*(30,,/3x"* + 30,,/0x* + 30,4 /3x") ,
(2.15)
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where F*=o*3F/ax*. With the symplectic metric
defined by Eq. (2.11), one readily ascertains that

(2.16)

in any coordinate chart. Thus we obtain the Jacobi
identity. Finally, from Eqs. (2.12) and (2.14),
we obtain the equation of motion

F={H,F}.

30,,/0x* + 30,,/3x* + 30,, /3x* =0

(2.17)

Equation (2.16) is an expression of the fact that
the symplectic metric o, defined by Eq. (2.11),
is closed (i.e., do=0) on any submanifold of the
Hilbert space. (One can see that this is so im-
mediately by observing that 0=dw where w is the
one form w:Im(d\III\II).) If, in addition, ¢ is non-
degenerate we say that the submanifold M is sym-
plectic. Now we have seen above that Eq. (2.8)
does not define an equation of motion when o is de-
generate. Thus we conclude that the action inte-
gral of Eq. (2.8) does not have extremal paths on
a nonsymplectic submanifold.

For example, the variational Eq. (2.8) does not
define extremal paths on the manifold of Slater
determinants of unit modulus. This manifold is of
odd dimension and therefore cannot be symplectic.
To make it symplectic one must either project
onto a smaller manifold by identifying states
which differ only in phase [cf. Eq. (1.1)] or add
back the extra dimension by including determinants
of nonunit norm as Lichtner et al.® have observed.
The virtue of the latter option is that one gains the
possibility of determining the time evolution of
the phase. Since the phase is usually of no inter-
est and since the Hamiltonian is norm conserving
it is customary to suppress the phase and con-
sider only symplectic submanifolds of the projec-
tive space P XC.

Another example of special interest is when
M=P3. Consider real functions F and G on P
expressable as expectations of some Hermitian
quantal observables F and G; i.e.,

F(¥)=(¥|F|¥). (2.18)
It can be shown that
{F,G}¥)=i(¥|[F,G]|¥) = -2Im( F¥|G¥) ,
(2.19)

which directly relates in a coordinate -free way,
the Poisson bracket and symplectic structures on
P3. Thus the equation of motion (2.17) for a
function on P 3C becomes

F=i(¥|[H,F]|¥ (2.20)

and the formulation of quantum mechanics as a
Hamiltonian dynamics on P3C is seen to be essen-
tially the content of Ehrenfest’s theorem.” How-



ever, it must be emphasized that we are primari-
ly interested here in constrained quantal dynamics
and that Eqs. (2.19) and (2. 20) are not generally
valid on a symplectic submanifold of P3C. It is
important therefore to consider carefully in what
manner the dynamics is most appropriately con-
strained.

We claim that Dirac’s formulation is natural
for the following reason. Suppose that an uncon-
strained trajectory in P3C lies in MCP3C. If the
constraining procedure is natural then we expect
this trajectory to also be a solution for the con-
strained problem. It is clear that Dirac’s pro-
cedure possesses this property since an uncon-
strained trajectory makes the action stationary
against all variations that lie in M.

III. STATIONARY STATES AND NORMAL MODES

If H is the Hamiltonian function on a symplectic
submanifold M of the projective Hilbert space P 3C,
we can define the energy gradiant dH as the co-
vector field with components (3H/9x*), with re-
spect to any coordinate chart (x*). It follows
therefore, from the equation of motion (2.12) that
the stationary points on M are the points at which

dH=0. (3.1)

When M is the Grassman manifold, this equation
is the Hartree-Fock equation and its solutions can
be obtained by the Hartree self-consistent-field
method, when it converges.® More generally, it
can be solved® by the Newton-Kantorovic method,°
which will be discussed in detail in a subsequent
paper.!

A normal-mode solution of Hamilton’s equation
on M is by definition a small amplitude periodic
oscillation about a stationary point. Thus, if F
is any function on M, the value F(¢) of F at the
oscillating point must be of the form

F(t)=F,+ F,e™*“ + Fyet*t . (3.2)
0

To find the normal-mode solutions, consider a
coordinate chart (x*) with a stationary point as
origin. -We may then expand the Hamiltonian func-
tion

H(x) =H(0) +3x"x"

pyrrmr (3.3)
Now, by a linear transformation, we can bring
the symplectic metric to canonical form [cf. Eq. .
(2.5)], at the stationary point and then by a fur-
ther linear canonical transformation, diagonalize
the Hessian matrix (3°H/ax*3x"). By so doing,
we obtain H(x) in the canonical form

Hx)=HO) +3 D [B*(p)?+ Culg®)?]++++.  (3.4)
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It is known by a theorem of Thouless'? that this
can always be done when the stationary point is
an energy minimum. The general circumstances
under which the Hessian takes this canonical form
have been discussed by Williamson.!* Although
the values of the coefficients B* and C, depend on
the chart, the products C, B* (no summation) and
the number of positive and negative coefficients
do not.' Thus, the equations of motion (2. 13)
give (there is no summation in either equation)
a_ pa + x 2

7 Pa*tOGT, (3.5)

ba=-Cuq* +0(x?),
which have the periodic oscillatory solutions

q*(t) =€, cosw,t+0(x?),

Do(t) = —€ qw, B, sinw,t +0(x?), (3.6)
where B,=(B*)™ and w?=C,B*. Writing
oF oF
=F,+—q%@t)+— 3.7
F(t)=F, e @) b palt) 3.7
and putting €, =6,,e we obtain the desired result
oF . oF
=F,+% (—+ —Jetaf+ec. ] 3.8
F(t)=F, ze[aq" zwa,‘apx)e c.c (3.8)

Consider now the interpretation of the above re-
sults. Equation (3.1) is the familiar variational
equation for approximate eigenstates of the Hamil -
tonian. This variational principle is known to be
good for the ground-state energy. It is then an
energy minimization principle and gives an upper
bound for the ground -state energy.

At the energy minimum the Hessian is clearly
positive semidefinite having zero eigenvalues only
if the minimum is not a single point but rather a
higher -dimensional subset of points. Such situa-
tions are well known and occur, for example,
whenever the variational ground state has less
symmetry than the Hamiltonian, e.g., it is not ro-
tationally invariant. We conclude then that, at the
variational ground state, the parameters B* and
C, are nonnegative and hence that the normal-
mode frequencies w, are all real in accord with
the obvious generalization of Thouless’s theorem?'?
for RPA frequencies. Conversely, if the normal-
mode frequencies are not real, we may conclude
that the stationary state is not an energy mini-
mum. *

Now if M=P3Cand |¢,)EM is the true ground
state, normal-mode oscillations about [zpo) are
given to first order in a small amplitude parame-
ter 6 by the states

[T@) =g,y et + 6| ) e Bt (3.9)

where |zp,) is an excited eigenstate. Furthermore,
if F is any observable, its expectation F(¢)
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=(¥(t)| F|¥(t)) is given by ,
(3.10)

F(t)=Fy+ 6(F, e ®rxFot +c.c.),
where
Fxoz(d’lelwo)- (3.11)

Thus comparing this equation with Eq. (3.8) we
interpret the normal -mode frequencies as the ex-
citation energies

0’;=E1‘Eo (3-12)
and we obtain the matrix elements
le(oF | . aF)
== + — . 3.1
(] F| o) zc(a_q'f iy By o (3.13)

The ratio €/ is evaluated by comparing the vibra-
tional energy AE = %w,, obtained from Eq. (3.9),
with the expression A E =3w} B, € obtained from
Eqs. (3.4)-(3.6). We obtain ¢/6=(2/w, B)*/?

and hence the matrix elements

(3.14)

Equations (3.12) and (3. 14) which are seen to be
exact on P X, provide useful approximate theories
of excited states associated with suitably chosen
symplectic submanifolds of P3C. In particular,
when M is the Grassman manifold these equations
are the RPA equations. More generally, they are
a geometrical formulation of the double commuta-
tor equations-of -motion theory of excited states.'®

It is of interest to note that whereas the tangent
space to a submanifold of the Hilbert space at a
critical point is a linear subspace of the Hilbert
space, the above theory of excitations does not
correspond simply to the Schrédinger dynamics
obtained by restricting the Hamiltonian to this
linear subspace. The latter might be called a
generalized Tamm-Dancoff approach.’ In con-
trast, the above approach based on the normal-
mode oscillations of the constrained Hamiltonian
dynamics corresponds to a generalized random -
phase approximation® which is known to be super-
ior in many respects.

IV. HOMOGENEOUS SPACES

Consider a Lie group G acting on the Hilbert
space 3¢. If | ¥(0)) is any state in ¥, the orbit
of G in 3 containing |\If(0)) is the set of states

M={|¥(g)=g|¥(0)); gEG}. 4.1)

In general, a given group has many orbits for dif-
ferent choices of |zp(0)). Orbits of Lie groups con-
stitute an important class of manifolds called
homogeneous spaces. We anticipate that they will
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prove to be extremely useful in the extraction of
collective subdynamics from the many-body dy -
namics when one is given a group of collective
transformations. They are also simple to work
with because their properties can be inferred from
the properties of the associated groups and their
isotropy subgroups.

If |¥(0)) EM, as defined above, the isotropy sub-
group (the little group) L at |¥(0)) is defined as
the set of all elements I €G that leave |¥(0)) in-
variant up to whatever equivalence relationships
one may choose to introduce, i.e.,

L|¥(0)=|¥(0), 1eL CG. (4.2)
We can therefore write
|¥(g)=|w(gL)=gL|¥(0)), 4.3)

where gL is the coset in G/L containing g EG.
This expression defines a well-known diffeomor-
phism between M and G/L and, in particular, in-
duces coordinate charts on M from the natural
charts on G/L.

Let g and 1 denote, respectively, the Lie alge-
bras of G and L and let % denote a vector space
complement of I in g; i.e.,

Zg=10k. 4.4)
Now it is well known that any element gL in some
neighborhood of the identity in G/L can be ex-
pressed as the exponential gL =exp(X)L of a vec-
tor XEk. Thus if (X,) is a basis for %, a coordi-
nate chart (x*) for a neighborhood of Izp(,)EM is
defined by

| ¥(x)) = exp[xX,] [ ¥(0)) . (4.5)

If the action of G on ¥C is unitary then, by intro-
ducing the equivalence relation (1.1), the orbit M
containing |¥(0))E P3C is a submanifold of P3C.
Furthermore the operators (X,) are skew-Hermi-
tian. However, M may or may not be symplectic.
For the remainder of this section we shall assume
that G is unitary and that MCP 3C.

Applying the general expressions of Sec. I to
the homogeneous space M, we see that the energy
function H on M is stationary at |~If(0)), if and only
if,

oH
(——,) =(¥(0)|[#,X,]|¥(0)=0, all v. (4.6)

0xY/ se0
This is the familiar Rayleigh-Ritz form of the
variational principle.’

The symplectic metric, Eq. (2.11), is given at
| #(0)) by

0.~ - H0)|[X,,X,]| ¥(0)

and the Hessian by

4.7)
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o'H
Sia=—YO)|[X,, (LX) [w0) . @.8)

Thus bringing the coordinates and the Hessian into
canonical form at 'zp(Q)) means finding a basis
(X,)=(iQ%, —iP ) for k such that

(¥(0)|[@*, @ 1| ®(0)=(¥(0)|[P,,P, ]| ¥(O)=0,
(¥(0)|[Q*,Ps ]| ¥(0) =ibZ, (4.9)
(2(0)|[@*,H,P, ]| ¥(0) =0,
(¥(0)|[@%,H, @ ]| ¥(0) = 5,4 B*,

(4.10)
(¥(0)|[P, ,H,P, ]| ¥(0) =56, C, ,
where the double commutator is defined
2[‘4’ H,B]=[A,[H,B]]+[[A’H]’B]' (4.11)

It is clear that the above equations only have solu-
tions when the metric is nondegenerate, i.e., when
M is symplectic. Finally, one obtains the transi-
tion matrix elements from Eq. (3.14),

(%, | F|w,) =(¥(0)|[0,, F]| ¥(0), 4.12)
where
_ 1/2 i
0,=-(w, B,/2) (Qx + 5B P,L) . (4.13)

As a practical matter, it is usually simpler to
attempt a solution to Eqs. (4.9)-(4.11) by writing
them in terms of the operators (O,) defined by Eq.
(4.13) and their Hermitian adjoints (O}). The
equations then become '

(%,|[0,,H, 081 ¥,) = 0, (%, |[O,, 03| ¥,) = Batx »

(%[0, 1,001 ¥,) = w,( ¥ [0}, 08]] ¥,) =0,

(%o|[0,, H,0,1|%,) = —a (¥,| [0, 0,1 ¥,) =0,
(4.14)

which are now clearly recognizable as the funda-
mental equations of the double commutator equa-
tions of motion formalism.® Thus we confirm that
the geometrical formulation of these equations
given in Sec. II is a generalization of the equa-
tions-of-motion formalism to an arbitrary sym-
plectic manifold.

V. THE GRASSMAN MANIFOLD Gry

An N-particle Slater determinant is the exterior
(i.e., fully antisymmetrized) product of N single-
particle states, i.e.,

\I’aﬂrn-z lpu‘pﬂl\z»bw\' tt. (5- 1)

Such states are called simple. The set of all
simple states of unit modulus together with the
equivalence relation (1.1), which identifies

states differing only in phase, constitutes a mani-

fold known in the mathematical literature as the
Grassman manifold and denoted Gr,. We review
here some of its properties of relevance to the
many -fermion problem.

Let U@CY) denote the group of unitary transfor-
mations of the single -particle Hilbert space 3¢‘'’,
If {y,;v=1,2,...,} is a basis for 3¢ *), the funda-
mental representation of U@ is expressed

WD) =L Zuvbur EEVEY). (5.2)

The natural action of U(3) on the N-fermion
Hilbert space is then defined by the action on a
basis of simple states

P(Q)V o= e (@s(2) ** =V ...(8), gEUGED).
(5.3)

P is evidently the fully antisymmetric Kronecker
product representation which is known to be irre-
ducible. Now observe that this action preserves
the simple character of simple states. Further-
more, since any set of N-orthonormal single-
particle states uniquely defines a simple state,
up to phase equivalence, and since any set of N-
orthonormal single-particle states can be gen-
erated from any other such set by a unitary trans-
formation, it follows that Gr, is an orbit of the
group U@3e), Thus Gr ~ is a homogeneous space.

To discover the isotropy subgroup, observe that
any simple state ¥ €Gr,, defines a decomposition
of the single -particle Hilbert space into sub-Hil-
bert spaces of occupied and unoccupied single -
particle states, viz.,

3 =500 B3e)

umoce *

Furthermore, such a decomposition in turn unique -
ly defines ¥ up to phase equivalence. The iso-
tropy subgroup at ¥ EGr, is therefore the direct
product of the groups of separate unitary trans-
formations in 3¢ and 3¢, i.e., U@L)

x U@ ). Thus Gr,, is identified as the homo-

umoce
geneous space

Gry, ~U(E®)/[UG6E) x UG, (5.4)

To define coordinate charts on Gr,, it will be
convenient to realize the Lie Algebras of the above
unitary groups in the framework of second quanti-
zation. Let{a!l;v=1,2,...,}and{a,;v=1,2,...,}
denote, respectively, a basis of single-particle
creation and annihilation operators satisfying the
familiar anticommutation relations

[a,",a:], =[a“,a,,],=0 ’ (5 5)
[all’ alff]o = 6l‘lv .
The Lie algebra #(3¢Y) of U(3) is then realized
on the many-fermion Hilbert space as the set of
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skéw-adjoint operators
X=PEXM)=) XWala,, XVeu@®). (5.6)
uy

One readily ascertains that
[X,Y]=P((x®, Y], (5.7)

confirming tha‘t P is a Lie algebra homomorphism
and, furthermore, that it is consistent with the
group representation defined above. Thus, when
we represent a simple state

—>’ (5.8)

where ] -) is the zero-particle vacuum state, we
find

]aﬁ...):az‘a;...

glap-y=al(gaf(g) -+ |-, (5.9)

with
a'(g)=ga'g™, g=P(gW)EPUHD)). (5.10)
Putting g=exp(X), X EP(u(3¢")), we obtain

al(g=e*ale*=2 g®a! (5.11)
13

consistent with Eq. (5.2).

Now let {a};2=1,...,N} be creation operators
for an orthonormal basis of single-particle states
for the occupied single-particle space chz corre-
sponding to some state |¥)EGr,. And let
{al;p=N+1,...,} be a similar basis for %) ..
We shall refer to these as hole and particle opera-
tors, respectively, in accord with standard ter -
minology. The Lie algebra «(3¢})) is now seen to
be realized as the subset of skew-adjoint hole-

hole operators
N
P(u(&Céiﬁ)):{X: Z X, ala, ; X= —X'} .
h ' =1

. (5.12)

Similarly u(3{)..) is realized as the subset of

skew-adjoint particle-particle operators

P(u(ffc,(,ﬂ“))={X= z X, alay ; X:X'} . (5.13)

Dyd'ON
An obvious candidate for I;, a vector space com-
plement of P[u(3c{Q) ®u(3L),)] in Pl (), is
therefore the subset of skew-adjoint particle-hole
-operators

- N
={x= T3 Cuda -Xpdla)} 6.0
PN hel i

where the asterisk denotes complex conjugation.
Finally, abasis for k induces a coordinate chart for

Gry in a neighborhood of the “particle-hole vacuum

state” |¥,), by means of Eq. (4.5). For example,

the basis (X,) = (@™, -iP,,) where

1
Q" =-=(ala, + ala,),
2 (5.15)

i
Py=75 (e, -aa,),
defines the coordinate chart (p,,¢") about ¥, by

[¥(p,q)) = expi 2; (p@ —P,)|¥,).  (5.16)
P

This chart is seen to be canonical at |¥,) [cf. Eq.

(4.9)] since

<‘I’o|[Q’h: Q’,h’]l\po):<‘I’0|[Pnh’Pp'h']|‘I’o>=07

(o | (@, Py 1| ) =62, 80 .

It should be emphasized that the above choice of
E, although natural, is by no means unique. It is
natural because, as one can easily show, % is then
the orthogonal complement of the isotropy subalge -
bra with respect to the Riemannian metric induced
from the real part of the Hilbert-space inner
product, i.e., the real counterpart of the symplec-
tic metric (2.5). This Riemannian structure is
identical to the Killing form on #(3¢* ). This came
about because we defined % in terms of an ortho-
normal basis of single-particle states. This
choice is also convenient for the construction of
coordinate charts for Gry in view of the following
useful theorem:

Theovem. If ¥,is any normalized simple N-
particle state and (af; 2=1,...,N) and (a,;p=N+1,
...,) are, respectively, single-particle crea-
tion operators for an orthonormal basis of hole
and particle states defined with respect to ¥, as
particle-hole vacuum, then any other normalized
simple N-particle state ¥ can be expressed, to
within a phase factor, by

(5.17)

|9 =exp 2 (X,ala, - Xkala,)|¥,),  (5.18)
ph

where (X,,) is a set of complex numbers.

The proof of this theorem is given in the appen-
dix. Note that it is distinct from Thouless’s
theorem'® which states that almost any simple N-
particle state ]'Il) can be expressed, to within a
complex normalization factor c,

[ W) = cekp(%? Z,ha;ah) | %),

where (Z,) is another set of complex numbers.
Thouless’s theorem provides an alternative coor-
dinate chart to the one given above; namely, the
one given by the real and imaginary parts of (Z,,).
One can readily ascertain that this chart also fol-
lows from the general construction of Sec. IV by
considering Gr, as an orbit of the general linear

(5.19)



22 MANY-BODY QUANTUM MECHANICS AS A SYMPLECTIC... 2369

group GL(3™) rather than its unitary subgroup as
we have done. _

Using the above choice of & the condition (4. 6)
that the energy be stationary at ¥, becomes the
HF equation

(‘I’ol[H,a;an]l‘I’o) =(‘I’o|[H’azap]I‘I’o> =0
(5.20)

for all k=1,...,N, p=N+1,...,. Expanding the
excitation operators O of Eq. (4.13):

01=Y [Yu(Nala, - Z,,(\afa,] (5.21)
p,h

we obtain from Eq. (4.14) the RPA eigenvalue
equations!

2; [Apyn Yon O+ Bypoon Zy )] = 0, Yo ()
ve (5.22)
}; [ Bl Yy me ) + A% n Zy e W] = =y Z,n()

p'h’

with the normalization

I (YA (0¥, () - Z5(0Z,,(00] =6, ,  (5.23)
vh
where
Anhn‘h': (‘I’OI [al':ap’ H, a;'an' ] Yo,
(5.24)

Bipgone = = \Ito’ lala,,H,d}.a, 1%, .

Finally, Hamilton’s equations for the time evolu-
tion of an arbitary state on Gr, become the TDHF
equations which are conveniently expressed in
density matrix language. We recall the well-
known fact that the Grassman manifold Gr,, is dif-
feomorphic to the set of single-particle density
matrices which satisfy the conditions

p=p', p’=p, Trp=N. (5.25)

The diffeomorphism is defined as follows: In
terms of an orthonormal basis {a!; v=1,2,...,}

of single-particle creation operators, each ¥ €Gr,
defines a density matrix with elements

puy={¥|ala,|¥). (5.26)

One readily ascertains that with ¥ simple, p sat-
isfies the conditions (5.25). Conversely, given a
density matrix satisfying these conditions, it can
be diagonalized by a unitary transformation and,
since p is idempotent, its eigenvalues can only be
zero or one. Thus we can order the eigenvectors
such that

Ope, 0=1,...,N

(U'pU),, = { .
o 0, o=N+1,...,

(5.27)

The simple state ¥ corresponding to p is then de-

fined
[®y=al(U) - -a}(U)] =), (5.28)
where
al(U)=UalU'. (5.29)

This state is normalized and uniquely defined to
within a phase factor. '

Since the matrix elements of the density uniquely
define the state when it is simple it follows that the
set of density matrix elements constitutes a com-
plete set of functions on Gr,. To define the time -
evolution of a simple state it is therefore suffi-
cient to define the time evolution of its single-par-
ticle densities. The TDHF equation is therefore
expressed

Py =% ¥|[H,ala,]| ¥ . (5.30)

It will be shown in the following section that this
familiar equation follows in a more general context
from Hamilton’s equation.

VI. GENERALIZATION OF HARTREE-FOCK
CONCEPTS

We have observed that the static HF, RPA, and
TDHF theories have counterparts associated with
any symplectic submanifold. However, the utility
of these generalizations must ultimately depend
on the practicality of the theories they generate.
It is worthwhile, therefore, to explore in more
detail some of the simplifying characteristics of
determinant based theories to discover which of
them are truly unique and which are amenable to
generalization.

One of the obvious characteristics of the HF
dynamics is the existence of a HF self-consistent
one-body Hamiltonian #(¥) defined for each simple
state ¥. This Hamiltonian has the property that
the time evolution of the expectation F of any ob-
servable F in the constrained HF dynamics (i.e.,
F a one-body operator) is given by the equation

F=i(¥|[n(¥),F]|v). (6.1)

We shall show that such a Hamiltonian exists for
any symplectic homogeneous space.

Suppose, for simplicity, that M is a symplectic
orbit of a unitary group G and that (x*) is a coor-
dinate chart induced about a point ¥ €M by expo-
nentiation of a basis (X,) of %, a vector space
complement of the isotropy subalgebra at ¥ in the
Lie algebra of G as defined in Sec. IV. The func-
tion F, defined on M as the expectation of some
observable F, then has time evolution given by

. .. OF

F=x* axu=°"(‘1'|[F,Xu]|‘I'>-  (6.2)
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Thus we obtain Eq. (6.1) by defining

1Y) = i2*X, = io* 2L x

= Xu - (6.3)

Alternatively,
r(¥) =io**(¥|[H,X,]| BX, .

It follows directly from Eq. (4.7) that #(¥) has
the property

(¥|[n(¥),X]| ¥y =(¥|[H,X]| ) (6.4)

for any X in the Lie algebra of G. In fact, this
equation defines a convenient intrinsic definition
of #(¥), which avoids reference to a coordinate
chart. Note that, by Eq. (6.3), ik(¥) is required
to be in the Lie algebra of G and that 2(¥) is only
defined modulo an arbitrary and unimportant com-
ponent from the isotropy subalgebra. One also
observes that H Hermitian implies that 2(¥) is
also Hermitian.

Putting Eqs. (6.1) and (6.4) together we obtain
the very significant result that

F=i(¥|[H, F]|®) (6.5)

for all F in the complexification of the Lie algebra
of G. This result is significant because it means
that F takes the same value in the constrained
dynamics at any point on M as it would have in
the unconstrained dynamics. This result is espe-
cially significant for HF theory because the com-
plexification of the one-body unitary Lie algebra
is the set of all one-body operators, which in-
cludes most of the physical observables of inter-
est. Furthermore, as was shown in the previous
section, the expectations of the one-body operators
are the one-body densities and these constitute a
complete set of functions on the Grassman mani-
fold.

The Hamiltonian 2(¥) can also be used to give
the equation of motion for the time evolution of a
state in the constrained dynamics by writing

[¥y=x*|o¥/ox* ) =x*X, | W) . (6.6)

Thus we obtain the equation of motion for ¥(¢) in
the form of a Schrddinger equation

R(W) | Wy =i |¥) . 6.7)

Such an equation is of course very familiar in the
TDHF context. It should be emphasized, however,
that this equation is not a Schréddinger equation in
the usual sense. For whereas the unconstrained
Schrodinger equation is a linear equation, the )
above equation is, in general, nonlinear, which
is perhaps not a very surprising outcome in view
of the fact that the dynamics has been constrained
to a nonlinear space.

Nonlinear differential equations have attracted

considerable interest in recent years-as a conse-
quence of the discovery that they frequently ex-
hibit nondispersive solitary wave solutions.'” In
the present context the situation is the converse.
The suppression of the dispersion of the wave
function by constraining the dynamics to a non-
linear space results in a nonlinear equation. Thus
the only solutions of Eq. (6.7) of relevance are the
nondispersive solutions, i.e., those for which

¥(¢) is a path on the submanifold.

Although it is possible to generalize the defini-
tion of 2(¥) to give the dynamics constrained to an
arbitrary symplectic manifold, it would appear to
be more useful to work, in general, with the sym-
plectic gradient H of the energy function. Asso-
ciated with any function F on a symplectic mani -
fold M there corresponds a symplectic gradient
field

ﬁ‘; ut'ii a2

O T (6.8)

This field clearly acts on another function G by
FG)={F,G} (6.9)

where the curly bracket is the Poisson bracket.
The equation of motion for F is therefore given by

HF)=F. (6.10)

Another frequently exploited characteristic of the
Grassman manifold is the fact that each simple
state YEGr,, is a particle-hole vacuum;

a{a,|\11)=0

for some choice of particle-hole operators.!®
This property too is much more general.

If M is an orbit of a semisimple Lie group G
and if the orbit contains a lowest weight state ¥,
of an irreducible unitary representation of G then
the complexification g° of its Lie algebra g can
be decomposed into vector subspaces

(6.11)

ze=10k,
. (6.12)
kc

=Bk,

where 7 is the Lie algebra of the isotropy subalge-
bra at ¥, and %k is defined such that

X|¥,)=0, all XEE, (6.13)

(Cf. Cartan’s decomposition of semisimple Lie
algebras.) It follows that every ¥EM is a lowest
weight state with respect to some decomposition
of g¢ i.e.,

X(g)|¥(g)h=0, all XEk
with
X(g)=gXg™, |Ugh=g|¥), gEG. (6.15)

(6.14)
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This suggests that among the many possible orbits
of a group, those which are lowest weight orbits
may be of special significance in many-body ap-
plications. One also observes that the elements
of such an orbit are generalized Glauber coherent
states in the sense of Perelomov and Onofri'®

and that such orbits are naturally amenable to re-
quantization in the coherent-state representation.
For example, we have recently shown that the
Grassman manifold supports an exact coherent-
state representation of many-fermion quantum
mechanics.

However, it would appear that the Grassman
manifold is exceptional in the sense that it is not
only a lowest weight orbit but it has the additional
property that every simple state is a vacuum of
particle and hole destruction operators separately,
i.e.,

al|¥=a,|¥)=0. (6. 16)

As a consequence, the HF equation (5.20) can be
expressed

HY ==} -0, (6.17)

where H® is the HF self-consistent-field Hamil-
tonian with matrix elements defined

HY =(¥|{a,, [H,a}¥) . (6.18)

The significance of this property is that HF solu-
tions can be found by the Hartree self-consistent-
field method, i.e., by repeatedly diagonalizing
HSY, to determine a single-particle basis in which
the off-diagonal particle-hole matrix elements
vanish, and then to construct the corresponding
particle-hold vacuum as a determinant of occu-
pied hole states. The circumstances under which
the Hartree method converges have been investi-
gated recently by two of us.?®

The variational equation (4. 6) for stationary
states in general is not, however, a self-consis-
tent-field equation and the Hartree method of solu-
tion is therefore not applicable. The equation is
nevertheless easily solved by the Newton-Kantoro-
vic method.®° This method is simply a general-
ization of the familiar Newton method for finding
the zeros of nonlinear functions. In the present
context, the functions are the components of the
energy gradient. The Newton-Kantorovic method
will be discussed in some detail in a subsequent
paper. !

VII. DISCUSSION

The most serious deficiency of the dynamics
constrained to a nonlinear symplectic submanifold
would appear to be the loss of the superposition
principle. However, it is only partially lost. In

particular, one observes that the small amplitude
normal-mode vibrations about a stable stationary
point give linear equations for excited states.
These equations correspond to diagonalization of
a bilinear form, the Hessian, on a linear space,
namely, the tangent space at the stationary point.
Nevertheless it remains a fact that two paths on
the submanifold corresponding to solutions of the
constrained dynamics cannot, in general, be
summed to give a third. It is of interest therefore
to consider how this limitation might be circum-
vented.

We have observed that the time evolution of a
state constrained to a symplectic homogeneous
space is given by a nonlinear Schriddinger equation
with a Hamiltonian 2(¥). An interesting recent
suggestion, in the context of TDHF theory, is that
one regard the constrained time-dependent wave
functions as “channel wave functions” in much the
same way that one regards optical-model wave
functions for the elastic scattering of various pro-
jectiles by a target. Thus one might write the full
Hamiltonian

H=h(¥)+ V(¥),

where V(¥) is a residual interaction that couples
channels. The construction of an S-matrix theory
with TDHF channels is currently being actively
pursued.

Another approach to regain a linear theory is
that of requantization. This is the approach ini-
tiated by Hill, Wheeler, and Griffin.?? It was ob-
served in Sec. VI that constraining the dynamics
to a submanifold can be regarded as a suppression
of quantal dispersion effects. And in this sense,
the constrained theories can be regarded as semi-
classical approximations. For example, the sym-
plectic manifold of Glauber coherent states® for
a single-particle is diffeomorphic to classical
phase space. Now it is well known that the mani-
fold of Glauber coherent states can be requantized
to give the Bargmann coherent-state representa-
tion** which is an exact representation of the sin-
gle-particle quantum mechanics. In a similar
manner we have recently shown that the Grassman
manifold can be requantized to give an exact co-
herent-state representation of many-fermion quan-
tum mechanics.?® It would of course be unrea-
sonable to suppose that the requantization of an
arbitrary symplectic submanifold could give back
the full unconstrained quantum mechanics. How-
ever, it can be expected to return a linear sub-
quantum mechanics. The general techniques for
requantizing arbitrary symplectic manifolds are
the topic of intense current activity.?™* They
would appear to merit investigation in view of the
recent interest in constructing fully quantal col-
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lective theories by first constructing semiclassical
submanifolds on the basis of TDHF or other con-
siderations and then requantizing them.? In a
following paper we shall extend the above geomet-
ric formulation of quantum mechanics to Fock
space. ‘
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APPENDIX

Theovem. If |®) is a normalized simple (i.e.,
Slater determinant) N-particle state and (a];
=1,...,N) and (a};p=N+1,...,) are, respec-
tively, single-particle creation operators for an
orthonormal basis of occupied (i.e., hole) and un-
occupied (i.e., particle) states defined with re-
spect to |<I>> as the particle-hole vacuum, then
any other normalized simple N-particle state
]@’) can be expressed to within a phase factor

|8y =exp 2 (Xuala, - Xhala;)|8) (A1)
p,h

where (X;) is a set of complex numbers.

Pyoof. Let (of; h=1,...,N) be a set of crea-
tion operators for an orthonormal basis of single-
particle states occupied in |®’). Construct the
N X N matrix

e =(® | 0l 0ty |®), h,H'=1,...,N. (A2)

Since » is Hermitian it may be diagonalized by a
unitary transformation. Furthermore, n is posi-
tive semidefinite. Thus there exists a basis such
that ’

(8| o}, "1’52"56nw . (A3)
Let (o) be such a basis. Then, since
[a;) Oy ]¢= 6hh' ’ (A4)

it follows that the matrix (( ®| a,. a}|®)) is also
diagonal with elements

(] of | 8) = (1 =208y - (45)

Now make the expansion

of =Zh: Conls + 2, Cpua! (A6)
! »
and define

nhHl: :zh': Cw hal:U

(A7)
(1-m)'?P! =2 Cpal,
»
so that we can write
af =mH} + (1 -n)' P} (A8)
It follows from (A3) and (A5) that
(®|HIH, |®) =(3|P,P]. | &) = by , (A9)

so that (H}) and (P!), whenever they are defined,
are creation operators for orthonormal single-
particle states, respectively, occupied and unoc-
cupied in |®). Furthermore, if the set (H]) of
creation operators which are well defined by Eq.
(A7) (i.e., m, #0) is incomplete, it can be com-
pleted in an arbitrary way. We may therefore
suppose that (H}; k=1,...,N) is an orthonormal
basis for single-particle states occupied in |<I>).
Now observe that

exp[k(P!H, - H!P,)|H! exp[ -%(P!H, — H!P,)]
=(cos k)H + (sink)P} , (A10)
which by Eq. (A8) gives o} with
k=cos™n,. (A11)
It follows therefore, since
|#’y=al-+-a}|0), (A12)

where |0) is the bare-particle-vacuum state, that
|#’) can be expressed

N
|8’y =exp (Z cos™n, (PIH, - H;p,,)) |8y, (A13)
h=1
which is manifestly well defined even when n, =1
and P} is not defined. Finally, substituting the
expansions (A7) for P! and H!, gives the desired
result (A1). Note that the above is not only a
proof of the theorem, it is also a construction of
the exponent in Eq. (Al). Furthermore it reveals
the extent to which the exponent is unique, i.e.,
n, in Eq. (A13) is generically defined uniquely
modulo 2m.
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