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Coupled Hartree-Fock method for calculating Sternheimer shielding
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(Received 5 November 1979j

We have extended our calculations of Sternheimer shielding functions of Ref. ,1 by introducing exchange terms via

the self-consistent Hartree-Fock perturbation method. This procedure becomes relatively time consuming. It takes

for Pr'+ 2-1/2 h of CPU time at a TR 440 computer to achieve convergency after 10 iterations. In addition to the

acccurate method we have also studied an approximate version, which handles the calculation of exchange integrals

in a simplified form so as to make the computational procedure very fast. The approximations inherent to this

procedure, however, yield unreliable results, unless the wave functions are considerably contracted. Our results from

the accurate method are compared with values zeported in the literature, which also take consistency, exchange, and

correlation effects into account. We conclude from our study that consistency effects in deriving Sternheimer

corrections are dominant over correlation effects.

I. INTRODUCTION

We have been motivated to calculate Sternheimer
shielding functions y(r) by our work on the mole-
cular-orbital (MO} interpretation of experimental
quadrupole splittings. In MO or band calculations,
which include only valence orbitals within the MO

basis set, the electron core of the isotope under
study becomes polarized by valence electrons, by
overlap, or by ligand charges. The amount of
polarization depends on y(r) and accounts for
shielding [y(r)& 0] or antishielding [y(r)&0] effects
in deriving the quadrupole coupling constant.

Recently (Paper I, Ref. 1) we have calculated
Sternheimer shielding functions y(r) for various
elements (Li, Na, K, Rb, F, Cl, Br, I, Cu, Fe,
Ag, Pr) using Sternheimer's non-self-consistent
and self-consistent procedure. ' Sternheimer's
self-consistent theory takes care of Coulomb in-
teraction between the perturbed core orbitals but

neglects exchange interaction. To take the ex-
change interaction into account we introduced in
Paper I the Xn -exchange potential and performed
self-consistent calculations. However, we were
not able to derive satisfactory results. Alterna-
tive calculational procedures, which include ex-
change and which are self-consistent, are the
coupled-Hartree-Fock method (CHFM), ' ' the
linked-cluster-many-body perturbation theory
(LCMBPT),7~ and the differential-equation method
(DEPM), which treats consistency as a perturba-
tion. " The LCMBP theory is superior to CHFM
and DEPM in the sense that it includes correla-
tion effects, while CHFM neglects correlation
contributions partly, and DEPM neglects them
completely. However, LCMBPT is based on total
energy calculations, thus making the evaluation of
y(r) (instead of y„) not straightforward. We fol-
lowed therefore the CHF method here, but re-
stricted ourselves to closed-shell systems.

II. THEORY

The CHF method is based on the self-consistent solution of the first-order perturbed Schrodinger equa-

tion'(, 22'
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where wave functions 4&(r} consist of the unperturbed part (i)o &(r} and the perturbed part 0, &(r):

4,(r) = P (ro) ((,+,(r) .
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The symbol Q II ill Eq. (1) represents the summation over electrons with parallel spin only. Hl.; is the
one-particle perturbation operator acting on particle j, and E&, defines the perturbed energy in 1st order
for the jth orbital. The unperturbed orbitals $0 f(r) are the solution of the HF equations

N

~

-v'- (()0 f(r)+2+ "' d'r' $0 f(r)-2+II " " d'r' 4, k(r)=EO 40 f(r). (2)(r-r'I
We substitute the unperturbed energy E, f and the potential 2Z/r in Eq. (1}by means of the unperturbed
Eq. (2) and separate the angular and radial part of the perturbed and unperturbed wave functions according
to

(o)
(«') ))l ( )

lrl (e p)

(1)

P, ,(r) = "' q(r.'(e, q ) ~C;~1".(e, m)&1".(e,e),
&1)

q(1'1(e q)~ICOIy'"(e, y})r'I(8, ll).

Multiplication of Eq. (1) with the angular part of (J)»(r) and integration over the angles 8 and ((0 leads to the
following equation, " the self-consistent solution of which yields the perturbed orbitals u„,.(r):

(
B' 1 B u~ (r) (l' —l)(l'+ l+ 1)

Br' u~(')(r) Br' r'

«'(r)(r +Z« -4 , „g. CZ, (r) +,2 g Il[C,Z, (r)«t'((r)«C, Z, (r)«~", (r)]
&Xk &Xk &'Xk~ nit I lf 1'lkL

with

+ 2 g II C,Z, (r)u„",' (r),
n&k l &kL

(3)

E,, „=-(u„",'(r) (r ~u)(r))+ 4 g CZ, —4 g IICZ, .
"i' x' i' "x' x' x'

(4)

The coefficients C,. resulting from the angular integrations and radial integrals Z,. are derived in the Ap-
pendix. The general method of solving Eq. (3}was originally derived by Sternheimer (see Refs. 2 and 29
of Paper I).

Since the computational time and the memory space required for the solution of Eq. (3) (especially for
heavy elements from transition elements on) is exorbitantly high, we introduced the following approxima-
tions:

J 40, k(r }((1k(r') &, , & (-} &0 k(r) |t0 k(r ) 40 f(r ) dk (l) )

J ((1 k(1 ) 40 f(I' ) dk
)lf0 k(I' ) (I)0 f(1' )

/r-r'&
d &os d (}t'~ p( ) .

(5)

(6)

Approximation (5) was already described and used
by Khubchandani et al." The advantage of both
approximations is (i) that the perturbed energy re-
mains invariant under the application of Eqs. (5)
and (6), and (ii) that memory space and computer
time are reduced at least by a factor of 4 for each
iteration. With these approximations we get in-
stead of Eq. (3}the simplified form for the first-
order perturbed Schrodinger equation. En the
present study we have applied these approxima-
tions to closed-shell systems:

I

B' 1 B'u„l (r) (l' —l)(l'+ l+ 1)
Br' u ~ '(r) Br' r' kl'

"+z, „5,.-4 g c,z,( )) «t"( )
&X'X~ 'ik~

+ 4 Q CCZ, (r)u„",',(r),
Ngt gt

where E, „ is given by Eq. (4}.
With the self-consistent solution u„',"(r) of Eq.

(5) or Eq. (7}, respectively, we derive the Stern-
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heimer shielding function y(r) using relation':

y(r) =gg I
u ~"(r')u &,'(r')r" dr'CN (

I

+r' r' ' „"'(r'tu„"!(r')dr'),

where CN, is defined as'

Unlike our earlier calculations~ where we used a
mesh of the radial. integration interval with 720
up to 1440 points to get reliable accuracy, we in-
troduced here numerical procedures with higher
accuracy (9 point integration —and differentiation
formulas instead of 5 point differentiation —and
7 point integration formulas}. Furthermore, we
converted all integral functions according to a
procedure, described by Hartree, "which avoids
a good deal of numerical integration. Thus we
were able to decrease the number of points to 201.
Details of the numerical procedure are described
elsewhere. "

HI. RESULTS AND DISCUSSION

With the theory described in Sec. II we calcula-
ted y(r} for the closed-shell systems Be', B',
F, Cl, Br, I, Na', K', Rb', Cu', Ag', Sn, and
Pr" (neglecting 4f electrons). With respect to
MO calculations'4 including Mossbauer or nuclear
quadrupole resonance (NQR) isotopes, we also

derived y(r) for atoms and iona excluding valence
orbitals (F, Cl, Br, I, K, Zn", Sn ', Te,
Fe', Fe", Fe"). The corresponding asymptotic
values y are summarized in Tables I and II.

For F, Cl, Br, I, and Ar the accurate CHF
version was divergent. We therefore also tried a
relation for the perturbed orbitals within the
iterative scheme, which avoids minimum damp-
ing,

u'„, ,(r) =u~~7(r)+ &[u~,,(r) -u'„~7(r)] .
Varying X between 1 (minimum damping) and 0.6,
however, only affects the computation time but
does nct change the convergence (or divergence)
behavior itself.

Although the approximate CHF version achieves
convergency throughout and requires much less
CPU time (about -', in average) and memory space
than the accurate version, the approximations in-
herent to Eqs. (5) and (6) seem to be too crude to
yield reliable results. The deviations of the ap-
proximate from the accurate results are largest
if the outermost shell has p' configuration (Na,',
K', Rb') because the largest absolute contributions
to y(r) are due to the radial excitations of p elec-
trons. In case the outermost shell has an s' con-
figuration (Be', B', Pr"—4f' neglected) these
deviations are smaller, because s electrons con-
tribute to y(r) only through relatively small angu-
lar excitations. Only if the outermost shell hasd" configuration (Cu', Ag') or if the valence elec-
trons are removed totally from the calculation

TABLE II. p values for various ions and atoms, derived by excluding valence electrons from the calculations.
(These p values may be used for core corrections of electric field gradients, which are derived from molecular orbi-
tal calculations with a limited basis set, i.e., with valence orbitals. )

Atom/ion

Non-self-consistent
Sternheimer
procedure

Self-consistent
Ster nheimer
procedure

CHF method

(present work)

Calculation
performed

excluding valence
electrons

Cl'
Br'
IO

F
Cl
Br
I
K'
Zn
Sn2

Te'
Fe'
Fe'
Fe2
Fe'

-1.23
-6.22

-13.10
0.08

-1.21
-6.09

-17.42
-0.95
-7.36

-22.00
-18.40
-8.99
-9.52
M.75
-7.98

-1.12
-5.01

-13.40

-1.10
-4.98

-13.30

-8.03
-8.49
-7.80
-7.13

0.08
-1.15
-5.81

-16.32
-0.91
-6.84

-20.65
-17.33
-8.26
-8.75
-8.07
-7.43

3s
4s2
5s2

2s
3s2
4s2
5s
3s
3d"
5s
5s2
3d'
3d'
3'
3d'

3p5
4p5
5p5

2p6

3p6
4p6

5p8
3p8

5p
5p4
4s2
4s'



22 COUPLED HARTREE-FOCK METHOD FOR. . . 2:359

(Table II), do the two versions yield comparable
results, because the approximations used in Eqs.
(5) and (6) are less sensitive to contracted wave-
functions.

We make use of our results, obtained from the
accurate CHF version, to compare them with lit-
erature values.

(1) It seems that the y„values for Be', B', Na',
and K derived from the analytic expansion CHF
method" " (AE-CHF) deviate from our values
mainly because of the specific approach for the
perturbed wave functions inherent to AE-CHF,
which implies that the nodes being present in the
unperturbed functions are rigidly preserved in the
perturbed functions. Such a constraint may intro-
duce significant inaccuracies in the calculations. "

(2) The LCMBP method is superior to the CHF
and DEP methods in the sense that it includes
correlation effects, while the CHF method neg-
lects them partly and the DEP method neglects
them completely. Correlation effects may ac-
count partly for the deviation of our y„results for
Na' and Rb' from those obtained by the LCMBP
and DEP method, respectively. Vajed-Samii et
al.' and Ray et al. derived from their LCMBP
studies of Na' and Fe", respectively, that cor-
relation effects are of less importance than con-
sistency effects. This is in qualitative agreement
with our results in that, starting from y„'(Na'}
= -4.64 and r'„(Rb')= —58.45, we finallyreachedthe
convergent values y„"(Na'}=-7.09 and y„"(Rb')
= -79.12. Thus we conclude that the maindeviation
of our CHF results from LCMBP and DEP results
is due to calculational differences which are not
related with correlation effects.

(3) The considerable deviation of Ahmad's et al. '
(LCMBPT) y„result for Pr" from our CHF re-
sult is probably due to their use of excited wave-
functions which were derived from the Hartree-
Fock-Slater (HFS) program of Herman and Skill-
man. From applications of the HFS program it
is known ' that for large distances from the nuc-

leus the X& potential, which is used in this pro-
gram, leads to an overestimation of the paramet-
rized exchange integrals. ' Recently, Sen and
Weiss have shown that the use of HFS functions
for F and Cl leads to an increase in the magni-
tude of y„by about 100$ compared to the use of
HF functions.

IV. SUMMARY

The present study describes the application of
Dalgarno's' CHF method of calculating Sternhei-
mer functions p(r) for closed-shell systems. De-
viating from the correct CHF procedure we have
also introduced approximations in the calculation
of exchange integrals to simplify the computation-
al procedure. These approximations reduce the
required computer time and memory space at
least by a factor of 4 for each iteration, but lead
to unreliable y(r) results unless the outermost
valence electron shell has d" configuration or is
represented by relatively contracted wave func-
tions. As far as MO calculations are concerned
(which already include valence orbitals in their
basis set) these approximations do not play an
important role, because the Sternheimer correc-
tions'R, y„(Table II) and y(r) are derived in this
case from core wave functions only, which are
contracted anyw ay.

We have compared our results obtained from the
accurate CHF method with literature values de-
rived from the AE-CHF, LCMBP, and DEP meth-
ods, respectively. Our conclusion is that consis-
tency effects are considerably more important
than correlation effects.
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APPENDIX

The angular coefficients C, (i = 1, . . . , 9) in Eqs. (3) and (4) are defined as

C, =C,(f„f,f.) =g&Y.' [C',
[
Y.'»&Y

C2 = C2(l„ l, L) = Q(Y'& [C~[ Yg(Y' [C~[Y'»,

C~=C~(l„l', L)=Q( Y& C[[Y'»(Y' [Co [Yor&,

C, = C,(I„I,f.) =g(Y.' [C.'[ Y,'&(Y,' [C„'[Y.'~&,
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~(YklC) IY ')(Y~(ICoIY '}(Yo ICo IY('))
5 5 1& 1& &Y' I C'I Y'&

m 0 0 0

~(Y„'IC I Y('&)(Y~ I Cool 1"')(Yo'I C~l Yg}

~(Ym~lC I Yt}(Y I Col Yg)(Yt IC~ I
Y'&}

Ol 0 0 0

~(Y"I Co I Y ')(Y" I Col Ym')(Y~ol C~o I Yo)

(Y"IC IYo}(Y 'ICoIY„")(Y IC IYo)
g g( gy (v r s (Yl ICgl Ygl

7$ 0 0

The symbols Z;(r) (i = 1, 24, 5, 6, 7) represent
integral functions of the form

y)1
Z;(r) = I,„X;(r')&;(r')dr'

0

a
+ „.,X, (r )X,(r )dr, .

r

with

Z,(r)=Z,(n„ l„L;r), X,=u„",', &,=u„",',
Z,(r)=Z, (n, n„l, l„L;r), X =u„'o',

Za and Z9 are double inte gr als given as

Z, =Z,(n, n„l, l„l'„L)
a y(l

= j ~u„",'(r}
~

' „u„",'. (r')u„",' (r')dr'
0 0

a

Z, =Z,(n, n„l, l„l,', L)

u"'(r)u '(r)
fl)~y Ig

0

( r ~ra,

I., u„",' (r')u"'(r')dr"
0

[Z,(r}=-Z,(r)j,
Z (r}=Z7(n, n, , l, l,', L;r}, X7 =u„ I. , 3'7

The coefficients C, and 2'; are similar to those in-
troduced by Sternheimer. '
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