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Sy using the expansion method, the multiconfiguration relativistic Hartree-Fock-Roothaan theory for atomic
systems is presented. The matrix element for two-electron operators, such as 1/r» or the Breit operator, is
calculated by using tensor-recoupling-transformation techniques for the second-quantized operators. The theory is
tested in the calculation of term energies for oxygenlike atomic systems (0, Fe"+, and Hg"+I and transition
frequencies for E-hole states in Fe"+. It is shown that calculated term energies and transition frequencies agree well
with experiment. The role of the electron correlation efFects and the relativistic efFects in each system is also
discussed.

I. INTRODUCTION

It has long been known that the relativistic ef-
fects in an atom give the characteristic multiplet
structures for its energy levels. In the nonrela-
tivistic treatment of the relativistic effects, a
first-order perturbation theory is used. However,
this treatment of the effects is somewhat complex
and yields poor results as the atomic number in-
creases because the nonrelativistic wave function
is not a good approximation. Interest in the rela-
tivistic calculation of atomic structures has in-
creased in recent years in connection with the ob-
servation of inner-hole states or highly ionized
states in atomic systems by the experiments of
beam-foi1, spectroscopy, ' heavy-ion-atom colli, —

sions, 2 and nuclear fusion plasma. '
The relativistic formalism for many-electron

atoms goes back to Swirles4 who gave the self-con-
sistent-field (SCF) equation based on the semi-
relativistic wave equation which was first obtained
by Breit' ' for two-electron systems. Grant" has
reformulated Slater's coefficients for the repulsive
Coulomb operator lie» in a concise form by use
of the Racah algebra, and has derived the relativ-
istic Hartree-Fock or the Dirac-Fock (DF) equa-
tion for closed-shell atoms. The same equation
has been obtained by Smith and Johnson, 'o and
Coulthard. " By extending the expansion method
of Roothaan, ~2 ' Kim" has given the relativistic
Hartree-Fock-Roothaan (RHFR) equation for
closed-shell atoms, where orbitals are expanded
in terms of sister-type orbitals (STO's) with a
noninteger principal quantum number.

For either open- or closed-shell systems,
Slater' s appxoximationi6-i8 or' its modified form 9

for the exchange potentials have often been intro-
duced to facilitate practical calculations. The
average-of-configuration method by Slater" has
also been used to calculate the energies for open-
sheQ atoms. 2'~' This method leads to the closed-

shell-like calculation for open-shell orbitals so
that off-diagonal Lagrange multipliers (ODLM's)
do not appear in the calculation. However, the
averaging method is not unique. Because the rela-
tivistic effects for inner-shell electrons is larger
than those for outer-shell electrons, one has to
devise a way of averaging the configuration for
each relativistic shell in a certain atomic system.
In the averaging, information about the multiplet
structures of the energy levels is lost. Kagawa"
has extended the RHFR theory of Kim to open-shell
atoms, where the ODLM's are replaced by cou-
pling operators with which separate SCF equations
for closed- and open-shell orbitals are obtained.

All of the formalism described above is based on
a single configuration wave function for the states
considered. When one treats multiply excited
states containing vacancies in inner as well as
outer shells (which are of importance in recent
high-energy experiments such as the beam-foil
spectroscopy), the coupling scheme and the rela-
tivistic effects must be included in the theory con-
sistently, as inner- and outer-shell electrons re-
quire different treatments for their coupling and
relativistic effects.

In order to introduce wave functions in interme-
diate coupling into the theory, the multiconfigura-
tion Dirac-Fock (MCDF) theory has been developed
by Grant ' and Desclaux. Grant and his co-work-
ers29' have studied the fine structure of the
ground and lower excited states of various atoms
including heavier elements such as Hf and Bi.
Brianron and Desclaux" have satisfactorily applied
the MCDF theory to the calculation of the KI I-
Auger-transition energies for rare gases, U and
Am. Very recently, Cheng, Desclaux, and Kim"
carried out the MCDF calculation of the fine-
structure intervals of 1s2s2p I' and 1s2p'4P states
in Li-like ions which have been observed in the
beam-foil spectra. They" have also calculated
term energies for carbonlike. atoms and have
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showed that the MCDF calculation combined with

the correct treatment of the Breit interaction and

the approximate estimate for the Lamb-shift cor-
rection agrees well with experiment. These cal-
culations show that an adequate intermediate cou-

pling between pure LS and pure jj limits for in-
ner- and outer-shell electrons in each atomic
system can be obtained by the MCDF method and

that energy correction due to the Breit interaction

plays an important role in the ab initio calculation
of multiplet structures of energy levels.

The MCDF equation has so far been solved by

use of the numerical integration method and no

calculation of the MCDF equation with the expan-
sion method has been reported. Generally speak-

ing, the expansion method gives less accurate re-
sults than the numerical integration method be-
cause of the limited basis set used in the expan-
sion method. However, the merits of using the

expansion method can be found not only. in orbitals
in an analytical form which are easier to handle in

a calculation of various physical quantities other
than energy, but also in the treatment of systems
such as molecules for which it is difficult to apply

the numerical integration method. Even for atom-
ic systems, the expansion method has the merit
that it requires less computation time in dealing
with ODLM's for general open-shell cases. In

fact, there have been few investigations on the

rigorous treatment of ODLM's for relativistic
atoms with the numerical integration method. Al-

though the difficulty in the use of the expansion
method lies in obtaining a good basis set, this

method can supplement the deficiencies in the
numerical integration method.

The purpose of this paper is to present a multi-

configuration relativistic Hartree-Fock-Roothaan
(MCRHFR) theory for atomic systems. The Breit
interaction is treated as a first-order perturbation.
The matrix elements for the two-electron opera-
tors such as the repulsive Coulomb interaction
operator or the Breit operator between two con-
figuration state functions (CSF) are calculated by

using Sasaki's method. " Sasaki's method deals
with a successive use of the tensor recoupling
transformation techniques for a set of second-
quantized operators. This will be described in the

Appendix. A numerical application of the theory
to highly ionized oxygenlike systems is presented.

H= QHn(i)+ +1/r, (2)

and

Hn(i) = c5; g, + c'(P; I,)+V„(r;) . - (3)

Here, c denotes the velocity of light and I~ is the
4 x$ unit matrix. The Dirac operators o. and p
are expressed by the matrix

'0

0 ~

0

0 -I2 (4)

where B stands for the three Pauli matrices and

I, is the 2 x2 unit matrix. V„(r) is the nuclear po-
tential. By assuming a uniformly charged sphere
for the nucleus, the effect of the finite nuclear
size is included in V„(r) and is written as

for many-electron atoms: One cannot obtain a
fully Lorentz-invariant Hamiltonian for many-

electron systems in a closed form, sfnce the com-
plete electron-electron interaction involves not

only the instantaneous Coulomb interaction but also
the interaction through the process of exchanging

virtual photons between the participating electrons.
As has already been mentioned, a practical rela-
tivistic treatment for many-electron atoms has

been developed by extending the Breit equation for
two-electron systems to many-electron cases.
The Breit equation can be derived by applying a
nonrelativistic approximation to the second-order
scattering matrix in QED formalism. " Special
attention must be paid to the Breit equation in its
practical use. The Breit equation is not Lorentz-
invariant because of the interelectronic distance

vy2 and the Breit operator should be treated as a
first-order perturbation, since inclusion of the

Breit operator in the unperturbed Hamiltonian or
treatment of the operator as a higher-order per-
turbation than the first order leads to results in-

consistent with QED. Problems concerning the
Breit equation have been discussed by Bethe and

Salpeter. "
The total Hamiltonian for many-electron atomic

systems is divided into two parts, that is, un-

perturbed and perturbing ones written as

H~= H+ H', (l)

where

II. THE TOTAL ENERGY IN THE
MULTICONFIGURATION SCHEME

The Dirac one-electron theory and quantum elec-
trodynamics (QED) have been successfully applied
to one-electron atoms. However, difficulty arises
in the construction of the relativistic Hamiltonian

-(Z/2R)(3 —r 2/R2), r &R
V„r =

-Z/r, r& H.

The radius of the nucleus R has the value of 2.3
x10 'A'@ a.u. , where A is the atomic mass. The
rest-mass energy is subtracted in the Hn(i) to get
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the binding energy.
The perturbing Hamiltonian H' is given by

H'= H~ i,j +H~ED,
i&f

(6)

for l=j +-,' and l=j +-,', where $ and $ are orbital
angular momentum quantum numbers of the large
and small components of the wave function, re-
spectively. The orthonormality condition on the
orbitals is written as

and

H„(t,j)=-(ft, 5,)ir, ,

H„(i,j)=——,'(8, Vt}(tJ, V,)r, ,

(8}

H' is treated as a first-order perturbation. HQED
is neglected in our theory because it is a higher-
order perturbation.

A relativistic orbital is given by

P.„(t)X„(8,V)
'

ll K lll .ig„„(r)X-, (8 W).

(10)

where P„„(r)and Q„„(t) are the large and small
components of the radial wave function, respec-
tively. The spinor is written as

where Hs(i, j) is the Breit operator and Hozn is the
effective Hamiltonian which accounts for the QED
effects included in the Lamb shift. The Breit op-
erator H~(i,j) consists of the magnetic interaction
operator Htt(t',j} and the operator representing the
retardation effect of the Coulomb interaction
Htt(t', j). The Breit operator is given by

H, (t,j)=H„(t.,j}+H,(t, j),
where

I'„„~P„,„r +Q„„rQ„,„r
0

In the multiconfiguration scheme, the total wave
function is expressed as a linear combination of
configuration state functions (CSF's) in the follow-
ing form,

n

4'(nJP) = g c;4 t(et( JP), (14)

c'= 1.i (15)

where c, is a CSF expansion coefficient which is
assumed here to be real, and tfd, (atJP) is. a CSF.
Each CSF is constructed from a linear combina-
tion of antisymmetrized products of orbitals given
in E(l. (10). The total wave function and a set of
CSF's (4,(a, JP)) are eigenfunctions of the total
angular-momentum operator P and the parity
operator P with eigenvalues J(J+ 1) and v, re-
spectively. n,. is a set of labels for explicitly
omitted symmetry properties and the electron con-
figuration indices which are needed to define ortho-
normal CSF's. As an orthonormal set of CSF's is
used, the normalization condition of the total wave
function leads to

X„(8,y) = Q C(l~j; m —tt, tJ) Y, ,(8, y)@',
ty =+1/2

(11)

where C(l-,'j;m —o, o} is a Clebsh-Gordon coeffi-
cient and Y, ,(8, C)) and It)tt are a spherical
harmonic and the two-component Pauli spinor, re-
spectively. The relativistic quantum number v is
defined as

tt=+(i+ k)

Atomic shells are classified into two cases: One
is the completely occupied shell denoted by 6 and
the other the fractionally occupied shell denoted

by F. The completely occupied shell 8 means a
closed shell in all the CSF's considered and the
fractionally occupied shell $ corresponds to an
open or a vacant shell at least in one of the CSF's;
for example, when 1s'2s'2p' and 1s'2p' are chosen
as CSF, 1s orbitals belongs to 6 and 2s and 2p
orbitals are $.

The unperturbed energy is expressed as follows:

E=&eiHi4)

c,cf @', H @f

where

g c2 gN f + g [ t(sd}JrttKhcd t(t)Ifdc + pc c g ddtgc)(t. j)GdtKK
gt& 0 J 8 ftlVQ &

(16)

I,=(ll (1)(K (l)(l (I))= cll (r)( +)P ( ) —cP Ir)( ——')Q—(r)r V(r)[P (r)+Q'Ir—l] —lc'Q'(r) dr,
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U„1,2 P, 1 P„1 +Q, 1 Q„. 1 P, 2 Pv 2 +Qt 2 Q„2 Chdr2,
0 0

(18)

and

U„(1,2) = r"Ir"".
The direct J'„' ' and the exchange K'„' radial inte-
grals are expressed in terms of G'„'"" in Eq. (18}as

I

cients $ and g. The expression for the total energy
contains yarious integrals over STO's. The one-
electron integral in Eq. (17}is rewritten with the
orbital expansion coefficient as

and

Jss t Gstst
V V

gs, t Gstts
V V

(20)

(21)
where

( ~ ««i«}i s

»

(26)

respectively. N, (i) is the occupation number of
electrons in the sth shell of the ith CSF. a„''(i)
and b'„'(i} are the coefficients for the direct and

exchange integrals, respectively. If either sth
or tth shell is a closed shell in the ith CSF, b*„'(i)
is written in a compact form as

b'„''(i}=N,(i)N, (i) [C(j,j t«t; 2 2)] (22)

while a'„'(i) is a product of N, (i) and N, (i). If both
s and t are open shells, these coefficients become
complicated. The coefficient d'„™(i,j}which comes
from the off-diagonal matrix element between two
CSF's are even more complicated. The calcula-
tion of these coefficients is carried out by using
Sasaki's method' which will be described in the
Appendix.

Vy, —cT„

cT„' V„,„—2c28

S is the overlap matrix whose elements are given
by

(S )„=f f,rlr)f„,lr)tr.
0

(28)

The kinetic energy matrix T„' is defined as

(28)

The element of the nuclear potential matrix V„„is
written as

R
t Z ~2

(V„,„)2,= f„s(t'} ——3 ——
2 f„,(r)dr

0

HI. THE MULTICONFIGURATION RELATIVISTIC
HARTREE-FOCK-ROOTHAAN EQUATION

(30)

As has been done in the RHFR theory, "'"the
large P(r) and the small Q(t) components of orbit-
als in Eq. (10) are expanded in terms of Slater-
type orbitals (STO's) as follows:

Numerical integration is useful in the calculation
of elements of the nuclear potential matrix.

By using the expressions of the relevant integrals
in Eqs. (26)-(30), the unperturbed energy given by
Eq. (16}is written in the following matrix form:

and

P.(&}= Q h„f...(&) =f „', (, (23}
E = Q N, ( $«g«)I,

S

Q,(r}=gn„f„q(r) =f„' ti„
a

(24)
J"-Z"

+ «g(~«~t) tt
S2t JS2 t gS2 t

vf rf 'is

where $ and q are the orbital expansion coeffi-
cients for the large and small components of or-
bitals, respectively. A STO f„s is given by

f„s(r)= (2&„s)"ss"[I'(2n'„2+ 1)] 'n2 "sac s2", (25)

where I'(2n„s+ 1) is a gamma function. r„„sisan.
orbital exponent and n'„~ is a principal quantum
number which is in general not an integer.

The total energy given in Eq. (16}can now be
rewritten by using the orbital expansion coeffi-

I stsv
+-' g (('«i')

Lstsv
(31)

stuv Lstgv
n4 I stgv

(Ifs, t) ~ ~ g ~b «R st«sta, ss«
kl ~ ttp ta ~ v v

Ita V

(33)

where

(Js «) Q(( f +«I «i ) g ,
I«tts»«»s' ttas«(32)
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(+$$$$) —~ $ f Q$$$$ft$$y tl $$y$$
gP y4f P

P$a

and

where t represents all orbitals and s and s' stand
for orbitals belonging to the same symmetry. The
Fock operator matrix is given by

US, 2 „,i
xf„,(1)f„,(2}dr,dr, . (35)

~Jsg 8 KSg N

E =6 Ãg+Q—

~I Stua L StCrui
Off

J'sg Q KSg 0

N, = c', K, i, (36)

The coefficients N„a'„', 58„', and d"""are given
by

Qr tp L Stf4'P I StQO

In order to simplify the SCF equation, we modify
the Fock matrix as follows

o'= cQ't
i

5$at Q c25$yt(f) (46)

d$ trav Q c c d$ t$$(f j)

The matrices of K"t KS't, K"t L""' LS~', andg( 7 gg 7

I.„'„'t are obtained by replacing f$ in A~«' or L ~8~""

by corresponding products of f and g. The ortho-
normality condition for orbitals in Eq. (13) is also
rewritten as

0
ff K([t~t )

K& Jtt'K ~

(40)

58
8 8

q 0 S
KS

where

J"-ES t
E,=(2j,+1}f+ Q

t K8$t
off

—E~~'„t

J8$t
(4Z)

The variation of the unperturbed energy with re-
spect to orbital expansion coefficients f and q
under the condition that orbitals are orthogonal
leads to t:he SCF equation in the matrix form. If
the orbitals belonging to the same symmetry are
all completely occupied, i.e. , all s( 6, the SCF
equation is reduced to a familiar SCF equation
given by

=
(t'~frit) ~$

0 8
By using the modified Fock matrix F, the SCF
equation for a general open-shell case is given
by

0&
(4

0 S q ~,
8

Applying the variational principle to the SCF
expansion coefficients (c,.), we obtain the eigen-
value equation from Eq. (16) in the following
form,

Hc =CE, (49)

(50)

and C is the column matrix of the CSF expansion
coefficients.

The final unperturbed energy ean be obtained
by solving Egs. (41}or (46) for orbital expansion
coefficients and Eg. (49) for CSF expansion co-
efficients alternately until the difference of the
unperturbed energies between two equations be-
comes lower than a given threshhold value. In
terms of orbital energies, the total unperturbed
energy is expressed as follows:

Z=-,'g e, +Fr,(g~q,'}f -'
8~

(51)

where H is the Hamiltonian matrix whose element
ls given by

(H), = (4,. i
ff

i 4,},

For a general open-shell ease,
is obtained as

t S 0

8, q,~8g ~-8 i
(43)

the SCF equation
IV. EVALUATION OF THE OFF-DIAGONAL

LAGRANGE MULTIPLIERS

When fractionally occupied orbitals F are con-
tained in orbitals of the same symmetry, off-
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diagonal Lagrange multipliers (ODLM's) appear
in the SCF equation [see Eq. (48)]. The general
SCF equation has been discussed by Huzinaga"
and Hirao et al.s'" Hinze4' has proposed various
methods to solve the general SCF equation, that

is, methods to evaluate the ODI M's. Here, the
two-by-two rotation method of Hinze is used in

the numerical calculations. This method is to
make the unitary transformation for a pair of
orbitals having the same symmetry so that the
Lagrange multiplier matrix becomes Hermitian,
namely,

e„,-e;,=((~gt)(F -F .) -' =0. (52)

The unitary transformation for a pair of orbitals
in the expansion method is written as

($'q', )' = ($'q,') cos8+ (]',.q.', ) sin8 (53)

and

($~.q~. ) = —((~q~) sin8 + (&~,qt. ) cos8,

cos8= 1 ——,
' sm'8.

This relation leads to an equation for 8 in the
following way

A sin'8+A sin8+C= 0,

(55)

(56)

A=&s'is'is&+&sis'is'&-&sisis'& —&s'isis&, (5V)

s '
I
s ') + (s i

s
i
s& —&s

'
i
s

i
s '& —&s

i
s '

i s), (58)

C =(s'is is) —(s is'is'), (59)

whex'e 8 is an angle of rotation. The final angle
of the rotation in the transformation matrix is
obtained through the SC F-like calculation. The
two-by-two rotation method starts with the initial
set of orbital expansion coefficients (( ~qt) and

($~.g~. ) which are used to construct the initial
Fock matrix E, and P,.

By using F and E ~ and the new set of orbital
expansion coefficients ()~fat)' and ($~.q~.)' which
are obtained as a result of the unitary transforma-
tion in Eqs. (53) and (54), Lagrange multiplier
matx ices &'„. and &,'., are constructed. By sub-
stituting ($~qt) and ($~.gt, ) for ($~g~)' and (~$t.q,.)'

q'„, and q'...through the relations in Egs. (53)
and (54), the rotational angle 8 is determined
from the approximate condition z,',.= z,'., If we
assume that an angle of the rotation is small,
then

new set of orbital expansion coefficients are cal-
culated and then used in the construction of the
new Fock matrices. This procedure is continued
until the rotational angle becomes zero. In the
next step, a different pair of orbitals are picked
from orbitals with the same symmetry and the
unitary transformation is analogously applied to
them. The calculation terminates when the La-
grange multiplier matrix becomes Hermitian.

This method requires an initial set of orbitals
which may affect the accuracy of the calculated
results. It may be reasonable in most cases to
considex that the fxactionally occupied orbitals
F deviate only a small amount from corresponding
completely occupied orbitals 6 in the closed-shell
system. The two-step calculation is carried out
in the SCF iteration when using the two-by-two
rotation method. To get the initial set of orbitals,
first the SCF iteration is carried out by using
the SCF equations of Egs. (41) and (48), where
the ODLM's &„.and the coefficients of d„'™"are
neglected. In the last step, the SCF iteration is
continued by using the orbitals obtained from the
modified SCF calculation, in which the exact
SCF equations and the two-by-two rotation meth-
od ax'e used.

V. THE CALCULATION OF THE BREIT
INTERACTION ENERGY

The energy correction due to the Breit inter-
action is small and has the order of (Za)' com-
pared with the Coulomb interaction energy. How-

ever, this correction is important in an accurate
calculation of multiplet structures and electron
binding energies.

The Breit operator in Eqs. (V)-(9) is the two-
electron operator. The expectation value for the
operator between the two CSF's can be evaluated
in the same way as that for the repulsive Coulomb
interaction operator 1/x». The matrix element
fox the Breit operator has been studied by Grant, "'
Kim, "and Mann and Johnson ' for closed-shell
atoms. Qrant and Pyper, ~ and Doyle" have given
the general expression for the matrix element in
the multiconfigurational case. The numerical
calculation of this interaction in the MCDF for-
malism has been carried out by Kim's group"'"
for thx'ee-electron systems and carbonlike atoms.

Following Grant and pyper, 4' we expand the
magnetic operator H~(1, 2) in Eg. (6) and the
retardation operator P„(1,2) in Eq. (9) in terms
of tensors as follows:

(s is'is") =(g~qt)E ~
~" (60)

By using the 8 obtained from the Eq. (56), the
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(I 2) 2 Q Z, (lv)v+1(I) T(lv)v+1(2) + Z, (lv v 1(1) Z, (lv)v l(2) U (I 2)R 2v+3 2v —1—
V

[(v+1)(v+2)(2v+I)(2v+5)]'~ (, „„)„„1) (,„)„„)
2v+3

[v(v —1)(2v+1)(2v —3)]'+ „„)„,
)

(, „,)„,
( }

rsv

2v —1 1

where

f(c1c)Lv—(~(1)C(v))L

(62)

(63)

The notation 1 —2 stands for the expression in which particle coordinates r, and r, are interchanged. The
matrix elements for any two-electron operator such as I/r» or Hs(1, 2) between two CSF's can be de-
composed in terms of products of many-particle coefficients of the fractional parentage (CFP) and the
reduced matrix element for the operator. The calculation of many particle CFP's will be described in

the Appendix.
The Breit interaction energy is expressed as

2 =pc', —,
' FE(R'„'„'(')M .' — s jc +'[ .' '„(Ri Il(b 2)M'„„'(( c 2) —b; '(R ill 1'b „2(N;.'(l, 2) (1—2)[))

j stu y=j

3

+pc c, —,
' E E{D"(ij)v, ,"",""b[d .""(2;ijill& 2)v .""((b2)+(1—2)[)), (64)

jWj stssv 7 =i

where

and

A'„'„'(i) =a'„'„'(M; i) + a'„'„'(R;i),

8'„'„'(i)= b'„'„'(M;i) + b'„'„'(R;i),

D'„'„""(i,j ) =d'„,„'""(M;i,j) + d'„'„""(R;i,j),
Wtsiv Wstvv(I & 2) + Wst cv(I ( 2)

Mss t ~stst
7' ~ I 'rs 1

~s, t +st ts
rs & rt fct

M'„'„'(x & y) = W'„'„"(x& y),

(65}

(66)

(67)

(68)

(69)

(70)

(71)

N'„'„'(x & y) =W'„'„"(x& y)
for x, y(stx) =1, 2. The index y indicates the type of the radial integral given by

dr, dr, „,1 [P,(r,)P,(r, )Q „(r,)Q „(r,)], y = 1
0 0 &x

a &v
W„"„""(x&y}=( dr„dr„„l [Q,(r,)Qt(r, )P„(r,}P„(r,)], y =2

0 0 +x

f r„vdr„dr, „,'1 [P,(r„}Qt(r„)Q„(r,)P„(r,)], y =3.
0 () &x

(72)

(74}

(75)

(76)

(.77)

(78)

a'„„'(M;i}an'd b'„'„'(M;i) are the coefficients for the direct and the exchange terms of the magnetic interac-
tion in the ith CSF, respectively. a'„'„'(R;i) and a„'„'(R;ill »y), b'„'„'(R;i) and b'„'„'(R;ill x &y) are the coeffi-
cients for the retardation term in the ith CSF. x and y stand for a label of coordinates of the two inter-
acting electrons. d'„'„""(M;i,j ) and d'„'„""(R;i,j) and d'„'„""(R;i,j II x & y) are the coefficients of the off-diagonal
matrix element between ith and jth CSF s for the magnetic and the retardation operators, respectively.
These coefficients are evaluated with the reduced matrix elements for the tensor operators in Eqs. (61)
and (62) and many-particle CFP's described in the Appendix.

In the expansion method, the radial integral W'„„"(x& y) is expressed as
sta(,W(„™„"(x& y })7„, y = 1

W'„'„""(x& y) = ( tl,W„"""„(x& y) t'„, y = 2

(,tWst™„"(x&y})7„,r=3,



22 MU LTIC ON FIGURATION RELATIVISTIC. . . 2347

where

[y)'i'."."(&~ y)lan = Q &~p.p ""'"'(&~ y)
p&a

(79)

(80}

and

(81)

VI. DETAILS OF THE NUMERICAL CALCULATION

The relativistic ground state, which is the lowest
positive-energy state, corresponds to an excited
state in the nonrelativistic case because of the in-
finite number of negative-energy states below the
positive-energy states. The ground-state energy
for atomic systems is obtained as the lowest sta-
tionary value among positive-energy values in the
relativistic variational calculatiog. In the single
configuration RHFR calculation, "~ the relativis-
tic virial theorem44 has been used to check whether
an energy value obtained is stationary with respect
to optimization of the exponents in the STO's.
This situation is very different from the nonrela-
tivistic case: In a nonrelativistic variational cal-
culation, it is guaranteed by the variational prin-
ciple that for an arbitrary wave function one can-
not obtain a lower energy than the true ground-
state energy. For excited states, MacDonald s
theorem ' can be used if one can construct an ex-
cited-state wave function which is orthogonal to all
of wave functions for lower states belonging to the
same symmetry than the state considered. How-
ever, it is impossible to apply this theorem to the
calculation of inner-hole or autoionizing states in
both the relativistic and the nonrelativistic cal-
culations. In practice, one invokes an orbital pic-
ture for actual systems. As has been mentioned
above, we cannot practically construct a varia-
tional function orthogonal to all the negative-ener-
gy functions: Most of them are continuum ones.
It is probable that one has a lower energy than the
corresponding exact energy for a system in a
multiconfigurational calculation when increasing
number of CSF's. This means that one must
choose CSF s carefully in each calculation.

Two types of CSF s are considered in the rela-
tivistic multiconfiguration scheme. One is the
coupling effect CSF and the other the correlation
effect CSF. The coupling effect CSF is defined
as the set ofjj configurations (nf) "(nl}", Z for
0 & r ~ m, where L and l correspond to orbital-
angular-momentum quantum numbers for the

shells of j=l --,' and j=l+&, respectively. The
correlation effect CSP includes all the rest. The
coupling effect CSF is used in the numerical cal-
culation.

The electron correlation problem in the relativ-
istic formalism is important. But the correlation
energy is defined in the nonrelativistic framework.
The concept of the electron correlation effect in
the relativistic formalism is considered to be
qualitative rather than quantitative because the
relativistic energy cannot always be clearly di-
vided into the nonrelativistic HF relativistic and
correlation energies. The role of the coupling ef-
fect CSF will be discussed in connection with the
correlation energy for the case of the LS limit in
Sec. VII.

The accuracy of calculated results with the ex-
pansion method depends on a basis set used. When
Salter-type orbitals (STD s) are taken as basis
functions, the variation of orbital exponents in
STO s is needed to get a good basis set. This re-
quires much computation time. However, this dif-
ficulty can be dissolved to a certain degree by
transferring a scaled basis set for an atom to other
atoms and by using common basis functions not
only between the large and small components of a
radial wave function but between orbitals with the
same orbital-angular-momentum quantum number
such as P& &2 and P, &2 or d»2 and d, &2 and so on.

Here, we calculate all states considered with a
common basis set, which is obtained from the
calculation of the single configuration RHFR meth-
od for the ground state in a system. Since differ-
ence of orbitals among the ground state, low-lying
excited states, and the K-hole states is small, the
orbitals can safely be represented by the same
basis set.

VII. RESULTS AND DISCUSSIONS

A. Term eneqpes

The MCRHFR method is first tested on term en-
ergies for oxygenlike systems, namely, Q, Fe' ',
and Hg . The highly ionized iron atom is impor-
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TABLE I. Relativistic energies for the ground state and lower excited states in oxygen
(a.u.).

Term J Unperturbed energy Magnetic energy Retardation energy Total energy

2s2@4
~P

's
2s2p

3Po

fP0

2p6

ig

-74.858 424
-74.857 666
-74.857 487

-74.777 138

-74.656 213

-74.218 633
-74.220 687
-74.217209

-73.902 753

-73.357 489

0.007 846
0.007 713
0.007 817

0.007 780

0.007 794

0.007 839
0.007 788
0.007 727

0.007 837

0.007 739

-0.000 293
-0.000 292
-0.000 313

-0.000 290

-0.000 268

-0.000 319
-0.000 315
-0.000 319

-0.000 319

-0.000 340

-74.850 871
-74.850 245
-74.849 983

-74.769 648

-74.648 687

-74.211113
-74.213 214
-74.209 701

—73.895 235

-73.350 090

tant in fusion plasma diagnostics. Although no ob-
servation of the spectra for Hg'2' has been re-
ported, this ion is picked as a representative sys-
tem of the jj limit to see the effectiveness of the
theory for such a system.

The calculated energies for the ground and low-
lying excited states arising from configurations of
type 1s 2s"(2pf/g)" (2pt/t)" of oxygen are listed in
Table I, where n+n +n =6. The CSF-s used
are coupling effect ones which are listed in Table
II. The total wave function is constructed as a
linear combination of two CSF s for all states ex-
cept for 2s 2p P, , 2s2p' P2 pt and 2p"S„where
a single configuration is used. The core 1s is

TABI E II. Configuration state functions (CSF's)
used. 2P and 2P mean 2Pih and 2P3g2, respectively.

omitted in the notation of the configurations. The
separate calculations are made for the 2s 2p 'S,
and 2P"S, states because these two configurations
are correlation effects CSF s for each other in
our classification scheme.

The basis set is obtained from the single con-
figuration RHFR calculation for the ground state
2s 2P 'P, . As the effect of the finite nucleus is in-
cluded in the RHFR Hamiltonian, the principal
quantum number in STO s can be taken as an in-
teger to save computation time, while the point
nucleus (the cusp condition at the origin) leads to
the noninteger principal quantum number in the
single-electron Dirac theory. However, noninte-
ger STO s are used as basis functions here, since
trial calculations showed that the noninteger STO s

Term

3Q 1D 1g

Configuration

1S22S22p 22p2 0, 2

TABLE III. Values of orbital exponents in STO's used
in the RHFR calculations for 0, Fe' +, and Hgz +.

1s22s22p 2p3

1s22s22p4

1, 2
Symmetry n '

Exponent

0 Fei 8+ HgZ2+

's
3po ipo

3Po

3g ig

4P

1s22p 22p4

1s22s2p 22p3

1s22S2P 2P4

1s2s 2P 2p

1s2s22p 2p4

1s2s2p22p4

]s2s22p22p2

1s2s22p 2p3

1S2S22p4

1, 2

0, 1

1, '2

0, 1

0, 1
3 5
3 t 2

32 5
2 t

1s
1s
2s
2s
2s

8.0
12.105
6.805
3.39
1.698

25.223
38.1653
21.4551
10.6887
5.3536

94.3225
142.7218
80.2331
39.9692
20.02

pi/2 and p3/2 1p 8.0
2P 5.598
2P 3.592
2P 2.015
2P 1.205

26.0987
18.2631
11.7183
6.5737
3.9312

83.4604
58.4014
37.4737
21.0216
12.5712

The principal quantum number in an STO is n —[n'
(~ )2]i/2

This STO is used only for a 2piy2 orbital.
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TABLE IV. Relativistic energies for the ground state and lower excited states in Fe +

(a.u.).

Term ~ Unperturbed energy Magnetic energy Retardation energy Total energy

2s22P4
3P

ig)
ig
2s2P'
3Po

iPo
2P6
ig

-1052.2526
-1051.8382

1051.8843
-1051.4586
-1050.620 9

-1047.9588
-1047.6699
-1047.4601
-1046.3091

-1042.4703

0.4177
0.3997
0.4285
0.3976
0.4044

0.4246
0.4191
0.4110
0.4190

0.4319

-0.0297
-0.0295
-0.0327
-0.0296
-0.0291

-0.0334
-0.0330
-0.0330
-0.0330

-0.0370

-1051.8646
-1051.4680
-1051.4885
-1051.0906
-1050.2456

-1047.5676
-1047.2838
-1047.0821
-1045.9231

-1042.0 754

gave better convergence (especially for heavier
elements) in the RHFR calculation. The number
of STO s is 5 for the s shell, 5 for the P&i& shell,
and 4 for the p3&2 shell. -These basis sets used in
the MCRHFR calculations for O, Fe' ', and Hg' '
are listed in Table III. The STO s for the pi i2
shell are the same as those for the p3&2 shell ex-
cept that a 1P STO which is introduced to describe
a node of the small component of the P& &2 orbital.

In the calculation of states with two CSF s, the
MCRHFR orbitals obtained by solving the SCF
equation in Eqs. (41) or (48) are used to construct
the two-dimensional Hamiltonian matrix. The two

energies obtained by diagonalizing this Hamiltonian
matrix are assigned to corresponding upper and
lower levels.

The calculated energies for Fe' ' as a system in
intermediate coupling and for Hg'2' as jj limit
system are listed in Tables IV and V, respective-

ly. In Table I, one sees an inversion of the un-
perturbed and total energies between the P2'and
Pi states arising from the 2s2P configuration in

oxygen. On the other hand this inversion of the
energies between the P2 and P', statey is not ob-
served for Fe' 'and Hg, which is in agreement
with experiment for Fe' '.

The magnetic interaction energy is always posi-
tive, whereas the retardation energy which is
about 10% of the magnetic energy in magnitude is
negative. The Breit interaction energy increases'
rapidly when the atomic number increases. The
energy correction due to this interaction is about
0.01, 0.04, and 0.12% of the unperturbed energy
for all states considered for 0, Fe' ', and Hg
res pectively.

By using the energy values in Tables I, IV, and
V, the term energies relative to the ground state
are calculated and listed in Table VI together with

TABLE V. Relativistic energies for the ground state and lower excited states in Hg~2+

(a.u.).

Term J Unperturbed energy Magnetic energy Retardation energy Total energy

2s'2p4
3P

2s2P~
3P0

2P6

ig

-11802.721
-11728.454
-11800.549

-11727.387
-11652.077

-11710.986
-11707.606
-11636.226

-11634.475

-11614.690

15.646
14.626
16.078

14.874
14.255

15.743
15.886
14.905

14.990

16.027

-1.144
-1.148
-1.147

-1.145
-1.140

-1.274
-1.269
-1.275

-1.274

-1.396

-11788.219
-11714.976
-11785.618

-11713.658
-11638.962

-11696.517
-11692.989
-11622.596

-11620.759

-11600.059
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TABLE VI. Comparative results for term energies relative to the ground state in 0, Fe +, and Hg~ + (cm ).

Term MCRHFR
0

Expt. MCRHFR
Fei s+

RZD Expt. b MCRHFR
H g72+

RZD

0
137
155
195
231

17826
17780'
17593'
44 374
44332d
43 557

0
158.3

227.0

15867.9

33 792.6

0
87 044
86 820
82 544
78641'

169 873
170 307d

355 329
351 545 d

0
77 694

75 719

176 020

343 040

0
89 410

0
0.160 75px 1p'

0
0.12800 x 10s

326 160 0.327 581x 10s p.259 38x 1ps

75 290 0.570 853 x 106 p.584 24 x 1p'

169800 0 163643x 1ps 0.12954x 10s

2s2P'

fPo
2P8
's

140 411
139950
140 721
209 738

0 329383

126 266.8
126 340.1
126 383.8

943 082
1005 370
1 049 550
1304010

1092 500
1 148 900
1 187600
1468 300

922 770
984 650

1029 830
1 268 400

p 2Q1 263x 1ps

0.209006x 1p
0.363 5PP x 1P
0 367 534x 1ps

0.16744x 10s
Q.175Q8x 10'
0.296 06x 10s
0.299 54 x 10s

2 148480 2 525 100 2 134 800 0.412 963x 10s 0.345 98x 10

Reference 48.
Reference 49.' Values obtained with the relativistic &-dependent theory (see Ref. 43).
Reference 47.
Reference 46.

those of the relativistic Z-dependent (RZD) theory
of Doyle 3 and the nonrelativistic Hartree-Fock
(NRHF) method~'4' and experiment. 48'4' The
MCRHFR values for 0 and Fe ' agree well with
experiment except even parity states of the P2 f p,

D2, and 'So states in oxygen. The MCRHFR meth-
od with coupling effect CSF yields better results
for heavier elements than for lighter ones in which
the electron correlation effects are larger than the
relativistic effects. This comes from the fact that
the correlation energy is almost independent on
atomic number, whereas the unperturbed energy
increases in proportion to the square of the atomic
number. Veillard and Clementi have estimated
the empirical correlation energy for the first-
and the second-row elements in the periodic sys-
tem. In oxygen the difference of the correlation
energies between the D and 'P and between the iS
and P states arising from the configuration
1s 2s 2P are -0.0078 and -0.0446 a.u. , respec-
tively.

If the MCRHFR term energies are corrected by
adding these correlation energies, the theoretical
term energies are 16114 cm ' for the 'D2 and
34585 cm ' for the 'So state, which are close to
the experimental values. The term energies for
the 3Pi and Po states which are smaller than ex-
periment will be improved if the correlation en-

ergy and the higher-order QED effects are taken
into account. In the calculated term energies for
Fe' ', the discrepancy between the calculated and
experimental values for the D2 and 'S, states is
small, whereas the calculated values for 'S, state
of oxygen is about 30% larger in magnitude than
the experimental result. This means that the rel-
ativistic effects play an important role in Fe's'
compared with the correlation effects.

To compare our results with other relativistic
ones, the calculated term energies by Doyle s
relativistic Z-dependent (RZD) theory 3 are listed
in Table VI. This theory is an Z '-expansion per-
turbation theory which has an advantage that the
same formula of calculating a given energy level
can be used for all the members of an isoelectronic
sequence by varying the atomic number. Since
this method does not yield the correct term ener-
gies for oxygen, only the RZD results for Fe'
and Hg' ' are listed in Table VI. The RZD term
energies are not as good as the MCRHFR ones for
all the states in Fe' ' except the Po and 'So states
arising from the 2s 2p configuration. For Hg
discrepancy between the RZD and the MCRHFR
results is slightly large compared with that for
Fe' '. Although a trend of the term energies when
atomic number increases can be easily obtained by
the RZD method, this method should be carefully
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used since a wrong fine structure of energy levels
is obtained in some cases.

The nonrelativistic term energies in Table VI
have been obtained from a HF calculation ' ' in
which all the relativistic corrections are included.
The NRHF term energies for both 0 and Fe'8' are
almost the same as our results. This shows that
the Pauli approximation for the Breit equation is
fairly good even for highly ionized atoms such as
Feia+

It is interesting to compare the MCRHFR results
for oxygen with the NRHF ones, since neutral
oxygen is considered to be a system in the LS
limit. Comparison of the MCRHFR energies for
oxygen with two NRHF ones ' ' are made in Table
VII. The MCRHFR unperturbed energies are lower
than the nonrelativistic Hartree-Fock-Roothaan
(NRHFR) (Ref. 46) or the numerical NRHF (Ref.
41) ones because some of the relativistic effects
such as the spin-orbit interaction are included in

the MCRHFR unperturbed energy.
Our total energies in Table VII are little higher

than the NHHFR and the NRHF ones. The small
difference in the total, energy between the relativ-
istic and the nonrelativistic methods arises from
the difference in orbitals which are used in the
calculations of the energy correction due to the
Breit interaction and the relativistic correction,
respectively. However, the results in Table VII
show that the MCRHFR method can be applied to
the system in the LS limit with satisfactory ac-
curacy.

From the theoretical values for Hg' ' in Table
V, one is able to predict the trends in the relative
values for the term energies in the jj limit. For
Hg"', the unperturbed energies between the 'P2

and P, states and between the 3Pi and 'D& states
in Table V are very close to each other. The rea-
son is that the wave functions for 'P, and 'P, states
can almost be expressed by Is 2s (2pf/t} (2p3/t}
and that the wave functions for P& and 'D2 states
by the 1s 2s (2p&/2)(2p3/2) configuration. In the jj

TABLE VIII. Values of the CSF expansion coefficients
for the ground state (1s 2s 2P4, 3P2) of 0, Fe +, and
Hg~~+. Values in the parentheses are those in the LS
limit. 2p and 2p stand for 2piy~ and 2p~, , respectively.

CSF
CSF expansion coefficient
0 Fei8+ Hgt2+

1s22s'2P22P' (J=2) 0.822 00 0.956 78 0.999 99
(0.816 50)

1s 2s 2P2P (J=2) 0.56948 -0.29Q 81 0.010 07
(0.577 35)

limit, the energy difference between (2p&/t} (2p»t)
and (2pt/, )(2p3/t) configurations becomes large
because the binding energy of 2pf/2 electrons is
much larger than that of 2P3&2 ones. To examine
this effect of the coupling scheme in more detail,
the CSF expansion coefficients obtained from the
calculation of the ground state for 0, Fe' ', and
Hg"' are listed in Table VIII. It can be seen that

the MCRHFR method yields a wave function with

appropriate intermediate coupling for each system.
The term energy for 2s 2P So of Hg

2' is higher
than that for 2s2P' P~ i, contrary to oxygen and
Fe' '. This characteristic is also explained by

looking at the CSF expansion coefficients and

binding energies of each electron.

B. Transition energies for the K-hole states in Fe +

The fine structure in inner-hole states is of in-
terest when studying relativistic effects in in-
ner-shell electrons. The calculated energies
for all K-hole states arising from the con-
figurations Is2s'(2p, /, )"(2p,/, )" (n+n'=6) and
Is2s(2p&»} (2p3/t)' for Fe"' are listed in Table IX
together with those for Fei' whose configuration
is ls2s (2p&/t)"(2p3/t)" (n+n'=4). It is seen from
Table IX that not only the unperturbed energies
but also magnetic energies are reduced in the K-
hole states compared with those in corresponding
valence states in Table IV. However, the retarda-

TABLE VG. Comparison of the MCRHFR results with nonrelativistic HF results for oxygen (a.u.).

This work
Term J Unperturbed energy Total energy HF

NRHFR
Total energy c HF

NRHF'
Total energy

3p —74.858 424
-74.857 666
-74.857487

—74.777 138

-74.656 213

-74.85Q 871
-74.850 245
-74.849 982

-74.769 648

-74.648 687

-74.809 37

-74.726 67

-74.608 42

-74.856 23

-74.776 07

-74.657 77

-74.809 47 -74.856 26
—74.855 55
-74.855 21

-74.775 25

-74.654 27

Reference 46.
Reference 47.
All the relativistic corrections are included.
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TABLE IX. Relativistic energies forK-hole states in Fe + and Fe 9+ (a.u.).

Term J Unperturbed energy Magnetic energy Retardation energy Total energy

1s2s~2P~

3Po

j,Po

-814.006 53
-813~ 749 75
-813.460 73
-813.017 77

0.144 26
0.152 87
0.132 35
0.13866

-0.022 34
-0.012 45
-0.022 39
-0.018 70

-813.884 61
-813.609 33
-813.350 77
-812.897 81

1s2s2P

3S
iS

1s2s 2P4

4P

-809.667 23
-809.536 83

-759.246 86
-759.054 33
-758.61739

0.146 46
0.146 93

0.11983
0.12812
0.13723

-0.02203
-0.01793

-0.020 01
-0.009 55
-0.01845

-809.542 80
-809.407 83

-759.14704
-758.935 76
-758.498 61

TABLE X. Transition frequencies for Fe + (cm ).

T ransition Calc.

1s~2s&2P4

3p

2
2
1
1
1
0
D
iS

ls32s2P

3Po

2
1
0
iPo

1

1s2s'2P~

3Po

2
1
2
1
0
1
iPo

1
iPy

1

1s2s2P8

3S

1
1
1
iS

52 231 000
52 291000
52 144 000
52 204 000
52 261 000
52 208 000
52 277000
52 092 000

52 241 000
52 178000
52 134000
51 909 000

Expt.

].s&2s&2P 1s2s~2P~ 52 13800

Reference 49.

tion energies are almost the same. This is be-
cause most of contributions of the magnetic inter-
action comes from the interaction between two 1s
electrons, whereas the retardation energy between
electrons in a closed shell vanishes. The basis set
used in the calculation of K-hole states is the same
as that for valence states, which is listed in Table
III. The CSF s used are also listed in Table II.

By using energy values in Tables IV and IX for
Fe' ', all the possible transition frequencies ex-
cept the singlet-triplet ones for the radiative
transition when a 2p electron fills a 1s vacancy
are calculated and are listed in Table X together

with experiment. 4 It is seen from the table that
the multiplet structure effect on the transition fre-
quencies for all the transitions considered here is
relatively small. The radiative transitions be-
tween various states arising from the configura-
tions 1s 2s 2P and 1g2s 2ps, and 1s 2s2P and
1s2s2P are expected to exhibit structure if the
resolution of the spectrometer is good enough.

VIH. CONCLUDING REMARKS

By using the expansion method, the MCRHFR
theory for atomic systems is presented. The
ODLM s for open-shell cases are calculated by
use of the two-by-two rotation method of Hinze.
The Breit interaction is treated as a first-order
perturbation. The calculation of the matrix ele-
ments for two-electron operators such as the re-
pulsive Coulomb interaction operator and the Breit
operator is carried out by Sasaki s method, where
the tensor recoupling transformation techniques
are used to calculate many-particle CFP s for
second-quantized operators.

Numerical application of the theory to term en-
ergies for low-lying excited states in oxygenlike
systems (0, Fe'8', and Hg' ') and to the transition
energies for E-hole states in Fe ' are presented.
The calculated term energies are in agreement
with experiment for heavier elements in which the
relativistic effects are larger than the correlation
effect. It is shown that the MCRHFR method yields
the wave function in appropriate intermediate cou-
pling for each system. The fixed basis set cal-
culation is economical and useful in the calcula-
tions for highly ionized atomic systems with or
without inner-shell vacancies although the trunca-
tion error of the basis set inherently exists in the
MCRHFR method compared with the numerical
MCDF method.
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APPENDIX: CALCULATION OF THE MATRIX
ELEMENT FOR TWO-ELECTRON OPERATORS

By using tensor algebra, techniques of calculat-
ing the matrix element for twb-body operators
have been developed by various authors. ' Here,
we extend Sasaki s method34 of calculating the ma-
trix element to the jj coupling case.

The creation a and the annihilation a operators
for an electron in the nljm shell satisfy the follow-
ing fermion anticommutation relations:

[a„a,'],=5,~, [a,', a',],=[a„a,],=0. (A1)

It can easily be shown that a'„„and a„„. defined
as

a„g, ——(-1) a„,s
are irreducible tensors in the second-quantized
form.

Any CSF in a second-quantized form can be con-
structed by use of creation operators such as

~nJ&=[" '[(a2}"' »T2[(ai)"' vigil"]"" ] l0&

(A3)

where ~0& denotes the vacuum state. N, is the oc-
cupation number and v, and T, are the seniority
number and the subtotal angular-momentum quan-
tum number in the sth shell, respectively. J, is
the resultant angular momentum as a result of the
recoupling of J, &

and T„where J& ——T&. If there
are shells with j & &~ which contain more than two
electrons, an additional label other than the sen-
iority number v is needed to distinguish a state
of T in the shell.

The two-electron operator is also written in a
second-quantized form as

G = ~ g (st ~g„(1,2)
~

uv)a, a &a „a„.
S tftOV

(A4)

The calculation of the matrix element for two-
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electron operators such as the repulsive Coulomb
and the Breit interaction operators is essentially
reduced to the expectation values of the operator
having a form;

g.(1,2) =g'"'(I) g'"'(2).

In this case, G is rewritten as

(A5)

G = Q (-1)"(2 p+ 1} (& II g'"'ll u&(tll g'"'ll v&
St @OP

x .[(ala ) (v)(ata )
(v)](0) . (A6}

where:: means the normal product.
The many-particle CFP is evaluated through the

calculation of the expectation values between two
CSF s for recoupled operators concerning partici-
pating electrons, i.e.,

f=(n'J'~[(a~„)'"'(a,a„)'"']' '~nJ&5 ~ . (A7)

The essence of Sasaki s method consists of the
use of alternative equations for recoupling trans-
formation. Those equations are Eqs. (8) and (9)
in his paper. 34

Before applying these formulas, one has to ar-
range the operators in the two-electron operator
with correct order from the innermost shell to the
outermost one. This has already been done when
constructing CSF s in Eq. (A3). The final form of
operators in I of Eq. (A7) is given by

I= QAr(n J'
I(
"' («»'T2(«vl'7 I }")'I' ")"'

J
x In J&5zz, (AS)

where q, =a„q,=a„q„=Fr„,q„=a„, and q, =1 if
k is other than s, t, u, and v. A~ is the coefficient
arising from the recoupling for the operators of par-
ticipating electrons in the two-electron operator,
where J is one of resultant total angular-momen-
tum quantum numbers ]J,"}in Eq. (A8}. If there is
more than one participating electron in the same
shell, q means a set of these operators.

Applying the tensor recoupling transformation
techniques given by Sasaki for a set of second-
quantized operators, we obtain the many-electron
CFP which is combined with the reduced matrix
element for the operator to get the final result for
the matrix element.

Note added. After this manuscript was submitted
for publication, a paper on a computer program
which calculates the Breit interaction energy has
appeared in print. "
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