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Particle-hole formulation of the unitary grouy ayyroach to the many-electron correlation
yroblem. II. Matrix element evaluation
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Graphical methods of spin algebras are used to derive the expressions for the matrix elements of the total particle-
number-conserving operators in the basis of hole-particle states, adapted to the chain UIn'+ n "PU(n') e UIn"),
where n' and n" designate dimensions of particle and hole subspaces, respectively. The matrix elements are
expressed as a product of segment values, each associated with one orbital level as in the particle formalism, and of
an additional segment value, representing a linkage of the hole and particle subspaces. It is shown that the particle
formalism segment values can be used throughout except for the link segment, whose possible values are derived. An
example of hole-particle bases and of their graphical representations is given and the advantages of the hole-particle
formalism in shell-model calculations are outlined. An extension of this formalism to particle-number-
nonconserving operators, needed in applications involving the mp-ah propagators with m Qn, m, n = 0, 1, and 2,
1s discussed.

I. INTRODUCTION

The fundamental ideas of the unitary group ap-
proach (UGA) to the many-body problem were
originally set forth by Moshinsky. ' This approach
becomes particularly suitable and simple when ap-
plied to the many-electron correlation problem as
follows from the basic formalism and expressions
for the construction of U(n) spin-adapted bases,
and the evaluation of the matrix elements of a
spin-independent Hamiltonian in these bases de-
veloped by one of us.' These results were further
extended by Sh3vitt' who proposed a highly suitable
representation of the electronic Gelfand-Tsetlin
(GT) basis' and a direct evaluation of nonelemen-
tary generator matrix elements based on their
factorization as a product of contributions, each
associated with a single orbital level.

A similar factorization was also achieved by
Gouyet et ttl. ' (GSS), Drake and Schlesinger' (DS},
and Sasaki, ' although in a different manner based
on the SU(2) approach via the classical angular-
momentum theory. Drake and Schlesinger, ' in
particular, showed that the matrix elements of
products of two generators could also be factor-
ized directly. A number of these results have
been exploited in the meantime in several very
diverse and most promising implementations,
based essentially on the idea of a so-called direct
configuration-interaction (CI) approach. '

The present paper is the fourth in a series of
papers dealing with the application of the graphical

ethods of spin algebrasix-xs in the UGA to th
many-electron correlation problem. In the first
paper'4 we described a general diagrammatic ap-
proach, based on the generalized Wick theorem"
and graphical methods of spin algebras, " '3 for

the construction of geminally antisymmetric
state&" and for the evaluation of matrix elements
of particle number-preserving operators between
such states. In a subsequent paper" these ideas,
together with those of the matrix-element factor-
ization of Shavitt' 3nd the evaluation of matrix
elements of two-electron operators of Drake 3nd
Schlesinger, ' were applied to obtain the particle-
formalism UGA based expressions for one- and
two-electron spin-independent operator matrix
elements. These matrix elements were expressed
as the product of segment values, each associated
with a single orbital level. The various segment
types needed were enumerated, all nonzero values
for each segment type were tabulated, and various
aspects of this formalism which will further sim-
plify CI calculations were explicitly indicated.
Since the results of this paper build upon those of
Ref. 17, we present in the next section a brief
review of the particle formalism.

Finally, the preceding paper" (referred to as I)
and this paper deal with the extension of these
particle-formalism results to the hole-particle
formalism. The first hole-particle formulation
of the UGA was made by Flores and Moshinsky. "
However, as pointed out in I, our approach differs
significantly from theirs. In I we outlined the gen-
eral theory, identifying the structure of the nec-
essary unitary group irreducible representations
(irreps) and discussing the Yamanouchi-Kotani
(YK}-type basis of particle-hole states. In this
paper, the YK basis is explicitly constructed, and
the expressions which yield the matrix elements
of single generators and products of generators
are derived. %e also briefly discuss a general-
ization of this formalism to particle number-non-
conserving systems.

1980 The American Physical Society



PARTICLE-HOLE FORMULATION OF THE UNITARY. . . II. . . .

II. REVIE% OF THE PARTICLE FORMALISM

Vfe are interested in providing an efficient algo-
rithm for the evaluation of the matrix elements of
the spin-independent many-electron model Hamil-
tonian

H= g(f( a ~q}g xI.x,.
i~ J 15

+ ,' g (ff. [» [f»f}g x',. x',.x, ,x... (1)
i, j,k, l f5y &

where t and X,. are the creation and annihilation
operators associated with the orthonormal spin
orbitals ) j»»»}, f =1,2, . .. , »»; »»» =s-, . The genera-
tors Z, , of the unitary group U(n),

z, ,=g x',.x... (2)

satisfy the commutation relations

[z, za»]-=&»az» t}»z—a»

and may be used to rewrite the Hamiltonian (1) as"

H=g{f)a)q}z,,+ .' g {-fq l~ [f»f}x[z,,z, ,],
iy J i, j,k, l

(4)

where &[ .] designates the normal product" de-
fined with respect to the true vacuum state

~
0}

(X,. ~ 0)=0 for all l and m).
The general spin-nonadapted N-electron states

may be considered as belonging to the irrep [1"0]
of U(2n). A basis of spin-adapted N-electron
states may then be obtained by adapting to the
subgroup chain' "

U(2n) ~ U(u)~ U(2) .
The resulting basis of spin-adapted N-electron
states of total spin 8 may be taken to be the set of
canonical GT states for the irrep [2" ' 1'~0] of
U(n). Since only two-columned U(n) irreps are
necessary, the Gelf and tableaux notation may be
considerably simplified. In fact, by defining the
intermediate notations of the ABC tableau, ' an

nx 3 array whose ith row (a, , f», , c,) records the

number of twos, ones, and zeros, respectively,
in the jth row of the corresponding Gelfand tableau,
and the &AC tableau derived from it, whose ith
rom (&a,, &c,.) is determined by &a, = a,. —a, , &c,.
= c, —c, , (where we define a = co=0), we ulti-
mately arrive at the step number vector d
= (d„..., d„}, whose jth entry d,. is determined
as the binary value

»f» = (~a»™&')(2&» ™&»= 1 —~c'.
The sequence of intermediate spine S= (S„.. . , S„},
where S,. is the resultant spin of all electrons oc-
cupying the first i orbitals of the given state, is
determined by the entries 5, of the ABC tableau
vl a

0 n,.=0 S, =S, ,
1 n,.=1 S,.=Si,

i
2 n,.=1 S, =S, ,
3 n,. =2 S;=S; ~,

1
2

where S =-0 and 8„—=S.
Alternatively, an equivalent basis (up to

phase) of spin-adapted N-electron states may be
constructed using SU(2) coupling techniques, by
successively coupling together the spins asso-
ciated with the electrons in each orbital. In Ref.
17, we showed that thi. s may be accomplished by
setting

I&&=( Z Z ll(», ., M, ,sm, (&;M;&x',(n&)lo&,
Q, ] [fff,.]

(9)

where ~0) is the physical vacuum state,
(S 'M'S" M"

~
SM ) designates the usual Clebsch-

Gordan (CG) coefficient, S, are the intermediate
spine given by (8), M,. are the corresponding mag-
netic quantum numbers (M„=M,M, = 0),

g, =~,. =Q if n,. =0,2,
s;= ~, m,.= +~ if ni =1,

(10)

x', (»», )=
if n,.=0,

~txi, z/2 i, -g /2 ni — ~

The set of all such states for fixed n, N, and S is
called the Yamanouchi-Kotani (YK) basis." Mosh-

insky and Seligman" have shown that the GT and

YK bases are equivalent up to a phase. This
equivalence was also studied in considerable de-
tail by Wormer" (cf. also Ref. 24). Thus, we

may apply the entire apparatus of the unitary group
approach to label the states (9) combined with the
fact that the matrix elements of single generators
and products of generators may be evaluated di-
rectly, as has been shown by GSS' and DS,' we ob-
tain a compact and powerful formalism for the de-
termination of matrix elements needed in CI cal-
culations.

It is particularly convenient to employ the
graphical methods of spin algebras" "to repre-
sent the CG coefficients of (9) graphically, yielding
(cf. Ref. 14}

b;=28;,
and along with the sequence of orbital occupancies
n = (n„..., n„) completely determines the state,
and is thus equivalent to the step number vector d.
This relationship is given by
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( d)=2 "2~2 g d,(G,)ago(GO) (0) 1

(m;l
(12)

tion of the yth segment is written

W, = W(Q„; d, d„&b,& b, ), (14)

where 6, and G, are the appropriate orbital and
spin diagrams (cf. Ref. 17),

(13)

d, (G, ) is the product of a phase and normalization
factor with the value of the appropriate spin dia-
gram [Figs. 1(a) and 1(b) of Ref. 17], and N, rep-.
resents the number of orbitals with occupancy i.
A similar formula may be derived for bra states.

The use of YK states permits a direct calcula-
tion of matrix elements of single generators and
products of generators, as we have shown in Ref.
17. Let us now give a brief outline of the work
contained there. Considering first the matrix
element (d ~E, , ~ d) of a single generator E... we
obtained Eq. (35}of Ref. 17, in which the matrix
element is expressed as a product of the values
of the two spin graphs associated with (d ~ and

~ d), a vacuum mean value, and various phase and
normalization factors. The vacuum mean value is
evaluated using Wick's theorem, "or more simply,
by meatus of orbital diagrams. ""The matrix
element thus reduces to a product of phase and
normalization factors and the value of a spin dia-
gram, which is given in Figs. 4(a} and 4(b) of
Ref. 17 for raising and lowering generators, re-
spectively. This spin diagram is then separated
over two or three lines into n components or seg-
ments, and the phase and normalization factor
factored and associated with the individual seg-
ments in such a way that the various contributions
may be classified into a small number of general
formulas, into which the quantities associated with
the individual levels are substituted. In fact, one
can see that the general formula for the contribu-
tion of the rth level is determined solely by the
relationship between y and the generator indices,
i.e., the position of the r th level in the spin dia-
gram. This relationship determines the segment
type of the zth-level segment; the various seg-
ment types necessary for single generator matrix
elements are defined in Table I. (The contribu-
tions of segments outside the generator range are
always unity and hence ignorable. ) The contribu-

where Q„=-Q„(E,, ) is the rth-level segment type
defined by E,, , b„=28„, and 4b„=2$„—2$„. The
matrix element may now be expressed as'"

(dlE, , ld&= II w,

W(Q, (E,.„);d„d„b„b,), (15)
rEg

where 0= Q(E, ,) = fi, i a I, . . ., jj is the generator
range.

An analogous formula holds true'" for the ma-
trix element (d ~E, „.E„,~ d) of the generator pro-
duct E,,E». However, the derivation is more
complex since several complications arise from
the possibility that the generator ranges overlap.
First of all, the resulting spin diagram is not
separable in the overlap ra.nge without the intro-
duction of intermediate summation since the levels
are connected by four lines, This problem is
avoided by precoupling the spins of the two elec-
trons' in the overlap range to X, X=O, 1, thereby
introducing an overall summation over X into the
final result, and an X dependence into the formulas
for the overlap range segment values. "

Secondly, new segment types are necessary for
segments in the overlap range. " The new segment
types Q„(E,,E») are given in Table II and are de-
termined by the pair of segment types Q, (E,,) and

Q„(E„)obtained by considering r as being in the
range of each single generator separately. In ad-
dition, two segments denoted B' and B'L are
necessary for the so-called exchange terms, for
which the generator lines in the spin diagram
crops.

Finally, the possibility of noncommuting genera-
tors must be considered. E,, and E» do not com-

TABLE II. "Multiplication table» for generator
product segment types. The notation for the segment
type defined by a product of two generators is deter-
mined by the two single generator segment types (listed
in the top row and the first column) obtained by con-
sidering the segment to be in the range of each gener-
ator separately (cf. Table I).

TABLE I. Single generator segment types.
ARR

AR

AR

AL

ARL

AL

AR

C'

BR

Level

t'=.7
i &y &j
r=i

Raising
Eg~(i &j)

AR
C'
AR

Lowering
Eg;(i «j)

ALc'
AL

AR

AL

AL

AR

ARL

AR
L

BR

ARR

AR

ARL

BR

AR

ALL

BL

ARI

ALL

ALL

BL

BR

B
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mute if j= k, or i= l, or both. These cases are
handled by the introduction of the order index Y,
Y=1,2, as an argument of the yth-level segment
where y is the repeated index which leads to the
noncommutativity. For the case E,,E,, , both the
ith- and j-th-level segments are Y dependent.

The corresponding expression for the matrix
element of the generator product E,,E» may now
be written'

(16)

where Q, = Q(E, ,)n Q(E„,), Q, = Q(E, ,) n Q(E» },
Y=1 for W„ if y=i=l, and Y=2 for TV„ if x= j= k.
If we consider the matrix elements of e,Q j f E,~E)f
—b,,E, (=N[E,,E,,], appearing in the two-electron
operators, rather than those of E,.~E,.„ it can be
shown that the Y=1 values must be used through-
out." The advantage of this formulation is that
the matrix elements of both single generators and
products of generators may be expressed directly
via (15) and (16). In Tables III and VII of Ref. 17,
we have listed all nonzero values for the 22 nec-
essary segments, thus making a calculational
scheme based on these results immediately possi-
ble.

III. YK STATES IN THE HOLE-PARTICLE FORMALISM

We propose, in this paper, to carry out an analysis similar to that of the last section but instead within
the particle-hole formalism. The goal is to express the matrix elements of both single generators and
products of generators directly in terms of contributions associated with the individual orbitals. An addi-
tional desideratum is that the required segment values be obtainable from the particle-formalism segment
formulas; we shall see that our formulation of the particle formalism permits this extension.

The first step, then, is to construct a basis of YK h-p states. In I, we established the notation, and de-
veloped the necessary representation theory for the adaptation of a basis of hole-particle states with re-
spect to the chain of subgroups

U(2n) =—U(2n' + 2n") & U(2n')8 U(2n") & [U(n')8 U(2)]8 [U(n")8 U(2)]

= [U(n')8 U(n")] 8 [U(2) U(2)] & [U(n') U(n")] 8 [U(2) )( U(2)] = [U(n')8 U(n")]8 U(2) .

This chain may be easily interpreted within the
SU(2} formalism. By means of the first subduc-
tion, we restrict ourselves ta carrier spaces of
U(2n')8 U(2n") which are the direct product of par-
ticle and hole spaces. The second subduction is,
in fact, a pair of parallel subductions U(2n') & U(n'}
8 U(2} and U(2n") &U(n")8 U(2), each of which is
identical to the subgroup chain (5) of the particle
formalism. In each case, we restrict ourselves
to a subspace of spin-adapted vectors, where the
particle (hole} subspaces have total spin S ' (S").
The final subduction may be interpreted as the
coupling together of the total particle and total
hole spins to yield an overall total spin S.

In I, we derived a prescription that indicated
which irreps of U(n')8 U(n") occur, having chosen
the values of the total spin S and the particle-hole
deficiency N, . Let us now see how the SU(2} cou-
pling techniques may be used to construct a basis
of the carrier space of any such irrep. Let us
consider, then, the irrep [2"1~'0]8 [0—l~" —2'"]
=/&a'f/'I I)"a"},where N" =2a"+ 5", N'=2a'+ 5'

N + No S:2b", and S ' = 2b'. According to
our interpretation of the subgroup chain (IV), we
must first construct from the set of n' particle
orbitals, a basis of particle states of total spin S'

(19a,)

X, i&A'
Y]

}1/2 mX)»
~ ~A»

(19b)

I

containing N' particles, and from the set of n"
hole orbitals, a basis of hole states of total spin
S ", containing N" holes. The total particle and
hole spins may then be coupled together to yield
the desired total spin S.

The particle state and the hole state may be
constructed in a manner similar to that of the
particle formalism. Denoting the particle and
hole labels by ordered index sets A' = $1', 2', . . .,
(n')'} and A" = (I",2", . . . , (n")"}, respectively,
(assuming the orbitals to be arranged in some ar-
bitrary but fixed order), we first define the refer-
ence state in which all hole orbitals are occupied

I@0&=X)i' 1/2 1» -1/2 ( ~ )" 1/2 ( ")"-)/2 ~

where ~0) is the true vacuum and Xt are the
particle creation operators defined for the orbitals
considered. We shall find it convenient to employ
the particle-hole creation and annihilation opera-
tors Y~ and Y, , which are defined by
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8'; (n; )=

i', 1/2 i', -1/2 &

n;, =0,
n;,=1,
n'=2
&„=0,

5

n;„=1,
8'rr —2 ~i

(20a)

(20b)

For a given set of orbital occupancies (n, , ~. ,
n„, ) and (n, , n, , . . ., n„„)we now form linear

The operator Yti creates a particle or a hole, ac-
cording as whether z belongs to A' or A"; in the
latter case, the creation of a hole with spin mag-
netic quantum number m is effected by the de-
struction of a particle which must therefore have

magnetic quantum number -m. The additional
phase factor (-) makes these operators trans-
form as the irreducible tensor operators. "

It is now possible to define the creation operators
for the electrons occupying a single orbital; the
definition depends on the orbital occupancy n;, and

combinations of the monomials

to construct an eigenstate of the total spin operator
by successively coupling together the spins asso-
ciated with the particle orbitals using CG coeffi-
cients, and similarly for the hole orbitals, and
then finally coupling together the spins associated
with the hole and particle parts to yield the desired
total spin S. Different states with the same set of
orbital occupancies are distinguished by the se-
quences of intermediate spins (S, , S, , , S,„, )
for the particle section and (S, , S,„,. . . , S&„„I„)for
the hole section. These intermediate spins and

)

the orbital occupancies may be concisely repre-
sented by the step number vectors d' (particles)
and d" (holes), which are defined in the same way
as the particle step number vector (8). Usfng this
notation, a particle-hole state is represented by

~

d'd "SM) and may be written (defining S„=M~
= So..=Mo. = 0) up to a phase factor Q as

n'

~

d'd "SM)=Q g g g g n(S&, »,M&, », s~m, ,
~ S, M„.)

{m„i) tM„.) (mzi ) (N„- ) &=1

X n(S(r-&I™(r-&\"Sr™r"~ Sr™r")(S&'I™&n'IS& "I'™&"I" I SM)

x (22)

where

s„,=m„, =o if n„, =o or 2,

s„,= &, m„, = ~-,' if n„, = j. .
The summations labeled fm, .) and (M,,) are over m, „m,, , . .., m, „, and M, , M, , , M&„, », , respec-
tively, and similarly for the quantities related to hole orbitals.

We shall see in the next section that it is necessary to evaluate reference-state mean values of products
of annihilation and creation operators. This is conveniently done using the particle annihilation and crea-
tion operators; we thus define I

and

X', ,(n, , )=
t
5 ~ rft .~ 5 g m .~ &

if pg, =0,
if n, , =1.,
if ~, , =2,

(24a).

g,.(n, ,.)= X...
Xi„2 Xi„, 555 ~ „ i,m. „&

i

and rewrite (22) as

if n,.„=o,
if ni»=1,
if n,.„=2,

(24b)
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n'

~d'd" SM)=(t) g g g g II(s&, ,).M&„,).s„,m, . ~S„,M, , &

(m„.) {&„) (m„-) (~„-) r=l

r (nrem=2)

(-'m'„. -'m', ,
~
00&

nil

II (-.'-m„'„-.'-m', „~00)F(S,„,),M&„,),S&„„)„M&„)„~SM)
r (nr s. =2)

(25)

In this result I' is a phase and normalization fac-
tor associated with the transition to particle-for-
malism operators X,. X t

F ( )/2-( Ng+ Np )/2
7

n"

f= N q' + ~ N )' + Q m„.. .
(26)

d, (G,)= r Val(G, ) . (28)

Val(G, ) represents the algebraic factor associated
with the diagram G, and & represents -the phase
and normalization factors from (26) and from the
transition to the graphical notation

i~le c e e c ] 1/20( ) Ls)') ' ') S(n')') S) S(il" )") ' ) )"]

t =N2+ N2 + 2S(n, ), + 2$(n )„,
where

[S)=2S+1,
k

(s„s„.. . , s, ]=II [s,.].

(29)

(30)

G, is the orbital diagram shown in Fig. 1(b) and
is similar enough to the corresponding spin dia-
gram G, that its use is generally unnecessary.
D (G,) is the collection of particle-formalism
operators associated with G,:

(31)

N',. and N,". being the numbers of particle and hole
orbitals with occupancy i.

We shall again exploit the graphical approach as
in our analysis of the particle formalism. " The
CG coefficients in (25) are first represented
graphically, and then further converted to 3-jm
symbols. This yields

~

d'd "SM)= st, , w(G.) Q Q d, (G,)D,.(G.)l 4'. &,
(mr' } ~mr" ]

(27)

where the new symbols in this equation have the
following connotations. G, is the spin diagram
displayed in Fig. 1(a), while d, (G, ) is given by

I

The weight «)(G,) and normalization factor at, e, ,
14& 15

~ ~n'+n" + & —i ", i HA"
(33)

This relationship is also displayed in Table III.
The advantages of the p ordering are as follows:

Firstly, it is the ordering that is suggested by the
representation theory of paper I. In addition, the
use of the p ordering permits a simpler formula-
tion of the basic results and a concise definition
of the segment types necessary for the matrix ele-
ments of a given generator or product of two gen-
erators; this latter task is somewhat cumbersome

(&)(G )—2-& ))&l+)&g~ ) st 2& /&p+//g ) /2 (32)
I

together they provide the overall factor 2 (~2'JI'2't'2,

which already appears in (26). Finally, the sum-
mation extends over the set of all magnetic quan-
tum numbers (m&„m& } that label the particle and
hole 2 angular-momentum lines of G,.

Let us now establish some additional notation
which will permit easy manipulation of the matrix
elements considered in subsequent sections. First
of all, the spin diagram of Fig. 1(a) may naturally
be divided into three parts: The particle and hole
sections, respectively, below and above the total
spin line labeled $, and the S line and the vertex
to which it is attached, which we call the link
section. The ordering chosen for the p-h orbital
creation operators in (21) is reflected by the linear
ordering in the spin diagram G,; for this reason,
we call the ordering in which the hole labels ap-
pear in reverse order the particle-hole (p-h) or
derring. However, for several reasons, it is use-
ful to label the orbitals according to the Particle
(p) ordering, which is merely the sequential order
of the orbitals in the spin diagrams, starting from
the lowest orbital and omitting the link section.
We shall indicate the position of an orbital in the
p order by an index without single or double
primes. The two orderings are related algebra-
ically as follows:
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hole
region

'

!
link

region i

particle
region

'

I

So.Mo"

& I $1»
$4

$(n'-1)

!
" $(n»)

" $(n)'
1

" $(n-1)'
t $

$11

!
So' Mo'

(a)

1ym Sr'

S(, 1)2

Sr+
$(r-1)'

$( -1)
Sr.

r"
II S(r-1)'

Sr"
m r»

$(r-1)'
Sr"

-"m ~
r

Sr~i+
$(r-1)

tV

~o"Mo I

!
S„
Hat

$(n»-1)

$(n»)» "

$(n')'
!
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$(n'-1 )
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!tV At I

$p Mp
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~ tlat

'S(r-1)» "
+I I

Sr»

S(r-1)+"
S +

S(r-1)» +rv +i+S"
At
Sr' )
tht « I I

S(r-))' "
~ht

Sr'
~%t

S(r-1)' ~&

Sr'
P4

.S(r-1)' "

(c)

tV
mr"

1 1
2mr»

At 2
mr'

~ II

1

(b)

i
II

1
~ II

'2
=

~ II

i'
N'

~ I
'2
~ I

'1

T
I
L
T
I

A.
I

~ II

I1
~ II

l2

~ II
»

N

~ I

I2

~ I

N'

T
I

T
I

t4t'V
I

~ II

I1
~ II

I2

IN»

~ I

I2
~ I

I1

FIG. 1. Spin and orbital diagrams for bra and ket YK states. The spin and orbital diagrams for the YK ket state (27)
are illustrated in diagrams (a) and (b), respectively. In diagram (a), the blank boxes represent the detailed coupling
for each individual oribtal level. These depend on the orbital occupancy, and the three possibilities are displayed to
the right of the diagram, corresponding to the occupancies n„= 0, 1 or 2 (from the top) in both the particle and hole re-
gions. In diagram (b), the two possible forms of the orbital diagram are shown, on the left-hand side is the Hugen-
holtz form, while on the right-hand side the Brandow-Goldstone form (cf. Refs. 14, 15, and 32). The corresponding
spin and orbital diagrams for the YK bra state (35) are given in diagrams (c) and (d).

using the p-h ordering. In general, then, the p
ordering is useful for the statement of the overall
results, whereas the p-h ordering is more con-
venient for their derivation.

Using these ideas, we may concisely represent
the p-h state using the total spin quantum number

$ and the step number vector d= (d„d„..., d„),
whose indices are taken in the p order, and which

is nothing more than the concatenation of the step
number vectors d' and d" for the particle and
hole sections, with the latter taken in reverse
order. It must be remembered, however, that
in this notation the b values are no longer obtained
from this step number vector by the usual formula

[Eq. (17) of Ref. 17], but are now defined by

5 dk, & —6 d„,2, 1-i ~yg'

b =
II

g [g(d»1) —3(d~, 2)], n' &i ~n.
k=f

(34)

A general bra state may be represented by a
formula derived from (27) by conjugation:

(dSM! =Xgw(G, ) g g d,(G,)(o!D„(&,),
(mr I &mr-]

(35)

where (", and (", are the spin and orbital diagrams

TABLE IIL Relationship between the particle and particle-hole labeling schemes.

particle: 1.
particle-hole: 1'

2 g' —1) n' Q'+ 1) g'+ 2) ~ ~ ~ g —1) n
2' ... Q'-1)' (n')' (g") Q -1) . 2
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given in Figs. 1(c) and 1(d),

d, (C,)= ~ Val(G, ), (36)

step number vectors of the two states involved

being all that is necessary.

e l&I2
J L&jt 2 ~ ~ ~ 2 S(&t)t 2172 L7(&at~tty ~ ~ ~ 2 Myra J

n' n"

f = N 2 + N", + N 2 + 2 Q S„, + 2 Q S„.. . (37)

r=o

QI-gg(Q ) —2 &22+iV2 &&2
d o

2=o

(36)

(Quantities relating to the bra state are distin-

guished by tildes. }
Equations (27) and (35) express the YK basis

states in the p-h formalism. For given values of

the parameters 1Vo and S then the basis may be
constructed and stored in the following manner.
The required irreps are first determined via, the

prescription given in I. Next, for each irrep, a
distinct row table is created for the particle and

hole sections separately; the p-h states for this
irrep are then labeled by all possible pairs of step
number vectors from the particle and hole sec-
tions. This provides an efficient means for the

generation and storage of bases of YK states; we

shall later show that the matrix elements of gen-

erators and products of generators in this basis
may be directly obtained with a knowledge of the

IV. AN EXAMPLE

Before continuing with an account of the evalua-
tion of matrix elements with respect to the basis
of h-p YK states, we first present an example of

possible h-p bases for a simple four electron-four
orbital case, employing two different reference
states

~
Co). Rather than listing the basis vectors

we shall employ Shavitt's graphical representation
of the corresponding distinct row tables. ' The
vertices of these graphs represent distinct rows
and the edges represent the pertinent step num-

bers. Instead of labeling individual vertices with

the corresponding distinct rows of the ABC tab-
leaux, Shavitt' places them on a rectangular grid
with the vertical position indicating the orbital
level (given by the sum of the ABC components in

each row) and the horizontal position giving the
values of a,. and b, components [cf. Figs. 2(a) and

3(a}j. In this way the slope of the edges implies
directly the corresponding step number, as shown

in Figs. 2(a) and 3(a). We also recall that all
possible walks between the top and bottom vertices
uniquely define the canonical basis vectors of the

2'

5 I

I

I

0 I

3 ii

13)

p=2
b=0

i14
0

1 0 2 1 0
S)=0

(a) (b)

0 /2

(c)
FIG. 2. Graphical representation of the canonical basis for the irrep [2t Qt] —= (2Q2) —= (2Q} of Q(4), yielding the spin

adapted basis for n= 4, N= 4, and S=0. Diagram (a) is a standard Shavitt graph (Ref. 3), while diagram (c), obtained

as a superposition of an earlier graphical representation given in Ref. 2, may be regarded as an appropriate subgraph

of a standard YK branching diagram. An intermediate graphical representation, which still represents uniquely the in-

dividual state vectors by distinct paths as the Shavitt graph (a), is given in diagram (b). In this graph the horizontal

vertex position indicates the intermediate spin value, as in the branching diagram (c), whQe in the Shavitt graph (a)

both a„and b„values are determined by the horizontal vertex position, as indicated at the bottom of the graph. The

slope of the edges determines the pertinent step number in each case as indicated in the upper right-hand corner in

each diagram (a)-(c). For greater convenience, the edges associated with unoccupied orbital levels (d„=0) are repre-

sented by dashed lines in diagrams (b) and (c).
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2I

)ol

b=2 1 0 3 2 1 0
S= 0 1/2 3/2

(a) (b)
FIG. 3. Graphical representation of the canonical basis for the irrep (2 1 01—= (121)—= (12}of U(4), yielding the spin-

adapted basis for n= 4, N= 4, and S=1. Diagram (a) is a standard Shavitt graph (Ref. 3) and diagram (b) a modified YK
branching diagram. For details see caption to Fig. 2.

carrier space of the given irrep of U(n), uniquely
labeled by the top row of the ABC tableaux (i.e.,
by the top vertex of Shavitt's graph).

Shavitt graphs for the case of the irreps (202)
and (121) of U(4), associated with the singlets and
triplets of the four-electron minimum basis set
problem, are shown in Figs. 2(a) and 3(a}, re-
spectively. We would like to remark that these
graphs may in fact be regarded as subgraphs of
the general YK branching diagram. ' This is
easily seen if we distort these graphs in such a
way that the horizontal position indicates the in-
termediate spin (i.e., the b, value) as. shown in
Figs. 2(b) and 3(b). Here, for greater clarity,
we use the dashed line to represent the zero step
number (d,. =0), associated with zero occupancy.
Moreover, identifying the vertices associated with
the same intermediate spin, we obtain the familiar
YK branching diagram shown in Fig. 2(c) for the
singlet case considered.

Clearly both forms (a) or (b) of Figs. 2 and 3 of
these diagrams are equivalent and only differ in
the slope of the edges associated with different
step numbers. We also note that the branching
diagram of Fig. 2(c) would result if we superim-
posed the graphical representations for individual
states of the GT basis used earlier. ' Since we
rely in this work on the relationship between the
U(n) and SU(2) approaches, we prefer to use a
graphical representation which is intermediate to
the U(n) based representation of Shavitt' and the
SU(2) based YK branching diagrams, namely, the
representation shown in Figs. 2(b) and 3(b).

Let us now describe the h-p form of the basis
vectors of the irrep spaces considered in our ex-
ample. We shall employ two distinct reference
states

~ 4, }or, equivalently, the following two
distinct breakdowns of the orbital space into the
hole and particle subspaces: (i) n"=n'=2 and
(ii) n" = 1, n' = 3, In fact, these two cases are
the only ones of interest, since the case n"= 3,
n' = 1 is simply related to the case (ii) (by parti-
cle-hole inversion} and the cases n" =4, n' =0
and n"= o, n' =4 are equivalent to the particle
formalism. The relevant irreps for cases (i) and
(ii) for either singlets (S=0}or triplets (S= 1) are
easily found following the procedure outlined in I.
For each such irrep we construct the distinct row
table, or Shavitt-like graph, separately for the
hole and the particle subspaces. These are given
in Figs. 4-7, using a standard level ordering for
the hole subspace, and a reversed one for the par-
ticle subspace. We could, of course, equally well
reverse this ordering in both subspaces and iden-
tify the top and botton vel. tices. We could also
reverse the vertical ordering of particle and hole
subgraphs if desired.

We observe that, in fact, the graphs associated
with different h-p irreps represent subgraphs of
the p-formalism graphs. This is particularly easy
to see for the case S= 0, when the three different
p-h irreps for case (ii), Fig. 5, are clearly asso-
ciated with the three possible vertices at level one
in the p-formalism graph, Fig. 2(b). However,
there is no one-to-one correspondence between
the basis vectors in particle only and p-h schemes,
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(a)
d) 2 3 0 1

2'

(b) 2, 3,r, s (C) 4, 5,6,9, {10,12),11

15,16,17

3'
I

I
I0" 1, 2,4, 7, 9,15

(b) I

(d) (1O,12) ( e ) 13,14,18,19 (f) 2O

FIG. 4. Graphical representation of p-h states associ-
ated with different subproblems for the case n= N= 4,
3= 0, and ~ col, belonging to the irrep [2 ] of U(2) ~ i.e.,
n'=n"=2. The p-h irreps are represented by Young
tableaux ih the upper left-hand corner for each sub-
space, and the p-h basis vectors, yielding a noncanoni-
cal basis for U(n) subduced to U(n') U(n"), is repre-
sented by YK-type diagrams (b) of Figs. 2 and 3, drawn
separately for the particle and hole subspaces and
joined via an empty vertex. The orbital level ordering
used is shown in diagram (a). Finally, the correspond-
ing vectors from the particle formalism, Fig. 2, iden-
tified by their sequential number i,n a lexically ordered
basis, are listed for each subproblem. A general linear
combination of state vectors k&, k~, ..., k is designated
as (k&, k~, ..., kj. The representation of individual
step numbers d, for both particle and hole subspaces is
shown in the upper right-hand corner of Fig. 5.

3,5, 8, 10,12,13,16,18

(c)

, 14,17,19,20

FIG. 5. Same as Fig. 4 for
~ e») belonging to the irrep

[2] of U(1), i.e. , n' = 3, n' = 1.

except for those states which are uniquely deter-
mined by the orbital occupation numbers. This is
illustrated by the list of p-formalism basis vectors
(identified by their position in the lexically ordered
canonical basis) given below each p-h formalism
graph in Figs. 4-7. We see that in the case when
more than one vector is associated with a given

set of orbital occupancies (vectors 10 and 12 in the
singlet case and 7, 9, and 12 in the triplet ease),
a linear combination of such vectors is obtained in
the h-p version. Moreover, these linear combi-
nations often occur in different h-p irreps. We
shall discuss some advantages of these features of
the h-p formalism in Sec. VIII.

V. THE GRAPHICAL METHOD

It now remains to demonstrate that an efficient and direct evaluation of the matrix elements of single
generators and products of generators with respect to the basis of p-h YK states is possible just as in the
particle formalism. " Let us begin then with some rather general considerations concerning the overall
method and the different types of generators possible. From (27) and (35), the matrix elements of a single
generator E,

&
(whose indices are recorded in the p ordering and thus may refer either to hole or particle

orbitals) may be written

(dS~E, , (dS)=2 '"3'"a""5"a'~' p g g g r~Val(G, )Val(G,)g (4, (D,',(G,)X' X. D„(G,)Ie,), (.39)
(Pgy ) (fftp ) {ffty ) (ffty. ) m

where the generator has already been written in
terms of particle-formalism operators.

The reference-state mean value contained in (39)
may now be evaluated using Wick's theorem. "

I

This is most easily done using the orbital diagrams
in which the various contractions are represented
by lines joining the bra and ket state orbital dia-
grams. " Each such line joins vertices at the same
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(a) 1,2, 4, 5 (b) 3,13,(7.9, 12)

(e) 10,11,14,15 (C) 6,6, (7,9,12 )

level except for one, due to the generator E,, ,
which interconnects levels i and j. The side of
the diagram to which this line is attached at the
ith or jth level depends not only on whether that
index is the first or second generator index but
also on whether it refers to a particle or hole or-
bital; the various possibilities are examined sepa-
rately below.

The resulting orbital diagram represents graphi-
cally the collection of products of pairs of Kro-

(a) 1,4,6 (b) 2, 3,5, (7,9,12),10,13,14

(C) 7,9,

FIG. 7. Same as Fig. 6 for
~ 40) belonging to the irrep

l2] of U(1), i.e., n'=3, n"=1.

, 9,12}
FIG. 6. Graphical representation of p-h states associ-

ated with different subproblems for the case n= N= 4,
S= 1, and

~
C p) belonging to the irrep [2 ] of U(2), i.e.,

n'=n"=2. See caption to Fig. 4 for details.

necker deltas involving the orbital and spin labels,
respectively. When substituted into (39), the sum-
mation over one set of spin projections eliminates
the Kronecker deltas involving the spin labels,
while the remaining spin-projection summations
are then represented graphically by joining identi-
cally labeled free-lines of the bra and ket spin
diagrams, yielding the resulting spin diagram. "
It is not hard to see that the arrangement of parti-
cle and hole lines in this resulting spin diagram is
identical to that in the resulting orbital diagram.
Thus this latter diagram is not really necessary
at all; we may formulate rules which yield the re-
sulting spin diagram directly from a knowledge of
the particular generator or generators involved,
without explicitly considering the relevant orbital
diagrams.

Let us now consider the arrangement of particle
and hole lines in the resulting spin diagram de-
rived from (39). The most important difference
which distinguishes the p-h from the p formalism
is that for the hole-orbital operators the only non-
zero contractions are of the form: X~ X,
= 5 „where the two operators appear in an or-
der opposite to that for contractions of operators
with particle indices" (note that the p-h formalism
contractions are defined with respect to the Fermi
vacuum ~4, ), E'I. (18), while the p-formalism
contractions are defined with respect to the true
vacuum state ~0)). This has the following impli-
cations for the resulting spin diagram of (39).
First of all, for levels not equal to i pr j, little
is different from the p formalism; it is evident
that the particle or hole lines must interconnect
vertices at the same level. In addition, for doubly
occupied levels, two contraction patterns are pos-
sible, each of which yields the same resulting spin
diagram (this is true in general for any geminally
antisymmetric spin functions; cf. Fig. 3 of Ref.
14). As in the p formalism, the doubly occupied
levels may be converted, in the resulting spin dia-
gram, to unoccupied levels, "as long as an extra
factor of two is included.

The arrangement of lines at the ith and jth levels
must be considered together due to the term

X~ X,. in (39). If I refers to a particle orbi-
tal, then X,. is contracted with an annihilation op-
erator from the bra state and the generator line
thus terminates at the ith level on the left-hand
side of the resulting spin diagram. If, however,
i refers to a hole orbital, then Xt is contracted
with an annihilation operator from the ket state
and the generator line terminates at the ith level
on the right-hand side. Similarly, the generator
line terminates at the jth level on the right- or
left-hand side, depending on whether j refers to a
particle or hole level. Thus we may say in gener-
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al that when a generator line terminates in the hole

region, it is incident with the side of the resulting
spin diagram which is opposite to that indicated for
particle orbitals. Let us now enumerate the three
possible distributions of generator indices among
the particle and hole regions.

(1) Particle-particle (p-p) generators E,&, 1
- i, j - n'. When both indices of the generator
refer to particle orbitals, the situation is exactly
analogous to the p formalism. The two possible
spin diagrams are represented schematically in

Fig. 8(a) for a p-p raising generator (i & j) and

Fig. 8(b) for a p-p lowering generator (i & j). The
link segment is represented by a dotted line. It is
clear that the same segment formulas as in the p
formalism will apply, namely, A" or A~ for the
lower terminal segment and A~ or A~ for the upper
terminal segment, for raising or lowering genera-
tors, respectively.

(2) Hole hole (h-h-) generators E;,, n'&i, j- n.
Since both indices belong to the hole region, the
generator line is connected to the opposite side of

(c)

FIG. 8. Schematic resulting spin diagrams for single
generators. The various types of resulting spin dia-
grams for a single generator are displayed. In each
case, the dashed line locates the position of the link
segment. The diagrams represent schematically the
resulting spin diagrams for a p-p raising (a), p-p low-
ering (b), h-h raising (c), h-h lowering (d), p-h raising
(e), and p-h lowering (f) generator.

the diagram than is usual for particle orbitals.
Thus for a raising h-h generator (i & j), the sche-
matic spin diagram is shown in Fig. 8(c), while

8(d) represents the schematic spin diagram for a
lowering h-h generator. When we enquire as to
the necessary segment types, we must remember
that the p-h ordering for levels is used in Eq. (39),
so that for the upper terminating segment for the
h-h raising generator E;,, i & j [level j of Fig.
8(c)], the required segment type is A", and simi-
larly, As is the type of the lower terminal seg-
ment. For the h-h lowering generator, the upper
and lower terminating segment types are A~ and

A ~, respectively. These are just the opposite of
those which are indicated in the p formalism.
Finally, due to the reversed contractions for hole

operators, the contraction lines connected to the
two operators comprising the generator cross,
and an additional minus sign results.

(3) Particle-hole (P-h) generators E,.~, 1& i & n'

& j n, or 1 ~ j- n' &i -n. As a result of the re-
versed contraction pattern for the hole operators,
both ends of the generator line terminate on the
same side of the spin diagram. Thus the sche-
matic spin diagrams for p-h raising (i & j) and

lowering (l & j) generators are shown in Figs. 8(e)
and 8(f), respectively. In the former case, the

necessary terminal segments are both of type A",
while A is indicated for both terminating seg-
ments of a p-h lowering generator. In these two

cases, for the segments in the hole region, we

must again use the opposite segments that would

be employed in the particle formalism (i.e., Ao

instead of Ao and vice versa, for Q=R, L) The.
contraction lines associated with the generator
creation and annihilation operators do not cross,
and thus no addition@ minus sign is necessary as
was the case for h-h generators.

Finally, there are two additional factors which

arise from the. evaluation of the reference-state
mean value in (39). A factor of two from each
doubly occupied level that is incident with the gen-
erator line (i.e., at the ith and jth levels), and

(-1)' where p is the number of crossings of parti-
cle and hole lines in the resulting spin diagram.

It is instructive to note the following distinction
between the p-h generators and the p-p and h-h
generators. The latter transform states within

the same irrep, while the former transform among
different irreps. The p-h raising generator cre-
ates both a particle and a hole, thus increasing
both N' and N" by unity, while the p-h lowering
generator destroys both a particle and a hole.
Thus, the p-h generators are, in fact, the tensor
operators, "which might be represented by ap-
propriate double Gelfand tableaux with the highest
weight (1 0 -1), which is common to both upper
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and lower tableaux (the dot over the zero indicates
repetition to a required length). The upper tab-
leaux relates the two irreps involved, while the
lower tableau structure represents the generator
E,, (i &j) considered: The first component in each
row equals 1 for the rows k = i, i + 1, . .. , n, and
the last component equals -1 for the rows k= j,
j+ 1, .. ., n, all other entries being zero (cf. also
Sec. IIIC and Fig. 3 of I). One could thus also
exploit the tensor-operator formalism developed
by Biedenharn, Louck, and others. ""In fact,
the case of generator matrix elements of the
groups U(n'+ n") in a noncanonical basis U(n')

(3(U(n"), which is particularly relevant to the prob-
lem considered here, was very recently treated
by Klimyk and Gruber "[I.n their notation the two
relevant Gelfand tableaux are written side by side
rather than as a part of a U(n'+ n") tableau, as
the parts B and C in Fig. 3 of I.] Nevertheless,
we find the SU(2} based approach exploiting the
graphical techniques of spin algebras, """"to
be the most convenient and direct in the case of
the irreps encountered in the many-electron prob-
lem considered here.

We may summarize this section by presenting
the rules whereby the resulting spin diagram as-
sociated with (39) may be obtained directly.

(i) All particle and hole lines of the bra state
spin diagram G, must be connected with the ket
state particle and hole lines at the same level,
with doubly occupied levels replaced by a dashed
line signifying zero angular momentum, except
for the generator line which connects an ith-level
bra or ket line (depending on whether i refers to a
particle or a hole orbital) to a jth-level ket or bra
line (depending on whether j refers to a particle or
a hole orbital}. In addition, one must connect the
lines labeled SOMO and SOMO SOMO and SOMO and
S,M and S, M.

(ii) One must associate with this diagram the
multiplicative factor

( )p+ 2Np+N2+N2(i)+N2( j
l[S )-(5(S S')5 (M M) (40)

where p is the number of crossings of orbital lines
in the resulting spin diagram, e is one if n & i, j- n and 0 otherwise, and N, (r} is one if the rth or-
bital is doubly occupied and 0 otherwise. We note
that the multiple of two included in (40) will sub-
stantially cancel with the first factor of (39),
since N2(r) —= N, (r) when r wi, j and, in fact, the
remaining multiplicative factor may be' written
X[S] '5(S, S)5(M, M), with

(41)

where A' and A' are the sets of labels of orbitals

incident with the generator lines in the ket and bra
states, respectively (cf. Sec. 3(c}of Ref. 14).

VI. MATRIX ELEMENTS OF SINGLE GENERATORS

( d S
~ E;, ~

d S) = O' V al(G„), (42)

where G„ is the resulting spin diagram described
in the last section in which the directions of all
lines in the spine of the bra state have been re-
versed, yielding the factor (-)'~, with f =go S„,
+go S„... The numerical factor (I( is seen from
(29), (37), and (41) to be

We are now in a position to derive the formulas
which express the matrix elements of single gen-
erators and products of generators as a product
of segment values associated with the individual
levels as in the p formalism. An advantage of our
choice for the segment values given in Ref. 17 is
that the same formulas may be used in the p-h
formalism. In order to see this, it is instructive
to compare the formulas (27) and (35) for the p-h
states with the corresponding formulas (25} and
(32) of Ref. 17 in the p formalism, Considering
first the particle portion of the state (27}, which
includes the particle section of the spin diagram
G, [Fig. 1(a)] and the corresponding part of the
numerical factor, we note that it is formally iden-
tical to the entire p formalism state (25) of Ref.
17. A similar remark applies to the particle por-
tion of the bra state (35) in relation to the entire
p-formalism bra state (32) of Ref. 17. In order
to compare the hole portions of these states to the
p-formalism states, we view the appropriate por-
tion of the spin diagram upside down. It can then
be seen that the hole portion of the state (35) is
formally identical to the p-formalism state (32)
of Ref. 17, except that the hole lines are directed
oppositely. The hole portion of the bra state (35)
can also be seen to be formally identical to the p-
formalism state (32) of Ref. 17, except for the
hole lines being directed oppositely and the addi-
tional factor (-) ( . This suggests that when ma-
trix elements of generators between the states (27)
and (35) are considered, both particle and hole
portions of the resulting spin diagrams and numer-
ical factors will be identical to expressions en-
countered in the p formalism, since the additional
factor (-)"( may be used to reverse the directions
of all hole lines. The factorization into a product
of p-formalism segment values may then proceed.

Let us continue, then, with our calculation of the
matrix elements of single generators. According
to the development of the last section, the matrix
element (39}may be written
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@—
y&t&&t&(

)"a'Na'N2'NI'N&'2sn" n" 5(S, S)5(M,M)[S,„.. . , S&„,&. , S,„,.. . , S&n.&-, S&, ~ ~ ~, S&„.
&

~ yiS&, ~ ~ ~ yi S&n" &-]

(43}

It is convenient at this point to mention the three
phase conventions of Ref. 17. Each convention is
again utilizable in the p-h formalism; the corre-
sponding choices of (t) are as follows.

(i) YK phase convention:

( )N2+N2' (44)

(ii) GT phase convention, implemented at the
(a} elementary generator level:

(
)Ng+N2'+D

D= g 2S,„„,+ g 2S,„„„,
~e e2'3

(45)

( )N2+N2 (46)

with additional factors analogous to (45) of Ref. 1V.
Let us consider three examples of Eq. (42) in

somewhat greater detail. The first case is that
of a p-p raising generator E,, , 1- i & j & n',
whose resulting spin diagram is given in Fig. 9(a).
The factor (-)N& in Eq. (43) is used to reverse the
directions of all hole lines; at this point, both the
hole and particle sections of the spin diagram re-
semble portions of diagrams encountered in the
particle formalism. The diagram is now sepa-
rated over pairs of lines labeled S„and S„outside
the generator range and over three lines inside
the generator range, thus achieving the factoriza-
tion into level contributions. At the same time,
the factor 4 is also split up into a product of
terms which are associated with the individual
spin diagrams obtained at each level.

The contributions of levels outside the generator
range are all triangular deltas, and are thus equal
to unity if the bra, and ket states coincide at each

where e,', and e,", are the index sets of levels r
with d„.=2, 3 or d„„=2,3, respectively; GT phase
convention, implemented at the (b) segment level

W(L) =1. (47)

A similar development is possible for the matrix.
elements of a p-p lowering generator.

The second example is that of the h-h raising
generator E,,, n' & i & j- n. The pertinent spin
diagram is displayed in Fig. 9(b). After a series
of manipulations similar to those performed in the
previous case, the matrix element of E,, may be
expressed as a product of W(L) and segment values
for levels in the generator range; of type A„ for
level i, A for level j, and type C' for interme-
diate levels. Since v=1 in Eq. (41) for h-h gen-
erators, an additional minus sign is necessary.
The matrix elements of a h-h lowering generator
may be analyzed in a, similar manner.

Finally we consider the matrix elements of a
p-h raising generator E,,, 1 - i - n' &j ~ n, whose
resulting spin diagram is illustrated in Fig. 9(c}.
Unlike the diagrams of Figs. 9(a) and 9(b), the
generator line crosses the link segment, thus
necessitating a new link segment type which we
denote L'. Upon separating the diagram, we may
again express the matrix element of E,, as a pro-
duct of segment values over the range of the gen-
erator of types A for levels i and j, and of type
C' for intermediate levels along with the link seg-
ment value W(L') =—W(L'; b„., t& b„„b„„„t»b„„„S).
This latter value is given by

I

such level. For levels inside the generator range,
we may identify contributions derived from the
segment formulas of the p formalism; of type A
for level i, type A„ for level j, and type C' for
levels i+ 1 through j —1. Each such contribution
may be written W(Q„;dg„ t&b„, b„), as in the p for-
malism. Finally, there is the contribution from the
link segment, which is denoted W(L) = W(L; b-„, , t&b„,
b„„„&b„„„S).It is easily verified that for all
three phase conventions mentioned above,

(48)

where

21 22 23

we may take y= 1, while for convention (ii) (b),
y= /[2] for raising generators and y= g[--', ] for
lowering generators, where we defined

is the usual 6j symbol, and y depends on the phase
convention used. For conventions (i) and (ii) (a),

y[k] ( )t&n. &. &I&+&&nn&n&&&&

t t(k) = 2Slb (S, —S,, k) .
(49)
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The matrix elements of p-h lowering generators
may be expressed in a similar manner with both
terminal segments taken to be of type A~.

The results of this section may be summarized
in a single formula. However, due to the fact that
the segment types necessary for hole levels are
the inversions of those indicated by the p formal-
ism (where by inversion we mean the exchange

Ac —Ae, Q=R, L), we first define the barred
segment types Q„, as in Table IV, for both one

and two generator segment types. As can be seen,
the effect of the bar is to reposition all super-
scripts as subscripts, and vice versa, when the
segment refers to a, hole orbital.

The matrix element of any single generator in
the p-h formalism may now be written

«SI;,Ids&=(-)" (I' ')II (Q„)=(-)'&(&' ', b„„b„„b„„„b„„„&)II (Q„;d,d„b„b„),

where 0= 0(E;,)=(i, i+1, . . .,j'I is the range of
the generator, Q„ is the segment type of the r th
level defined by E„based on the p-formalism
definition, and h and m are the numbers of h-h
and p-h generators, respectively, in the set fE,,).

VII. MATRIX ELEMENTS OF GENERATOR
PRODUCTS

In this section, we derive a formula for the ma-
trix elements of generator products in the p-h for-
malism. In the extension of the method just out-
lined for single generators to the case of generator
products, several difficulties are encountered;
among these are the problem of noncommuting
generators, the appearance of direct and exchange
terms and the possibility of overlap of the gener-
ator regions. These difficulties arose in a paral-
lel fashion in the p formalism"; the methods for
their disposal developed there are employed in the
p-h formalism in more or less the same form.
Thus in our discussion here, we shall concentrate
on the minor differences and special consider-
ations needed for the p-h formalism, and refer
the reader to Ref. 17 for a more detailed account
of the general procedures.

It is useful, first of all, to prepare a, list of the
possibilities for pairs of generators in the p-h
formalism according to their type and the relation-
ship between their ranges; this is done schemat-
ically in Fig. 10. The possibilities are primarily

classified according to the number of p-h genera-
tors in the pair, since this number determines the
type of the link segment. Diagrams 1-3 represent
the patterns for pairs of generators which include
no p-h generators. Since these cases are quite
simple, the actual patterns are not given; instead
we indicate with an encircled numeral the number
of p-p or h-h generators present, according to the
position of the numeral below or above the dotted
line, respectively. Diagram 1 thus represents all
pairs of two p-p generators; each of the diagrams
of Fig. 6 of Ref. 17 may thus be ins'erted into the
lower portion of this schematic diagram. Dia-
grams 4-7 of Fig. 10 represent the combination
of a p-h generator and a p-p or h-h generator,
where the latter generator is indicated by a numer-
al. Finally, all pairs of two p-h generators are
listed individually in diagrams 8-20 of Fig. 10.

According to the results of Sec. IV, the matrix
elements of the generator product E,,E» may be
written

(d S iE;,E„ld S& = ~ Vai(G„), (51)

where G„ is the appropriate resulting spin diagram
and 4 is given by (43). G, is then separated into
segments, each of which is associated with a single
orbital level. Before describing this procedure,
however, we must first consider the possibility
that the generators E„and E» do not commute.
This is the case when j= k or i =l or both. In the

TABLE IV. Definition of barred segment types q„' in terms of the p-formalism segment
types Q„, depending on whether the orbital referred to has hole (1~r&n') or particle
(n' &r ~n) character. H and H' stands for either R or L.

Segment type

Q (1& r&n)

(1&r&n')
r

(n' &r &n)

One-particle
segments

C'
H

Ae A C~e
A A" C'

H

Aee

Aee

Aee

AH

Aee

Ae
H

Aee

Aee
AeH'

Be

Be

Be

Two-particle segments

B„
Be
Be

Crt

C"

C
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02 O~

(1) (2) (&)

(8) (10)

(12)

01 O~
~ 0)

O~

(5) (6)

01

(7)

E,, E,,. The difference is accounted for in the
segment formalism by recording two sets of values
for the jth segment type, labeled by the additional
index Y. The values corresponding to Y=1 are
used for the latter order mentioned above, and

those for Y= 2 for the former order.
In the p-h formalism, a similar development is

necessary. However, it must be remembered
that the annihilation and creation operators re-
ferring to a hole orbital between which a nonzero
contraction is possible, must occur in the opposite
order to that for nonzero contractions of particle
operators. Thus, it is the ordering E, , E,,- for
which an additional contraction pattern is possible,
when j refers to a hole orbital. We may sumrnar-
ize the Y index values which must be used for the

jth segment according to

(16) 1& j~n' n'& j~n

(17) (18) (2O)
E, , E,,
E. .E. Y=2

Y=2

Y=1
(52)

(21) (22) (2&) (24)
FIG. 10. Schematic resulting spin diagrams for gen-

erator products. The schematic resulting spin dia-
grams for generator products containing zero (1-3),
one (4-7), or two (8-24) p-h generators are illustrated.
In diagrams (1-7), the one and two p-p or h-h genera-
tor lines are indicated symbolically by an encircled
numeral. We also note that diagrams (17-24) may be
obtained by the bra-ket inversion from diagrams (12-
15) and (8-11).

p formalism, the difference between the matrix ele-
ments of the two different orderings of generator pro-
ducts is that for one ordering, an additional con-
traction pattern is possible, in which a contraction
occurs between two annihilation and creation oper-
ators contained within the generators themselves;
thus the additional contraction pattern is possible
for the ordering E,,E„but not for the ordering

For the special case E,,E„., the appropriate values
of the Y index must be used for both the ith- and jth
segments.

Having now accounted for the possibility of non-
commuting generators, we may now continue with
the separation of the resulting spin diagram G„of
(51). The main difficulty at this point is that the
ranges of the two generators may overlap, thus
making a separation into levels impossible without
the introduction of intermediate summation vari-
ables at each overlap region level. However, this
difficulty is easily avoided, as in the p formalism,
by first precoupling the spins of the particles in
the overlap region to X. Each segment in the
overlap region thereby becomes dependent on X
and in the final formula a summation over X=0, 1
must be carried out.

Evidently, a new type of link segment is en-
countered when separating the spin diagrams for
the generator' products corresponding to diagrams
8-20 of Fig. 10. This segment, through which
two generator lines (or one X line) pass, is de-
noted L", and its value is given by the formula

S(„„)„S
S(„,), X

(53)

where I'= 1 for phase conventions (i) and (ii) (a)
and I' = )[0] for raising-raising and lowering-
lowering generator products and I' = /[+ I] i)i[-I]
for raising-lowering generator products, where
g[k] is defined by Eq. (49).

The final problem in calculating the matrix ele-
ments of generator products is associated with the
appearance of direct and exchange terms. The
relationship between these terms is displayed
schematically in Fig. 11, where each subfigure
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I I I I

I I I I

I I I I

I I I I

I I I I

I I I I

d

I I I I

I I I I

Qe

I bbb

TABLE V. Typica1 generator product segment se-
quences. The sequence of segment types necessary for
the evaluation of the matrix elements of generator prod-
ucts represented by diagrams 8-16 of Fig. 10. The
left-to-right order corresponds to the order from bot-
tom to top in the diagram. Those for diagrams 17-24
of Fig. 10 are obtained by making the substitution
R L in the sequence given for the diagram which
is a reflection about a vertical line.

Ibd'

Diagram
(Fig. 10) Segment sequence

I bbb

FIG. 11. Relationship between direct and exchange
term diagrams. The resulting spin diagrams for direct
~nA exchange generator product terms are illustrated
schematically. Diagrams (a), (b), and (c) represent the
possibilities for two p-p generators, diagram (d) for the
combination of a p-p and h-h generator, diagrams, (e),
(f), and (g) for a p-p and p-h raising generator, and dia-
gram (h) for two p-h raising generators. Other possi. -
bilities are similar to one of these cases. In diagrams
(a), (b), (d), and (e), the general form is given first,
with typical examples beneath, although only one such is
given for (a) and (b) since these are the same as in Fig.
8 of Ref. 17. In each case the direct and corresponding
exch~~~e terms are displayed to the left and right of the
doubled arrow.

contains just a single specific schematic diagram
or a general diagram along with some typical
cases. In each diagram, the dashed line locates
the position of the link segment, and the direct
and corresponding exchange terms appear to the
left and the right of the double arrow, respectively.
Figures 11(a), 11(b), and 11(c) refer to the case
with two p-p generators and thus may be found in

Fig. 8 of Ref. 17. The diagrams for two h-h gen-
erators may be obtained by shifting the dashed line
to a position below the generator lines. For the
combination of one p-p and one h-h generator,
Fig. 11(d) applies. The diagrams for one p-h
generator and one p-p or h-h generator are given
in Figs. 11(e), 11(f), and 11(g), which illustrate
the possibilities for the particular case of a p-h
raising generator and a p-p generator. Finally,
Fig. 11(h} represents the case of two p-h raising

10

12

13

14

15

16

ARC' ~ ~ ~ C'B~C" ~ ~ ~ C"B C' ~ ~ ~ C'A

A~C' ~ ~ ~ C'B C" ~ ~ ~ C"A~

ABC' ~ ~ ~ C'B' C" ~ ~ ~ C"B C' ~ ~ ~ C'A~

A&~C" ~ ~ ~ C"B C' ~ ~ ~ C'A

A~C' ~ ~ ~ C'Bl C" ~ ~ ~ C"B C' ~ ~ ~ C'A

A~C' ~ ~ ~ C'B C" ~ ~ ~ C"A

A C'- ~ - C'B C" ~ ~ ~ C"B C' ~ ~ ~ C'A~

A~~C" ~ ~ ~ C"B~C' ~ ~ ~ C'A~

ARLC» ~ ~ ~ C»ARL

generators; those for two p-h lowering generators
are the reflections of these about a vertical line.

We may now state the final rule for the deter-
mination of the proper segments to be used
in finding the matrix elements of a given gen-
erator product, namely, for exchange-type
matrix elements in which the generator lines
cross [Figs. 11(a), 11(b), 11(e), 11(f), and

11(h}] replace the Bo segment by the 8'c segment
whose value is defined by Eq. (57) of Ref. 1V. For
cases corresponding to Fig. 11(h}, it is thus nec-
essary to use the primed segment values for the
B segment in one of the particle or hole regions;
we have arbitrarily chosen to assign the primed
B segment to the particle region. As an illustra-
tion of these remarks, we list in Table V the se-
quences of segment types associated with the gen-
erator products represented by diagrams 8-16 of
Fig. 10.

Our expression for the matrix elements of gen-
erator products in the p-h formalism may now be
given

(dSIE, ,E„LdS}=(-)'Q~'"'(q, ;d,d„,~5„,5„)
y'E- Q~

x Q W'*'(L' '; b , db , 4 ;db, d)„.fl „'(,..„„',dW„d I)„dbdIb, , „()44)
X=O, j. rg a2
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where Q, = Q(E, ,)EQ(E,), Q =Q(E, ,)A Q(E, ),
Q„are the barred segments defined in Table IV,
h and ~ are the numbers of h-h and p-h genera-
tors, respectively, among the set [E,,,E„},and
the appropriate values of Y are used for noncom-
muting generators according to (52).

There exists a close relationship between the
matrix elements of the generator products corre-
sponding to the direct and exchange terms, and
they can often be evaluated simultaneously. By
writing the expression on the right-hand side of
Eq. (54) as w, + w„where w,. is the term corre-
sponding to X= i, i =0, 1, and wo is the entire
term if Q =(|), we may establish the following re-
lationships between the direct and exchange ma-
trix elements. The pertinent relationship depends
on the nature of the generators involved, and is
indicated by the appropriate diagram of Fig. 11.

Case (1). b (p-p+ p-p, h-h+ h-h},

f (p-h+ p-p, p-h+h-h; both raj.sj.ng
or both lowering),

h (p-h+ p-h, both raising or both
lowering) .

Direct term: (dS~E, ,E„~jdS)=w, + w, .
Exchange term: (dS~E, ,E~, ~

dS) =wo —w, . (55)

Case (2). a (p-p+p-p, h-h+h-h),

d (p-p+ h-h),

e (p-h+ p-p, p-h+ h-h) .
Direct term: (dSj,E, Eq(~ d$) =w, .
Exchange term: (dS~E,. &Ez jd$)= —s.wo+w~.

(55)

Case (3). c (p-p+p-p, h-h+h-h),

g (p-h+ p-p, p-h+ h-h) .
The direct and exchange terms may again be
evaluated simultaneously, the orally difference be-
ing that the A~ or A~ segment value in the direct-
term expression is replaced by the matrix element
of a weight generator in the exchange term expres-
sion.

We might add at this point, that for CI calcula-
tions, it is the matrix elements of the operator

e;, » E;,E» —5,,E;,=N——[E;,E»), (57}

that are needed rather than those of the simple
generator product. In the p-h formalism, the
matrix elements of g,.,. Jj ) are given by the same
formula (54), in which the values Y= 1 and 2 are
used for any Y-dependent segment values located
in the particle or hole sections, respectively.

VIII. DISCUSSION

We have presented algorithms for the evaluation
of the matrix elements of the one and two particle
parts of the Hamiltonian (4) within the p-h formal-
ism. This method may be employed in conjunction
with the generation and representation scheme for
electronic p-h states based on the distinct row
table, which is described in Sec. III and illustrated
in Sec. IV.

In both the particle" and particle-hole formal-
isms, the required matrix elements were ex-
pressed in terms of the same segment values, a
complete list of which is given in Ref. 17. It was
possible to develop the p-h formalism in such a
way that only three new segment formulas were
necessary, namely, those given by Eqs. (47), (48),
and (53) for the link segment. In order to com-
plete the list of all nonzero segment values nec-
essary for the p-h formalism, we list those for
the link segments in Table VI. Even though differ-
ent phase conventions may be employed, as in the
particle formalism, the most natural convention
to use in the p-h formalism is clearly that re-
ferred to as YK convention.

Let us now briefly discuss some of the advan-
tages offered by this formalism when applied to
the CI approach. The h-p formalism will not only
avoid repetitious calculations for all diagonal and
certain off-diagonal CI matrix elements which in-
volve summations over the orbitals occupied in the
reference configuration (which in fact can be
avoided even in the p formalism when the Hamil-
tonian is appropriately repartitibned, as shown
recently by Shavitt"), but it will also add to the
flexibility in the configuration-selection process
and avoid repetitious calculations in the handling
of states with different spin multiplicities, since
a considerable number of matrix elements will
only differ in the central link segment. It also
provides an automatic labeling and separation of
configurations with different excitation levels.
For example, considering only singly or doubly
excited states out of an arbitrary singlet reference
state (an extension to arbitrary multiplicity is
straightforward) we immediately get a splitting
into the four subproblems, labeled by the irreps
{00

~

00} (N ' = 0), [01
~
10} (N ' = 1), (10

~
01}and

(02~20} (N'=2) [e.g., in the case considered in
Sec. IV the irreps of Figs. 4(a)-4(d)]. These
irreps correspond directly to the V, D, S, and T
classes introduced by Siegbahn. '

Since the particle-formalism full CI space is
factored into the direct sum of subspaces, which
may be labeled by their excitation level and spin
coupling, we have an additional flexibility in the
configuration-selection process when using the
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TABLE VI. List of nonvanishing link-segment values in terms of the functions
T=S+ ~(x+y), U= [(x+1)(y+1)] ~, and

(x+ 1+—rhx) (y + 1+ 6y)
z(x+ 1)(x+ 2)y (y + 1)(y+ 2)

where x= b~& y Sg,fs hx= hb~, and Ay = Db&ef.

WQ ~, Ax,y, hy, S) or W x~(Q;x, b,x,y, Qy, $)

L
Lt

0

-1
1

1

0
-2
-2
-2

0

0
-1

1
-1

1

0
-2

0
2

—2

2
—2

0
2

1
-U[(T+ 2) (T —2$+ 1)] ~2

-U[(T -x) (T -y+1)] I'
U[(T-y)(T -x+1)]~2

-U[(T+ 1)(T —2$)] 12

1

V[(T+ 2)(T+ 3)(T—2S+1)(T—2$+ 2)] ~2

V [2(T + 2) (T —2$+ 1)(T —x) (T —y + 1)] "
V[(T —x —1)(T-x)(T—y+ 1)(T-y+ 2)]

—V[2 (T+ 2)(T —2S+ 1)(T—x+ 1) (T -y)]
—

2V [2$(2S+ 2) -x(z+ 2) —y (y + 2) ]
V [2(T+ 1)(T —2S) (T —x) (T-y + 1)]
V[(T x+1)(T-x+2)(T-y -1)(T-y)]

—V[2(T+ 1)(T —2$) (T —x+ 1)(T-y) ]
V[T(T+ 1)(T —2S —1)(T —2S) ]

distinct row table representation. This separation
of the full space into subspaces labeled by h-p for-
malism irreps may thus be regarded as a "natu-
ral" row splitting introduced by Brooks and Schae-
fer.' This separation will further depend on the
choice of the reference state

~ 4, ) or, equivalently,
on the partitioning of the orbital space into the
particle and hole subspaces. This is illustrated
in Tables VII(a)-VII(c), where we give the break-
down of the full CI space into the p-h subspaces
for the six-electronic case using different refer-
ence states. The actual dimensions are listed for
the two choices of the orbital space which corre-
spond to the minimum and double zeta basis sets.
We also list for each subproblem the maximal
number of independent spin states, i.e., the maxi-
mal number of states having the same orbital oc-
cupation numbers. These numbers indicate a dis-
tribution of independent spin states over the p-h
subproblems and their sum for the subproblems
associated with the same excitation level must
equal the maximal number of independent spin
states for each excitation type, as given by the
Young-Yamanouchi branching diagram (unless
some of them cannot be realized due to the limited
dimensionality of either particle or hole sub-
spaces). For example, in cases considered in
Table VII, we obtain three doubly excited triplets
and nine triply excited triplets in all cases con-
sidered, but their distribution into the individual
p-h subspaces is different in each case. This
feature should be beneficial, for example, in the

implementation of a truncation scheme proposed
by Lucchese and Schaefer. "

Let us also mention the possibility of choosing
the reference state with m doubly occupied orbi-
tals, where ~ equals the number of orbitals in the
so-called active space. Then a zero excitation
level subproblem will correspond to a full CI with-
in the active space and one can limit appropriately
the excitation level for the remaining subspaces
(say, to the doubly excited states).

The h-p formalism, as developed in this and the
preceding paper I, represents in fact a spin-
adapted formulation of the usual h-p diagrammatic
formalism, and may thus be employed in various
problems in which the total particle number is
conserved. Thus it may be directly used in the
shell-model or CI calculations discussed above,
in the coupled-cluster approach (note that the or-
thogonally spin-adapted formulation of this ap-
proach" exploits in fact the h-p YK or GT states
used here, the only difference being in the phase
convention used), or in calculations of p-h propa-
gators. However, if we wish to have complete
flexibility of the general h-p formalism, we must
relax the condition of the total particle number
conservation, so that we can also treat various
electron attachment and detachment processes.
This relaxation can be considered either in the p
formalism or in the p-h formalism. Any operator
relating the states with different particle numbers
cannot, of course, be represented through U(n)
generators and must be considered as a proper
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TABLE VG. I'rrep labels, their excitation levels, and maximal multiplicities for fixed
spatial occupations and dimensions for the case N =6 and S=0 or 1.

Irrep

(a) No =2, n" =2, n'=4 g =6), andn =10 (n =12)
Excitation Maximal Dimension

level multiplicity n'=4 tn =6) n'=10 g =12)

{1000}
{1110}
{20101}
{121so}
{21111}
{solo2}

{os
{12
{2O
{as
{04
{21
{as
{22

10}
oa}
20}
2O}
2O}
11}
11}
O2}

{o21oo}
{11110j

1
2

2
5

10
10

Total dimension:

1
23
1
3
2

10 18
8

18

Total dimension:

10
40
60
15
40
10

175

6
40

8
45
20
15
1

40.
8
6

189

55
660

2 475
990

6 600
4 950

15 730

45
660
240

2 970
825
990
210

6 600
3 696
6 930

23 166

(b)NO 0 n =3, n' =3 g =6), andn'=9 (n =12)

Irrep Excitation
level

Maximal
multiplicity

Dimension
n'=3 (n =6) n'=9 (n =12)

{oo
{01
{10
{O2
{aa
{os
{2O
{12
{21
{so

oo}
10}
01}
2O}
11}
so}
02}
21}
a2}
os}

1
1
1
1
4
1

13
9

25
25

Total dimension:

1
9

36
9

64
1

36
9
9
1

175

1
27

270
108

1 920
84

3 240
1 890
5 670
2 520

15 730

{aa
{11
{os
{os
{2O

{o4
{21
{12

11}
soj
11}
so}
21}
O2}
21}
saj
12}
12}
os}

{oa lo}
{1020}
{o2 2o}
{o21oa}

4

29
2
1
6'
011„
95"

25
20
45

Total dimension:

9
18

9
18
64

8
8
1

18
18

9
0
9
0
0

189

27
135
108
216

1 920
240
672

84
1 620
3 780
1 890

378
5 670
3 024
3 402

23 166
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TABLE VII. (Continued)

Irrep

(c) No -—-2, n =4, n'=2 (n =6), andn'=8 (n =12).
Excitation Maximal Dimension

level multiplicity n' =2 g =6) n' =8 g =12)

{oo
{oi
{io
{Os

{2O
{12
{21

01}
[11}
los}

12}
si}
os}
22}
is)

{so[o4}

{00[20}
{01(11}
{01[20}
{10[21}
{02[02}
{02)21}
{02[40}
{ii/12}
{11[21}
{os[12}
{osIsi}
{2O[22}
{12(os}
{12[22}
{O4 22}
{21is}
{is is}
{22[04}

1
2
2

5

14

10
27
70
70

Total dimension:

1
2
1-3
3

29
3
1

10

'27
5
4

18
15

69
27

9

126
70

126

Total dimension:

10
40
60
15
40

0
10

0
0
0

175

6
40

8
45
20
15
1

40
8
0
0
6
0
0
0
0
0
0

189

10
160
720
420

3 360
224

3 360
2 268
4 032
1 176

15 730

6
160

32
540
560
420

28
3 360

672
1 120

224
2 016
3 780
2 268

420
4 032
2 016
1 512

23 166

tensor operator, as in fact, is the case of the p-h
excitation operators within the hole and particle
subspaces considered in this paper.

The particle number-nonconserving processes
of ionization and electron attachment, which can
be described by one-particle or one-hole propaga-
tors, were very recently studied by Shavitt and
Born" within the p formalism. These authors
showed how the U(n) tensor-operator formalism
can be translated into the ABC tableaux or Shavitt-
graph formalism and used in the evaluation of one-
electron propagators. The key problem in these
applications is an evaluation of matrix elements of
various tensor operators, in particular, of the
matrix elements of single creation or annihilation
operators. This is equivalent to the problem of
calculating one-electron coefficients of fractional
parentage (CFP) in the U(n) or YK coupling
scheme.

We would like to note how this problem and its
generalization can be treated by the graphical

methods of spin algebras, which were exploited
in this and preceding" studies. In the p formal-
ism, the desired matrix elements of a spin-
adapted single creation or a single annihilation
operator will be characterized by the spin graphs
shown in Figs. 12(a) or 12(b), respectively. The
irreps involved must clearly differ in one box in
the first or the second column of their Young pat-
terns. We also see immediately from the spin
graphs of Figs. 12(a) or 12(b), that all the seg-
ment types needed in this case are identical with
those needed in the single generat'or case, and
that the range involved in the evaluation of a spin-
adapted particle creation or annihilation operator
for the ith orbital level is i ~r~ g, in agreement
with the findings of Shavitt and Born."

These results may also be easily generalized to
the case of two-particle or two-hole propagators,
in which case the matrix elements of spin-adapted
products of two creation or of two annihilation op-
erators will be needed. Again, the same segments
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FIG. 12. Schematic resulting spin diagram for matrix

elements of particle number-nonconserving operators.
Diagrams (a) and (b) represent the resulting spin dia-
grams for a single spin-adapted (or reduced) creation
and annihilation operators, respectively, in the p forma-
lism or, equivalently, for the one particle CFP's. Cor-
respondingly, single hole (c), (d), and single particle
(e) and (f) creation and annihilation operator resulting
spin diagrams are obtained in the h-p formalism. The
relationship between a particle and hole annihilation
operator product (g) and our p-h lowering generator (h);
fcf. also, diagram (f) of Fig. .8], follows easQy using the
graphical orthogonality rule for the crossed lines (cf. ,
eg. , Fig. 5 of Ref. 34). Finally, diagram (i) corre-
s~nds to the 1-p-2-h propagator case. See the text for
more details.

as in the two-generator p-formalism case will be
needed for the gth-level segment, which would be
associated with a, simple 6j coefficient

8S~ —,'S

where X= 0, 1 and S= S or S*1.
We should also note that the h-p formalism as

described here and in I can be generalized in the
same way. Thus, the matrix elements involving
a single particle or a single hole creation or an-
nihilation will be given by diagrams shown sche-
matically in Figs. 12(c)-12(f). Similar diagrams
will result for more complex processes. For ex-
ample, the evaluation of a 1-p-2-h propagator
will require matrix elements of the type shown in
Fig. 12(i). In fact, the 1-p-1-h or 2-n-2-h type
tensor operators, considered in this paper, are
simply related to these more general operators.
Combining, for example, the processes charac-
terized by diagrams (c) and (f) of Fig. 12, we ob-
tain the diagram (g) of Fig. 12, which is clearly
equivalent to the diagram (h} of Fig. 12 considered
here (for the orthogonality rule for crossing lines
see, e.g. , Fig. 5 of Ref. 34}. We find that in all
the cases just mentioned we will only need the
segment types derived earlier in the p formalism"
exceot for the link segments. However, these are
again given through simple 6j or 9j coefficients.

Finally, another useful extension of the h-p for-
malism developed here and in I would be obtained
if the orbital space was partitioned into two or
more subspaces, each spanned by orbitals charac-
terizing a certain part of the system considered
(cf. Refs. 35 and 36). In this case it would be
convenient to consider the basis of U(n} subduced
to U(k, )3U(k, )SI 3 U(k ), where n= k, + k2+
+ k (m ~ 2}. Such a formalism would enable a
spin-adapted formulation of the group orbital
method of McWeeny" as recently suggested by
Wormer 38
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