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Rotational correlation functions for asymmetric-top molecules in extended-diffusion models
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A new method for calculating vectorial correlation functions of extended-diffusion models is presented. It
permits one to treat rotations of asymmetric-top molecules in liquids much more efficiently than by

applying the methods which have already been published.

I. INTRODUCTION

Vectorial correlation functions for asymmetric-
top molecules in the liquid state have recently
been analyzed in much detail. '-' They have been
determined by calculating the free- rotor correla-
tion functions and by building them into the J or
M extended-diffusion models. 4 The results are
only available in numerical form; in general, the

computing time turns out to be relatively long.
The purpose of the present paper is to give a

new and much more efficient method for calculat-
ing these functions. In the symmetric-top limit,
the St. Pierre and Steele results' are immediately
rede rived.

II. FREE-ROTOR LIMIT

A. Symmetry considerations

The rotational correlation functions G(t) con-
sidered here are of the form (u(0) '

u(t)& where

Q(t) is a unit vector fixed in a molecule and rotat-
ing with it. In what follows, the molecular frame
OKYZ is always assumed to be oriented in such a
way that the inertia tensor I of the molecule is
diagonalized (Ig & I„~Iz) Then, usi.ng symmetry
arguments, G(t} can be shown to take the following
form'.

G(t) =u„'(0) (R„(t})+ u'„(0)&R „(t)&

+ ugz (0)&Rg g (t)&,

where the matrix R(t) relates the vector u(0) to
u(t).

In this molecular frame, four regions may be
defined according to the orientation of the angular
momentum J(t) of the rotor. In the first and second
regions, J(t) rotates around the Z axis [Jz(t))0
for region I and jz(t) &0 for region II].. In the third
and fourth regions, J(t) rotates around the X axis
[J„(t)& 0 for region III and J„(t)& 0 for region IV].
Using a set of three variables denoted by J, 8,
and y, (Ref. I) the averaging operation can be
expressed in each region separately. In addition,

the integration over the regions I and II can be
replaced by the integration over the region I; sim-
ilarly, the integration over the regions III and IV
can be replaced by that over region III. If N

designates the region I or the region III, respec-
tively, one has:

A~ = (2kz T) (cos'8/fz+ sin' 8I/ g);

Az« —(2)tz T) '(cosg8/fr+ si n' 8I/ z),

(2b)

(2c}

where K is the complete elliptic integral of the
first kind' with the modulus k. The values of k,
dnia, and 8„are given in Ref. 1 for each of these
regions.

In the following, R,",'(t) denotes the expression
of R«(t) for the region I.' With this notation, G(t)
finally takes the form

G(t) =2Q '(u'(0)[&R '(t)& +&R"'(t)&„,]
+ '(0)[&WV(t)& +&RP)(t)&„,1

+us(0)[&Rzuz(t)&i+ &Rguz(t)&iiilj, (»)
Q = (2ztgzT)'"(Ixfrlz}'". (2b)

B. Integration over the variables y, 8, J
According to Eq. (2}, the determination of

&R,",'(t)&„requires integrations over p, 8, and J'.
Only the average over y was analytical in Refs.
1 and 2 and the integrals over J and 8 were cal-
culated numerically. The novelty here is that the
integration over J is also analytical. The average
over y is determined by'

4E
dyR, '. ]' t, y =4KA,",' ],

D

where the dependence of R«(t) on cp is explicitly
stated by putting R«(t) =R«(t, y). The e—lements
A,",'(t) satisfy the relation,

(4)

NN
~

&Rq, (t))„=dnta„sin&d8 j) J'dJ exp(-AzJ'}
0 0

4K
x dpR, , t, 2a

0
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AI', &(t) = [RI',&(t, O}Z(K —mt)

+R~& ~(t, K)Z(mt}]/[Z(mt)+ Z(K m-t)], (5)

where Z(u} is the Jacobi Zeta function. ' The value

of m entering into (AI", (t}&, and (Aea, '(t}&«, is given

by Eqs. (2d) and (Ald) of Ref. 1, respectively.
The next problem is to integrate over J. Equa-

tion (5} can be expanded in series' of q = exp(-vK'/

K) where K' is the complete elliptic integral with

the complementary modulus k' = (1 —k')' '. One

obtains

Ar'~r'(t) =g [e}x~C~„'+t((-I)"a)g(2ee+1, (-I)"x,t)+ rtr, C ~,~',((-I}""a}g(2ee+1, (-I}""X,I)
n~0

+ q»C„".,(0)g(2m+ I, O, I)],

A~&!(t)=g {q rC ~~,,((-l)a) g(2m+ 1, (-I)A., t)+e}reCe'„"„((-1) 'a}g(2n+ 1, (-lp"X, t)
, n~o

+ e}»C,'„,', (0}g(2n+ 1,0, t)),

(6a)

(6b}

A"'(t) = e},C ' '(a)g(0, X, t}+rt, C,"(0)

+P {rts, [C& '(a)~g(4n, X, t)+ C~'( a}g(-4ee, -X, t)]

+ps [C~~,(a}g(4n —2, X, t)+ C~~'e( a)g(4n-—2, -X, t)]+ rtseCe„'~(0)g(4et, &, t)

+ e},sC,'„'( 0) g(4n, o, t}). (6c)

The coefficients p,„and C„"' depend only on the

variable e. Their expressions are detailed in

Appendix A. In particular, it appears that the

leading powers of the expansions of C~ g
C4'„',

and C4'„', are respectively q, q'", and q
" '.

Thus, the expansion of A p&'(t) in Eqs. [(6a)-(6c)]
is rapidly converging. On the other hand,

g(n, X, t) = 2 cos(p„Jt),

p,„=(nvm/2K+ X)/J,

(Va)

(Vb)

where X is given by Eqs. (3d) and (A2d) of Ref. 1.
Notice that p.„ is independent of J. The integration

over J of A",,'(t} is obtained by using Eqs. [(6a)-
(6c)] and the analytical expression of (g(ee, X, t)&»
given in Appendix B, with

C. Discussion

The following comments can be made on the
series expansion of A,",'(t): (i) The series [(6a)-
(6c)] have the advantage of converging very rapid-

ly. ' Thus the desired accuracy is most often ob-
tained by truncating the series after the terms in

q; the errors in G(t) are then of the order 10
(ii) It is often useful to have I(&u), the Fourier
transform of G(t). I(a&) is obtained, as G(t}, from
Eqs. [(1), (4), and (6a)-(6c}]with the value of

(g(n, X, t))~„=- j J'dJ exp(-A~)g(ee, x, t). (8)
I

Finally, the average on 8 over the first and third

regions still remains numerical.

(g(n, X, ~)&z„given in Appendix B. The calculation
of I(ru) then involves only one numerical integra-
tion, that over 8. (iii) The term e}sC,"( )0of Eq.
(6c) gives the asymptotic behavior of G(t) and the

Q branch of I(&o). (iv} The symmetric top limit

(Ir ——Ir or Ir = Is) of G(t} can be examined as a
check. In this limit q tends to zero and exp(+a) to

(1+cos8)/sin8). The St. Pierre and Steele ex-
pressions'e of G(t} are then directly deducible

from Eqs. [(6a)-(6c)] and from the symmetric-top
limit of (g(n, X, t)&~„.

{R„(s+r'))
(s+r ')&] '

(Re i(s+ & ')&e

[i-' '&e„( + '))..]&.
'

where R(s+ r '} is the Laplace transform of R(t)
calculated in the precedent section, 7 is the mean

(9a}

(9b)

IH. JANDN MODELS

The J and M models are often used to describe
rotational motions in liquids. 4 These models have

been recently generalized to the study of the asym-
metric-top molecuies. ' Here R~(t} and R„(t) de-

signate the H matrix calculated, respectively, in

the J and M models. It can be easily seen that

the correlation function is similar to that given

in Eq. (1}; it is sufficient to replace R(t) by Q (t)
or R„(t). The matrix elements (R~«(t)& or (R„«(t))
are obtainable from their Laplace transforms de-
noted by (R«, (s)) or (R„«(s)&. One has'
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N()R = dnia, sin&dHK exp(-A, J')

NI II
+dniaz„sin&dHK exp(-A, z,d'),

0
(lob)

(R)d =8Q-' J dJNR R.
0

(10c)

In the J model, (Rd, ,(s)} is calculated in the fol-
lowing way.

(i) The average over q) of R«(s+ v-') is deter-
mined analytically by means of Eq. (4),

(ii) The analytical integration over J of
A„.(s+ v '} is obtained by using Eqs. [(6a}-(6c)]
and the expression of (q(n, I)., s))~ „given in Ap-
pendix B,

(iii) The' average over 8 in the first and third
regions is calculated numerically. For the M
model, (i) (R«(s+ v-')), is obtained as before, (ii)
A, ,(s+ ~-') is expressed on the basis of the
g(n, )(, s) given in Appendix B, (iii) the integral
over 8 is calculated numerically and (iv) the aver-
age over J in the Eq. (9b) is also determined by
applying numerical methods. Finally, the rota-
tion matrix (R(t)) is the Fourier transform of
Re(R(s))/w.

IV. CONCLUSION

Before averaging over J or determining the La-
place or Fourier transforms, the expressions de-
scribed by Eqs. [(6a)-(6c)] appear as rapidly
varying oscillatory functions. Thus nume rical
integration on these expressions takes much
computer time if good accuracy is required. The
analytical solutions given in this paper furnish
a much more efficient method; the computation
time is divided by a factor of order 10' for the
same accuracy. The result is a Fortran program
giving (i) the correlation function in the free-rotor
limit, (ii) the Fourier transform in the same lim-
it, (iii) correlation functions and (iv} their Fourier
transform in the J or M extended-diffusion models.
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APPENDIX A
This appendix contains the factors g„, and the

functions C„"' appearing in Eqs. [(6a)-(6c)]. In

collision time, and

(R)„=N,(deil sin&dSK exp(-A, d')R

parr
~ dn s„, Jl s'npdPKexn(-A„, d')R),

0

(10a)

the following, p designates the value of 1-3q' —q'
+8q" + and u the value of cosa:

~Y2

(I -u)q'~'e, /2pH, (ia),

(1+u)q'~ e,/2PH, (ia),

(1 uR)q~~4(ks/k)'~ /RP

(1 —k'u)q' ~de/2PH, (ia),

(1+k'u)q' e/2PH, (ia),

(1 u'—)q' dn'ia/k' P

))Iz, = (1 —u')' ~ (dnia+ 1)H,/2PH, (ia),

)7z, = (1 —u')' '(dnia —1)H,/2pH, (ia),

q„=uR(I —k )k""P
q„=u'(I+ k )k""/P

Below, C„"' functions are given in q series up to
the terms in q'

C,"'(2Kv/w) = 1+q'[1 a 4 cosh(2v)],

C,"'(2Kv/w) =e "+q'(e "+q'e'")

+2q'[(I+2q')e" +q'e '"],
C,"'(2Kv/w) =qe ~+2q' cosh(2v)

+2qR[l+q (2+e R")],

C,"'(2Kv/w) =q'e '"+q'(e" +q'e '")

+2q'(I+2q')e ',
C,"'(2Kv/w) =q'(1+e~")+ 2q'e '"

C,"'(2Kv/w) =q'(e-"+ q'e '")

+2q'(e '"+q'e"),

CR(')(2Kv/w) qse-Rp+2q (1+e "),

C,"'(2Kv/w) =q'e 'p+ 2q'e ".

APPENDIX B

This Appendix contains miscellaneous integrals
including the functions g(n, &, t). For notation,
see the text.

(g(n, ~, t}),„=2-'w't'A-„'~'(I —p,„'tR/2A„)

x exp(- I(,„'t'/4A»),

(g (n, ~, ~}&z,» =
~ V. ~

'~'exp( A»~'/u„'), -
g(n, I)., s) =(s+iV.„J) '+(s —it(.„J) ',
(g(n, X, s)), =w"'A-"'s/p'-w

i
t(,„i 's'

x exp(A„s'/p„')

x[1—erf(A'„'s/I p l)]

where erf(z) is the error function: erf(z) =2w ' 'f,
x exp(-t')dt. Pade approximants are very useful
in calculating this function. "
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