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A new method for calculating vectorial correlation functions of extended-diffusion models is presented. It
permits one to treat rotations of asymmetric-top molecules in liquids much more efficiently than by

applying the methods which have already been published.

I. INTRODUCTION

Vectorial correlation functions for asymmetric-
top molecules in the liquid state have recently
been analyzed in much detail.}-* They have been
determined by calculating the free-rotor correla-
tion functions and by building them into the J or
M extended-diffusion models.? The results are
only available in numerical form; in general, the
computing time turns out to be relatively long.

The purpose of the present paper is to give a
new and much more efficient method for calculat-
ing these functions. In the symmetric-top limit,
the St. Pierre and Steele results® are immediately
rederived.

II. FREE-ROTOR LIMIT
A. Symmetry considerations

The rotational correlation functions G(¢) con-
sidered here are of the form (ii(0) - &¢)) where
() is a unit vector fixed in a molecule and rotat-
ing with it. In what follows, the molecular frame
OXYZ is always assumed to be oriented in such a
way that the inertia tensor I of the molecule is
diagonalized (I, <Iy<I,). Then, using symmetry
arguments, G(¢) can be shown to take the following
form!: l

G(t) =u (0)(Ryx (t)) + uz (0XRyy (£))
+uzz(0)<Rzz(t» ) (1)

where the matrix R(¢) relates the vector {(0) to
a().

In this molecular frame, four regions may be
defined according to the orientation of the angular
momentum J(¢) of the rotor. In the first and second
regions, J(t) rotates around the Z axis [J,()>0
for region I and J,(¢) <0 for region IIl.. In the third
and fourth regions, J(¢) rotates around the X axis
[7x(#)> 0 for region III and Jx(¢) <0 for region IV].
Using a set of three variables denoted by J, 6,
and ¢, (Ref. 1) the averaging operation can be
expressed in each region separately. In addition,
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the integration over the regions I and II can be
replaced by the integration over the region I; sim-
ilarly, the integration over the regions III and IV
can be replaced by that over region III. If N
designates the region I or the region III, respec-
tively, one has:

] 00
(R, () y =dnia, f “" sinode f J2dJ exp(=AyJ?)
()

4K
x f doR,(1), (22)

Ay = (2k5T)(cos?0/1, + sin?6/Iy) ; (2b)
Aqgqp = (265 T) ™ (cos?60/Iy + sin?6/1,) (2¢)

where K is the complete elliptic integral of the
first kind® with the modulus k. The values of k&,
dnia, and 6, are given in Ref. 1 for each of these
regions.

In the following, R{}’(¢) denotes the expression
of R,,(t) for the region I.' With this notation, G(¢)
finally takes the form

G(t) = 2QHu; O(RE(N; +(RE(t) ]
+ 3 O) (R + (RE(D1r]
+u3(O)(REI); + (RGO}, (32)
Q = (2mkp TV 2Uxlylz)' /2, (3b)

B. Integration over the variables ¢, 6, J

According to Eq. (2), the determination of
(R{¥(¢))y requires integrations over ¢, 6, and J.
Only the average over ¢ was analytical in Refs.

1 and 2 and the integrals over J and 6 were cal-
culated numerically. The novelty here is that the
integration over J is also analytical. The average
over ¢ is determined by?

4K
[ aorp@ 0)=axa0), )
where the dependence of R,;(¢) on ¢ is explicitly
stated by putting R,;(#)=R;(¢, #). The elements

AL (¢) satisfy the relation,
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AL =[RP(t,0Z(K - m?)
+RO(t,K)Z(m))/[Z(mt)+ ZEK -m2)], (5)

where Z(u) is the Jacobi Zeta function.” The value
of m entering into (A &’()); and (A} (t)yy is given
]

by Egs. (2d) and (Ald) of Ref. 1, respectively.

The next problem is to integrate over J. Equa-
tion (5) can be expanded in series® of g = exp(-1K '/
K) where K’ is the complete elliptic integral with
the complementary modulus %’ = (1 - £*)*/2. One
obtains

AR = Z'o [NeCtl(=1ra)g(2n + 1, (1A, 1)+ Mg, CL (=11 a)g(2n + 1, (=1)*'2, 1)

+ 77X3C;;31(0)g(2n +1,0,1)],

AR = Iy, Cell(=1ra)g (@n+ 1, (<10, 1) +1y,C

n=0

+ T’Y:icé;a)»l (O)g(zn + 1: 0, t)} ’

A2D)=17,C{(@)g(0, %, 1) +17,C5”(0)

(6a)

Znu((-l)m"a)g(Zn.p 1, (=1)»1, £)

(6b)

+2 5 [CENa)gan, A, 1)+ C5 (~a)glén, =X, 1)]
n=1

+M2,[C5 ) (a)gldn -2, 1, 1) + Lo (—a)gdn -2, =, £)]+02,C5(0)g(4n, 1, 1)

+17,C4(0)g(4n, 0, t)}.

The coefficients 7,, and C{*’ depend only on the
variable 6. Their expressions are detailed in
Appendix A. In particular, it appears that the
leading powers of the expansions of C%),, C.’,
and C{’, are respectively ¢*, ¢*"**, and q*"s.
Thus, the expansion of A{}(?) in Egs. [(6a)-(6¢)]
is rapidly converging. On the other hand,

gln, 2, t)=2cos(pJt), (7a)
W, = (nrm/2K +2)/J , (7p)

where ) is given by Eqs. (3d) and (A2d) of Ref. 1.
Notice that p, is independent of J. The integration
over J of A{"(¢) is obtained by using Eqs. [(62)-
(6¢)] and the analytical expression of { g(n, X, t);y
given in Appendix B, with

gl o= [ " 72 expl(- ATl 7, ). (8)

Finally, the average on 6 over the first and third
regions still remains numerical.

C. Discussion

The following comments can be made on the
series expansion of A%’(¢): (i) The series [(6a)-
(6¢)] have the advantage of converging very rapid-
ly.® Thus the desired accuracy is most often ob-
tained by truncating the series after the terms in
q"; the errors in G(¢) are then of the order 10,
(ii) It is often useful to have I(w), the Fourier
transform of G(t). I(w) is obtained, as G(¢), from
Eqgs. [(1), (4), and (6a)—-(6c)] with the value of

(6c)

{gn, 1, w),;y given in Appendix B. The calculation
of I(w) then involves only one numerical integra-
tion, that over 6. (iii) The term 7,,C{*)(0) of Eq.
(6¢) gives the asymptotic behavior of G(t) and the
Q branch of I(w). (iv) The symmetric top limit

(Iy =1y or Iy =1;) of G(#) can be examined as a
check. In this limit ¢ tends to zero and exp(ta) to
(1+ cos6)/sinf). The St. Pierre and Steele ex-
pressions!® of G(¢) are then directly deducible
from Eqs. [(6a)-(6c)] and from the symmetric-top
limit of {(gln, X, £))s5-

III. J AND M MODELS

The J and M models are often used to describe
rotational motions in liquids.* These models have
been recently generalized to the study of the asym-
metric-top molecules.? Here R, (f) and R,(t) de-
signate the R matrix calculated, respectively, in
the J and M models. It can be easily seen that
the correlation function is similar to that given
in Eq. (1); it is sufficient to replace R(¢) by R (¢)
or Ry(f). The matrix elements (R, (t)) or (Ry,(¢))
are obtainable from their Laplace transforms de-
noted by (R, ,,(s)) or (R,,(s). One has?

Rigls +771)

(ié]“(s» =r1_T-1(R'“(s+T-l»] 9 (93.)
- B (Ryi(s +T Ve
<R”“(s» ~<[1 - T':Zﬁu(s + Ttl»oc] e (9b)

where R(s+ 7 ") is the Laplace transform of R(#)
calculated in the precedent section, 7 is the mean
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collision time, and

(RYpy =N} Gim'al [ ! sin6d6K exp(- A;J?)R

OM111
+dniaygy f sinfd 6K exp(—Asz)R> ,
0
(10a)

61
Ny, =dnia; _{ sin6 d6K exp(— A[J?)
MIIIL
+dniag, r sinbd6K exp(— A J?), (10b)
0

(R);=8Q"! f J?dJ Ny, R . (10c¢)
0

In the J model, (R,,;(s)) is calculated in the fol-
lowing way. -

(i) The average over ¢ of R (s+7) is deter-
mined analytically by means of Eq. (4),

(ii) The analytical integration over J of
A, (s +7) is obtained by using Eqs. [(6a)-(6c)]
and the expression of (Z(n, A, s));, y given in Ap-
pendix B,

(iii) The average over 6 in the first and third
regions is calculated numerically. For the M
model, (i) (R,,(s+7)), is obtained as before, (ii)
A, (s+7) is expressed on the basis of the
g, 2, s) given in Appendix B, (iii) the integral
over 6 is calculated numerically and (iv) the aver-
age over J in the Eq. (9b) is also determined by
applying numerical methods. Finally, the rota-
tion matrix (R(¢)) is the Fourier transform of

Re(R(s)) /7.

IV. CONCLUSION

Before averaging over J or determining the La-
place or Fourier transforms, the expressions de-
scribed by Eqgs. [(6a)-(6c)] appear as rapidly
varying oscillatory functions. Thus numerical
integration on these expressions takes much
computer time if good accuracy is required. The
analytical solutions given in this paper furnish
a much more efficient method; the computation
time is divided by a factor of order 10° for the
same accuracy. The result is a Fortran program
giving (i) the correlation function in the free-rotor
limit, (ii) the Fourier transform in the same lim-
it, (iii) correlation functions and (iv) their Fourier
transform in the J or M extended-diffusion models.
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APPENDIX A
This appendix contains the factors My; and the
functions C{*’ appearing in Eqs. [(6a)—(6c)]. In

the following, B designates the value of 1 —34* - ¢°
+84'+- -+ and u the value of cosé:

My, = (1 —u)g*/%0,/28H, (ia)

Nxe = (1+u)q*/4©,/28H, (ia)

Nxs = (L=u?)g* *(' /R)/2/8,

Ny, = (1 - Pu)g*/*©/2pH, (ia)
Nyo=(L+F u)g*/*0/2pH, (ia),

Nyq= (1 = u?)g* *dn’ia/k* 28,

Nz, = (1 =u?)*'*(dnia+ 1)H,/2pH ,(ia)
Nzo= (1 =)/ *(dnia - 1)H,/2pH, (ia)
Nzs=u2(l =k k'*/2B,

Nzg=u?(L+ ke /2/B.

Below, C{*’ functions are given in ¢ series up to
the terms in q”

C¥(2Kv/m)=1+q"[1+ 4 cosh(2v)],

Ci¥@Kv/m)=e™ +q*(e™" +q%*)
£2q7(1+2¢%)e” +q%],

C3'(2Kv/m) =qe™* + 2¢° cosh(2v)
£2¢91+¢*@+e™)],

C¥ (2Kv /1) =q%% +q*(e’ +q%%)
+2q3(1 +2g%e™",

CH QKv/1)=q*(1+e™1%) £ 2¢%e 2",

C¥ @Kv/1) =q*(e"* +q%?)
+2¢%(e"** +q%"),

C¥ (2Kv /1) =q%e 2+ 2¢7(1 + &™),

C;*)(sz/w) =?16e-3v¢ 2g7e"".

APPENDIX B

This Appendix contains miscellaneous integrals
including the functions gz, 2, ). For notation,
see the text.

(g, N, )5,y =201 2053 2(1 - p2t2/2A,)
. X exp(-pit?/4A,),
(gln,, "-’».r,N = | Ky | “w?exp(-Ayw?/pl),
Zh,,s)=(s+ip,d) + (s —ip,J)?,
(2 ) g, = G s /2= |, s
x exp(Ays?/u2)
x[1-erf(AY?s/|p, ],

where erf(z) is the error function: erf(z)=21r;1/2f
X exp(—t?)dt. Padé approximants are very useful
in calculating this function.!!

z
]
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