Rotational correlation functions for asymmetric-top molecules in extended-diffusion models

J-Cl. Leicknam

Laboratoire de Physique Théorique des Liquides,* Université Pierre et Marie Curie, Tour 16, 4 place Jussieu, 75230 Paris, Cedex 05, France

(Received 7 February 1980)

A new method for calculating vectorial correlation functions of extended-diffusion models is presented. It permits one to treat rotations of asymmetric-top molecules in liquids much more efficiently than by applying the methods which have already been published.

I. INTRODUCTION

Vectorial correlation functions for asymmetrictop molecules in the liquid state have recently been analyzed in much detail.¹⁻³ They have been determined by calculating the free- rotor correlation functions and by building them into the J or M extended-diffusion models.⁴ The results are only available in numerical form; in general, the computing time turns out to be relatively long.

The purpose of the present paper is to give a new and much more efficient method for calculating these functions. In the symmetric-top limit, the St. Pierre and Steele results⁵ are immediately rederived.

II. FREE-ROTOR LIMIT

A. Symmetry considerations

The rotational correlation functions $G(t)$ considered here are of the form $\langle \mathbf{\vec{u}}(0) \cdot \mathbf{\vec{u}}(t) \rangle$ where $\mathbf{\vec{u}}(t)$ is a unit vector fixed in a molecule and rotating with it. In what follows, the molecular frame OKYZ is always assumed to be oriented in such a way that the inertia tensor I of the molecule is diagonalized $(I_x \leq I_y \leq I_z)$. Then, using symmetry arguments, $G(t)$ can be shown to take the following form'.

$$
G(t) = uX2(0) \langle R_{XX}(t) \rangle + uY2(0) \langle R_{YY}(t) \rangle + uZ2(0) \langle R_{ZZ}(t) \rangle ,
$$
 (1)

where the matrix $\bar{R}(t)$ relates the vector $\bar{u}(0)$ to $\mathbf{\vec{u}}(t)$.

In this molecular frame, four regions may be defined according to the orientation of the angular momentum $\mathbf{\bar{J}}(t)$ of the rotor. In the first and second regions, $\mathbf{\bar{J}}(t)$ rotates around the Z axis $[J_{\mathbf{z}}(t)>0]$ for region I and $J_z(t)$ < 0 for region II]. In the third and fourth regions, $\tilde{J}(t)$ rotates around the X axis $[J_X(t) > 0$ for region III and $J_X(t) < 0$ for region IV]. Using a set of three variables denoted by J , θ , and φ , (Ref. 1) the averaging operation can be expressed in each region separately. In addition,

the integration over the regions I and II can be replaced by the integration over the region I; similarly, the integration over the regions III and IV can be replaced by that over region III. If N designates the region I or the region III, respectively, one has:

$$
\langle R_{ii}(t) \rangle_N = dni a_N \int_0^{\theta_{MN}} \sin \theta d\theta \int_0^{\infty} J^2 dJ \exp(-\Lambda_N J^2)
$$

$$
\times \int_0^{4K} d\varphi R_{ii}(t), \quad (2a)
$$

$$
\Lambda_{I} = (2k_B T)^{-1} (\cos^2 \theta / I_z + \sin^2 \theta / I_x); \tag{2b}
$$

$$
\Lambda_{\text{III}} = (2k_B T)^{-1} (\cos^2 \theta / I_x + \sin^2 \theta / I_z), \qquad (2c)
$$

where K is the complete elliptic integral of the first kind⁶ with the modulus k. The values of k , *dnia*, and θ_{μ} are given in Ref. 1 for each of these regions.

In the following, $R_{ii}^{(1)}(t)$ denotes the expression of $R_{ii}(t)$ for the region I.¹ With this notation, $G(t)$ finally takes the form

$$
G(t) = 2Q^{-1}\{u_X^2(0)[\langle R_X^{\alpha}Y(t)\rangle_I + \langle R_Z^{\alpha}Y(t)\rangle_{II1}]\n+ u_Y^2(0)[\langle R_Y^{\alpha}Y(t)\rangle_I + \langle R_Y^{\alpha}Y(t)\rangle_{II1}]\n+ u_Z^2(0)[\langle R_Z^{\alpha}Y(t)\rangle_I + \langle R_X^{\alpha}Y(t)\rangle_{III}]\}, \quad (3a)
$$

$$
Q = (2\pi k_B T)^{3/2} (I_X I_Y I_Z)^{1/2}.
$$
 (3b)

B. Integration over the variables φ , θ , J

According to Eq. (2}, the determination of $\langle R_{ii}^{(1)}(t) \rangle_{N}$ requires integrations over φ , θ , and J. Only the average over φ was analytical in Refs. 1 and 2 and the integrals over J and θ were calculated numerically. The novelty here is that the integration over J is also analytical. The average over φ is determined by¹

$$
\int_0^{4K} d\varphi R_{ii}^{(1)}(t, \varphi) = 4KA_{ii}^{(1)}(t), \qquad (4)
$$

where the dependence of $R_{ii}(t)$ on φ is explicitly stated by putting $R_{ii}(t) = R_{ii}(t, \varphi)$. The elements $A_{ii}^{(I)}(t)$ satisfy the relation,

$$
2\quad
$$

22 2286

$$
A_{ii}^{(1)}(t) = [R_{ii}^{(1)}(t, 0)Z(K - mt)]
$$

$$
+R_{ii}^{(1)}(t,K)Z(mt)\big|/[Z(mt)+Z(K-mt)],\quad (5)
$$

where $Z(u)$ is the Jacobi Zeta function.⁷ The value of *m* entering into $\langle A_{ii}^{(1)}(t) \rangle$ _I and $\langle A_{ii}^{(1)}(t) \rangle$ _{III} is given

by Eqs. (2d) and (Ald) of Ref. 1, respectively. The next problem is to integrate over J. Equation (5) can be expanded in series⁸ of $q = \exp(-\pi K)$ K) where K' is the complete elliptic integral with the complementary modulus $k' = (1 - k^2)^{1/2}$. One obtains

$$
A_{XX}^{(1)}(t) = \sum_{n=0}^{\infty} \left[\eta_{X1} C_{2n+1}^{(-1)^n} ((-1)^n a) g(2n+1, (-1)^n \lambda, t) + \eta_{X2} C_{2n+1}^{(-1)^{n+1} a} g(2n+1, (-1)^{n+1} \lambda, t) \right]
$$
\n
$$
+ \eta_{X3} C_{2n+1}^{(+)}(0) g(2n+1, 0, t) \Big],
$$
\n
$$
A_{YY}^{(1)}(t) = \sum_{n=0}^{\infty} \left\{ \eta_{Y1} C_{2n+1}^{(+)}((-1)^n a) g(2n+1, (-1)^n \lambda, t) + \eta_{Y2} C_{2n+1}^{(+)}((-1)^{n+1} a) g(2n+1, (-1)^{n+1} \lambda, t) \right.\n+ \eta_{Y3} C_{2n+1}^{(-1)}(0) g(2n+1, 0, t) \right\},
$$
\n
$$
A_{ZZ}^{(1)}(t) = \eta_{Z1} C_0^{(-)}(a) g(0, \lambda, t) + \eta_{Z4} C_0^{(-)}(0)
$$
\n
$$
+ \sum_{n=1}^{\infty} \left\{ \eta_{Z1} \left[C_{4n}^{(-)}(a) g(4n, \lambda, t) + C_{4n}^{(-)}(-a) g(4n, -\lambda, t) \right] \right.\n+ \eta_{Z2} \left[C_{4n-2}^{(-)}(a) g(4n-2, \lambda, t) + C_{4n-2}^{(-)}(-a) g(4n-2, -\lambda, t) \right] + \eta_{Z3} C_{4n}^{(+)}(0) g(4n, \lambda, t) \right. \\
\left. + \eta_{Z4} C_{4n}^{(+)}(0) g(4n, 0, t) \right\}.
$$
\n(6c)

The coefficients η_{in} and $C_n^{(1)}$ depend only on the variable θ . Their expressions are detailed in Appendix A. In particular, it appears that the leading powers of the expansions of $C_{2n+1}^{(1)}$, $C_{4n}^{(4)}$, and $C_{4n-2}^{(4)}$ are respectively q^{2n} , q^{4n-4} , and q^{4n-3} . Thus, the expansion of $A_{ii}^{(1)}(t)$ in Eqs. [(6a)-(6c)] is rapidly converging. On the other hand,

$$
g(n,\lambda,t)=2\cos(\mu_n Jt)\,,\qquad (7a)
$$

$$
\mu_n = (n\pi m/2K + \lambda)/J\,,\tag{7b}
$$

where λ is given by Eqs. (3d) and (A2d) of Ref. 1. Notice that μ_n is independent of J. The integration over J of $A_{ii}^{(1)}(t)$ is obtained by using Eqs. $[(6a)$ -(6c)] and the analytical expression of $\langle g(n, \lambda, t) \rangle_{JN}$ given in Appendix B, with

$$
\langle g(n,\lambda,t)\rangle_{JN}\equiv\int_0^\infty J^2dJ\exp(-\Lambda_NJ^2)g(n,\lambda,t). \quad (8)
$$

Finally, the average on θ over the first and third regions still remains numerical.

C. Discussion

The following comments can be made on the series expansion of $A_{ij}^{(1)}(t)$: (i) The series $(6a)$ -(6c)] have the advantage of converging very rapidly.⁹ Thus the desired accuracy is most often obtained by truncating the series after the terms in q^7 ; the errors in $G(t)$ are then of the order 10⁻⁶. (ii) It is often useful to have $I(\omega)$, the Fourier transform of $G(t)$. I(ω) is obtained, as $G(t)$, from Eqs. $[(1), (4),$ and $(6a)-(6c)]$ with the value of

 $(g(n, \lambda, \omega))_{JN}$ given in Appendix B. The calculation of $I(\omega)$ then involves only one numerical integration, that over θ . (iii) The term $\eta_{z_4}C_0^{(+)}(0)$ of Eq. (6c) gives the asymptotic behavior of $G(t)$ and the Q branch of I(ω). (iv) The symmetric top limit $(I_x = I_y$ or $I_y = I_z)$ of $G(t)$ can be examined as a check. In this limit q tends to zero and $exp(±a)$ to $(1\pm\cos\theta)/\sin\theta$. The St. Pierre and Steele expressions¹⁰ of $G(t)$ are then directly deducible from Eqs. $[(6a)-(6c)]$ and from the symmetric-top limit of $\langle g(n, \lambda, t) \rangle_{JN}$.

III. J AND M MODELS

The J and M models are often used to describe rotational motions in liquids.⁴ These models have been recently generalized to the study of the asymmetric-top molecules.² Here $\overline{R}_J(t)$ and $\overline{R}_M(t)$ designate the \bar{R} matrix calculated, respectively, in the J and M models. It can be easily seen that the correlation function is similar to that given in Eq. (1); it is sufficient to replace $\vec{R}(t)$ by $\vec{R}_y(t)$ or $\tilde{R}_{M}(t)$. The matrix elements $\langle R_{Jij}(t)\rangle$ or $\langle R_{Mij}(t)\rangle$ are obtainable from their Laplace transforms denoted by $\langle \tilde{R}_{Jij}(s) \rangle$ or $\langle \tilde{R}_{Mij}(s) \rangle$. One has²

$$
\langle \tilde{R}_{Jii}(s) \rangle = \frac{\langle \tilde{R}_{ii}(s+\tau^{-1}) \rangle}{\left[1 - \tau^{-1} \langle \tilde{R}_{ii}(s+\tau^{-1}) \rangle\right]} \,, \tag{9a}
$$

$$
\langle \tilde{R}_{\mathcal{M}ij}(s) \rangle = \left\langle \frac{\langle \tilde{R}_{ij}(s+\tau^{-1}) \rangle_{\theta\psi}}{\left[1-\tau^{-1} \langle \tilde{R}_{ij}(s+\tau^{-1}) \rangle_{\theta\psi} \right]} \right\rangle_J, \tag{9b}
$$

where $\tilde{R}(s+\tau^{-1})$ is the Laplace transform of $\tilde{R}(t)$ calculated in the precedent section, τ is the mean collision time, and

$$
\langle R \rangle_{\theta\varphi} = N_{\theta\varphi}^{-1} \left(\frac{d\eta}{d\eta} \int_0^{\theta_{MI}} \sin\theta d\theta K \exp(-\Lambda_I J^2) R + \frac{d\eta}{d\eta_{III}} \int_0^{\theta_{MIII}} \sin\theta d\theta K \exp(-\Lambda_{III} J^2) R \right),
$$
\n(10a)

$$
N_{\theta\varphi} = \text{d}ni a_{\text{I}} \int_{0}^{\theta_{\text{MI}}} \sin \theta \, d\theta K \exp(-\Lambda_{\text{I}} J^2)
$$

$$
+ \text{d}ni a_{\text{III}} \int_{0}^{\theta_{\text{MI}} \text{II}} \sin \theta \, d\theta K \exp(-\Lambda_{\text{III}} J^2), \qquad (10b)
$$

$$
\langle R \rangle_J = 8Q^{-1} \int_0^\infty J^2 dJ N_{\theta\varphi} R . \qquad (10c)
$$

In the J model, $\langle R_{Jii}(s) \rangle$ is calculated in the following way.

(i) The average over φ of $\tilde{R}_{ii}(s+\tau^{-1})$ is determined analytically by means of Eq. (4),

(ii) The analytical integration over J of $\tilde{A}_{ii}(s+\tau^{-1})$ is obtained by using Eqs. $[(6a)-(6c)]$ and the expression of $\left\langle {\tilde g(n,\lambda ,s)} \right\rangle _{J,\,N}$ given in Appendix B,

(iii) The average over θ in the first and third regions is calculated numerically. For the M model, (i) $\langle \tilde{R}_{ii}(s+\tau^{-1}) \rangle_{\varphi}$ is obtained as before, (ii) $\overline{A}_{ii}(s+\tau^{-1})$ is expressed on the basis of the $\tilde{g}(n,\lambda,s)$ given in Appendix B, (iii) the integral over θ is calculated numerically and (iv) the average over J in the Eq. (9b) is also determined by applying numerical methods. Finally, the rotation matrix $\langle \vec{R}(t) \rangle$ is the Fourier transform of $Re\langle \vec{R}(s)\rangle/\pi$.

IV. CONCLUSION

Before averaging over J or determining the Laplace or Fourier transforms, the expressions described by Eqs. $[(6a)-(6c)]$ appear as rapidly varying oscillatory functions. Thus nume rical integration on these expressions takes much computer time if good accuracy is required. The analytical solutions given in this paper furnish a much more efficient method; the computation time is divided by a factor of order $10³$ for the same accuracy. The result is a Fortran program giving (i) the correlation function in the free-rotor limit, (ii) the Fourier transform in the same limit, (iii) correlation functions and (iv} their Fourier transform in the J or M extended-diffusion models.

ACKNOWLEDGMENT

I would like to thank Professor S. Bratos for helpful discussions.

APPENDIX A

This appendix contains the factors η_{N_i} and the functions $C_n^{(*)}$ appearing in Eqs. $[(6a)-(6c)]$. In

the following, β designates the value of $1-3q^4-q^8$ $+8q^{12}$ + \cdots and u the value of cos θ :

$$
\eta_{X1} = (1 - u)q^{1/4}\Theta_1/2\beta H_1(ia),
$$

\n
$$
\eta_{X2} = (1 + u)q^{1/4}\Theta_1/2\beta H_1(ia),
$$

\n
$$
\eta_{X3} = (1 - u^2)q^{1/4}(k'/k)^{1/2}/\beta,
$$

\n
$$
\eta_{Y1} = (1 - k'u)q^{1/4}\Theta/2\beta H_1(ia),
$$

\n
$$
\eta_{Y2} = (1 + k'u)q^{1/4}\Theta/2\beta H_1(ia),
$$

\n
$$
\eta_{Y3} = (1 - u^2)q^{1/4}dn^2ia/k^{1/2}\beta,
$$

\n
$$
\eta_{Z1} = (1 - u^2)^{1/2}(dnia + 1)H_1/2\beta H_1(ia),
$$

\n
$$
\eta_{Z3} = u^2(1 - k')k'^{1/2}\beta,
$$

\n
$$
\eta_{Z4} = u^2(1 + k')k'^{1/2}\beta,
$$

Below, $C_n^{(*)}$ functions are given in q series up to the terms in q^7

$$
C_0^{(1)}(2Kv/\pi) = 1 + q^4[1 \pm 4 \cosh(2v)],
$$

\n
$$
C_1^{(1)}(2Kv/\pi) = e^{-v} + q^4(e^{-v} + q^2e^{3v})
$$

\n
$$
\pm 2q^3[(1 + 2q^4)e^v + q^2e^{-3v}],
$$

\n
$$
C_2^{(1)}(2Kv/\pi) = qe^{-2v} + 2q^5 \cosh(2v)
$$

\n
$$
\pm 2q^3[1 + q^4(2 + e^{-4v})],
$$

\n
$$
C_3^{(1)}(2Kv/\pi) = q^2e^{-3v} + q^4(e^v + q^2e^{-3v})
$$

\n
$$
\pm 2q^3(1 + 2q^4)e^{-v},
$$

\n
$$
C_4^{(1)}(2Kv/\pi) = q^4(1 + e^{-4v}) \pm 2q^4e^{-2v},
$$

\n
$$
C_5^{(1)}(2Kv/\pi) = q^4(e^{-v} + q^2e^{-5v})
$$

\n
$$
\pm 2q^5(e^{-3v} + q^2e^v),
$$

\n
$$
C_6^{(1)}(2Kv/\pi) = q^5e^{-2v} \pm 2q^7(1 + e^{-4v}),
$$

\n
$$
C_7^{(1)}(2Kv/\pi) = q^6e^{-3v} \pm 2q^7e^{-v}.
$$

APPENDIX B

This Appendix contains miscellaneous integrals including the functions $g(n, \lambda, t)$. For notation, see the text.

$$
\langle g\langle n, \lambda, t \rangle\rangle_{J,N} = 2^{-1} \pi^{1/2} \Lambda_N^{-3/2} (1 - \mu_n^2 t^2 / 2 \Lambda_N)
$$

\n
$$
\times \exp(-\mu_n^2 t^2 / 4 \Lambda_N),
$$

\n
$$
\langle g\langle n, \lambda, \omega \rangle\rangle_{J,N} = |\mu_n|^{-3} \omega^2 \exp(-\Lambda_N \omega^2 / \mu_n^2),
$$

\n
$$
\bar{g}\langle n, \lambda, s \rangle = (s + i \mu_n J)^{-1} + (s - i \mu_n J)^{-1},
$$

\n
$$
\langle \bar{g}\langle n, \lambda, s \rangle\rangle_{J,N} = \pi^{1/2} \Lambda_N^{-1/2} s / \mu_n^2 - \pi |\mu_n|^{-3} s^2
$$

\n
$$
\times \exp(\Lambda_N s^2 / \mu_n^2)
$$

\n
$$
\times [1 - \text{erf}(\Lambda_N^{1/2} s / |\mu_n|)],
$$

where $erf(z)$ is the error function: $erf(z) = 2\pi^{-1/2} \int_{0}^{1}$ $\times \exp(-t^2)dt$. Padé approximants are very useful in calculating this function.¹¹ in calculating this function.

- ¹Y. Guissani, J-Cl. Leicknam, and S. Bratos, Phys. Rev. A 16, 2072 (1977).
- $2J$ -Cl. Leicknam, Y. Guissani, and S. Bratos, J. Chem. Phys. 68, 3380 (1978).
- S. Bratos, J-Cl. Leicknam, and Y. Guissani, J. Mol. Struct. 47, 15 (1978).
- ⁴R. E. D. McClung, Adv. Mol. Relaxation Processes, 10, 83 (1977).
- $5A. G. St. Pierre and W. A. Steele, J. Chem. Phys. 57 ,$ 4638 (1972).
- $6A.$ Erdélyi, Higher Transcendental Functions (Mc-Graw-Hill, New York, 1952), p. 317.
- 7 M. Abramowitz and I. A. Stegun, Mathematical Functions (Dover, New York, 1965), p. 578.
- 8 Reference 6, p. 355.
- ⁹As θ approaches θ_{M} , k and q tend to 1. In this limit, it is sometimes convenient to express $A_{ij}^{(1)}(t)$ by using Jacobi's imaginary transformation (Ref. 6,
- p. 370). Unfortunately, the average over J is then not analytical.
- 10 A. G. St. Pierre and W. A. Steele, Phys. Rev. 184 , 172 (1969).
- ¹¹Y. L. Luke, Special Functions (Academic, New York, 1969), pp. 422-435.