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The effect of a shear flow on the critical behavior of a binary fluid (cyclohexane-aniline) has been investigated by
light-scattering techniques. Turbidity and scattered-light-intensity measurements have been made, and the influence
of all the independent parameters of the phenomenon were considered, i.e., temperature T, shear rate S, transfer
wave vector [d, and its projection g, along the flow direction X. The data support the Onuki-Kawasaki (OK)
description, namely, (i) an effect exists only in the region St > 1, with 7 the lifetime of concentration fluctuation. (ii)
The critical temperature T, is lowered by the shear, so that T = T (S) = T (0) — T,S’, with 0= 1/3v and
v = 0.630 the standard exponent of the correlation length in fluids. We find experimentally 7' = (1.8 4- 0.2) X 10°*
and o , = 0.53 4 0.03, to be compared with the OK values 1.28 X 10~* and 0.529. (iii) The susceptibiltiy y 3 shows
an anisotropy versus X, and follows a mean-field behavior versus temperature. The OK dependence
x§'v=AS T —T(S)! +BS°q%+q’ fits the data well, with o, ~0.14 - 0.05 [OK: v —1)/3v = 0.137],
¥ ~ 1.00 4 0.06 (OK: ¥ = 1), @ ~ 0.40 + 0.05 (OK: 2/5), except for o ,, whose experimental value o, ~ 1 + 0.15
is about twice the OK value 8/15. Discrepancies of about a factor 2 are also found for the amplitudes 4 and B.

I. INTRODUCTION

Recently it has been both experimentally! and
theoretically2 discovered that critical fluctuations
from a fluid could be strongly affected by small dis-
turbances, such as shear flow. Forobvious experi-
mental reasons (infinite compressibility of pure
fluids at 7,) only binary fluids near the liquid-
liquid critical point (temperature T ) were investi-
gated. The order parameter in this case is the
difference c - c betweenthe concentrationc of one
component and its critical value c.. The concen-
tration fluctuations increase near T, and the cor-
relation length £ and the osmotic susceptibility
)(:(iic/ap),.T diverge. p =p; -y, is the differ-
ence between the chemical potential uy,pu, of the
components, p is pressure, T is the absolute
temperature, The lifetime 7of the fluctuations
correspondingly increases and diverges at T..

We can intuitively predict the main character-
istics of the effect of shear on these concentra-
tion fluctuations. With S the shear rate (sec™):

(i) The effects will only be present in the region
S7>1. Indeed, only when the lifetime 7 is longer
than the typical time (S™) associated with shear
will the fluctuations be able to “feel” the shear.
A crossover is therefore expected to occur in the
region ST~1, from a standard behavior (St <1) to
a new behavior (S7>1).

(ii) In the direction perpendicular to the flow,
the correlations will tend to be suppressed by the
shear. This means that the correlation volume
is no longer isotropic, leading to an anisotropy
in the susceptibility.

(iii) This reduction of the correlation extent is
connected to a change in the critical temperature.
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If T,(0) is the point where the fluctuations size
diverges without shear, the effect of shear when
T =T,(0) would prevent the correlation length
from being infinite. The system would thus re-
main at a finite distance T - T (S) from the new
critical temperature T,(S).

These phenomenological predictions have been
already verified by light-scattering techniques,’
together with a less straightforward deduction con-
cerning the effect of anisotropy which leads, as
in dipolar ferromagnetics,? to a crossover in the
region ST~ 1 from a standard susceptibility be-
havior [x, = (T -T,) ", $7< 1] to a mean-field
behavior [x,~(T -T,)™, ST>1]. Also, the fact
that the susceptibility and thus the scattered light
intensity varied with shear was used to obtain
an instantaneous mapping of the shear distribution
for any geometrical configuration of the flow.!

From a theoretical point of view, Onuki and
Kawasaki (OK) have derived nearly identical
general conclusions, using a renormalization-
group approach. More precisely, they predicted:

(i) An effect visible in the region S7> 1. This
leads to the temperature condition 7T <T,, with

T,=Tq[1+ (53 /RT,)Y SY ¥]. (1)
Here &, is the amplitude of the correlation length
E=¢(T -T)/T.]™ with v=~0.630,% 7 is the shear
visocity of the system, and # the Boltzmann con-
stant. The expression used for the fluctuation

lifetime was

T=5mE/kT .

(ii) A lowering of the critical temperature
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T(S) -T(0)~H[T(0)-T,]. ()

(iii) An anisotropy with respect to the flow direc-
tion (X axis) of the susceptibility X3 in the ¢ space,
which would follow a mean-field behavxor versus
T -T(S):

x;'=AS ev-0/3v{[T - T,(S))/T.}"
+Bsallﬁlq’12/5+q2’ (3)

where y'=1, A=(5mnpr ) ¥ /% £1/v and B
=(511/RT )% 5.

In the following sections we will present light-
scattering experiments carried out in a critical
mixture submitted to shear rates ranging from 0
t01000 sec.™. We investigated both the transmis-
sion coefficient Tof the light through the sample,
connected to the integrated susceptibility IyT =
~o f dq, and the scattered-light intensity I,
=Xg» versus the four independent parameters of
the phenomenon: temperature T, shear S, mod-
ulus of the transfer wave vector |t’1 |» and the
component g, along the flow direction.

II. EXPERIMENTAL

The binary mixture used was the well-known
cyclohexane-aniline system. Aniline was purified
by fractioned distillation; cyclohexane was of
spectroscopic grade. The experimental mass
fraction of aniline C=0.4700+4x10~* was close
to the critical composition (47% in weight).® The
mixture was frozen in a special glass cell [ Fig.
1(a)] which was sealed under vacuum.

The shear flow is produced in a rectangular
quartz pipe C as shown in Fig. 1(b), whose dimen-
sions in Cartesianaxes OXYZ are Ly =L=15
cm, ay=a=0.3 cm, b;=b=0.5 cm. O is the
center of symmetry and OY the vertical direc-
tion. This pipe C is set horizontal and, during
the run, the liquid flowed along the X axis through
C from a graduated cylindrical reservoir A
(with a maximum fluid height difference Hy="17.0
cm) into another reservoir B.

At the end of the run some liquid remained in
C sothat all experiments performed with or
without shear could be directly compared under
exactly the same geometrical and temperature
conditions. The cell was fixed on a wheel which
could rotate, enabling the vessel A to be refilled
at the end of the run. A mechanical locking sys-
tem ensured that the pipe C returned to the same
position for each run. A tube with a valve
served to refill A while an extra tube served to
equalize the pressures when flow took place from
A to B or from B to A. This precaution was
found to be necessary, as initial experiments

(a) the Cell

Transmitted light

(b) Geometrical definitions

FIG. 1. (a) Cell used to produce the flow. The cell can
rotate around the center of C in the plane of A and B (see
text). (b) Scattering geometry. O is the center of sym-
metry of the pipe.

carried out without this extra tube showed
anomalous phenomena due to temperature varia-
tions associated with adiabatic pressure varia-
tions.

The whole apparatus was immersed in a large
water bath where it could be seen through a dou-
ble window. The thermal stabilization was +2
% 10™ °C over more than one hour, as verified by
a quartz thermometer. A laser beam (A,= 6328 lo\,
diameter ¢,=0.35 mm) directed parallel to the
horizonal Z axis enters the pipe C at X=0, Y=Y,
=0.1 cm, Z=-0.25 cm, as verified by a catheto-
meter. A lens centered on the beam images the
scattering volume on the photomultiplier pinhole.
The lens supports an off-center pmhole, providing
a choice of scattering angle 6= Xp, K,), where
K is the incident-light wave vector (0OZ) and K,,
is the scattering wave vector. When rotatmg the
pinhole around the laser beam, 6 or [q K p— Kol
remams constant while the azunuthal angle @=
=(q, V) varies [see Fig. 1(b)]. Here V is the flow
velocity vector, parallel to OX. We experimentally
checked that for small scattering angles as con-
sidered the (vertical) polarization of the laser
beam does not modify the scattered intensity dis-
tribution which remains isotropic in the XY plane.

In order to determine the velocity V, we used
three methods:

1. Measurement of the time variation of the
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liquid volume in A. For this, we recorded the

liquid height H in A versus time ¢ after the start

of the run (Fig. 2)." The following variation was

~ found: H=H, exp(-1/ts") with H,=17.0 cm and £’

=13.1 sec. We thus deduced the mean velocity V

in C, the ratio S A/S of the cross-section area of

A and C being known (S,/S.=128): V, =V¢,

exp(-t/t, ) with V§,=H,/t"’) (S,/Sc) =68 cm/sec.
2. A calculation using a Poiseuille velocity

distribution. For simplification, we assumed that

the actual mean velocity was not too far from the

mean velocity V,, in a cylindrical pipe of diameter

¢~0.4 cm. For a liquid with density p=0.87

g cm3, Swithviscosity 77~ 1.8 cP (Ref.7) flowing in

a capillary of length L, =15 cm, V,=V§) x

exp(-¢/t§’), with V3 = pg¢p?H,/32 L, ~110 cm/sec.

The exponential variation is due to the propor-

tionality which exists between the velocity and the

volume variation of liquid:

- dH t
Sc V(z)—SA i =H(t) H exp( —t!éz—))

with £2=(S,/Sc) 32 L n/pgp? 8.0 sec. This value
is of the same order of magnitude as the experi-
mental value £’=13.1 sec.

3. A laser Doppler velocimetry detemznatwn
at the precise point where the measurements are
to be performed. The Doppler effect, which is
related to the mean velocity of the fluctuations,
gives rise to a broad spectrum when the light
scattered from the volume at Y=Y,=0.1 cm is
detected in the X direction. The linewidth of this
homodyne spectrum is related to the mean vel-
ocity V) of the flow at this point. In fact, a well-
defined cutoff frequency is present, which allows
V) to be easily determined. Figure 2 shows that

Vot Yo)= V(¥ o) exp(—t/t>)

with VY, (¥,)=93 cm/sec and ¢’ =¢{=13.1 sec.
Assuming a Poiseuille parabolalike velocity dis-

T T T T T T T T

H(cm)
T

V(cm sec?)
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1 L 1 ‘éi, |
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FIG, 2. Time variation of the liquid height H in A and
- of the mean velocity V at the measurement point (semi-
log plot).

tribution, the mean velocity in the pipe can be
estimated to V §,= V&)(Yo)/z[l - (2Y,/a)*=84 cm/
sec. The estimations of V¢’ (68 cm/sec) and
72 (110 cm/sec) are not very far from this
expenmental determination.
We then infer the Reynolds number ®(¢)= =aV, (¢,
Y,)/v, where v,=7/p=~2x 10 stokes’ is the
kinematic viscosity. The maximum value ®(0)
=~1400 shows that turbulence is never reached.
Nevertheless, we verified that all experiments
which were started at various values of &(0) (i.e.,
various heights in A) gave equivalent results,
The length ! at which the parabolic velocity dis-
tribution is obtained within 1% is I(¢)=0.03aR ()
~13 exp(-1/t,) cm. At any time #>5 sec the
Poiseuille distribution is therefore established
in the measurement region. Therefore the velocity
at the measurement point can be approximated by

VX, Y,Z, )=~V Y,)
=27, [1- @Y /af]et/to

Here the influence of the velocity gradient parallel
to OZ has been neglected. In fact, the correspond-
ing gradients are smaller [ratio (b/a)?=3], and
are not well defined since they are integrated over
all the scattering volume. Moreover, the influ-
ence of this particular velocity gradient can be
suppressed when imaging only the center of the
scattering volume.
The shear at Y=Y, can therefore be deduced

av
S(Yo*%(f’o’ t)=d_Y (Yo*'%d’o; t)

= (1600 £280) e~t/%o ,

The calculated uncertainty is due to the finite
diameter ¢, of the laser beam in the direction

Y, as verified in Ref. 4 where the mapping of the
shear was performed.

The lifetime of the concentration fluctuations
in real space, i.e., at g£~1 and without shear is
T=E(T - T,)* where v=0.63 and E=5717 & T3/
RT®°=4.8x10"° ‘cgs using the values ¢,=2.45 A 10
T.=303 K, and 1=1.78 cP.” For experimental
values T - T,>1x107% C, then 7<2.2 sec. In these
time intervals the velocity distribution varies by
less than a few percent in C.

The extra heating due to the shear flow can be
estimated as follows: The power dissipated in a
volume element is proportional to S* through the
viscosity. With C, the specific heat,

C _A.Z.‘—nsz

" During the run, the spurious heating occurs over
the length % L,, i.e., during the time At=L_/



2V (¢, Y,)~8L_/S. Fortime intervalslower thanthe
thermal diffusivity time a?/D~100 sec (D~10-2
cm?®sec™ in liquids is the thermal diffusivity coef-
ficient) the heat has not enough time to diffuse,

and the adiabatic temperature increase can be
evaluated as

AT~8nLS/C, .

Thus AT is proportional to S. Measurements
were performed for £>5 sec, or S<900 sec,
In liquids, C,~4x 10" erg, and therefore AT

<5.107 K, and it is completely negligible.

The contribution of multiple scattering'! is also
negligible, considering the small dimensions of
the capillary tube. This has been verified by look-
ing at the illuminated volume, and checking that
light scattered from outside the volume remains
negligible. Finally, the gravitationally induced
gradients do not have enough time to take place,'?
and are thus also negligible.

III. RESULTS

The experimental results are concerned with the
following points:

1. The critical temperature change T =T (S).

2. The crossover temperature T g="T g(S).

3. The variation of the susceptibility xq vs g,
at two different constant values of the modulus|q|
and for various shears.

4. The variation of Xy vs |g| for various shears.

5. The variation of x,_vs T and S for two
different constant values of the modulus |q|.

The variation of the susceptibility in the shear
direction (Y) is not reported here, owing chiefly
to the lack of accuracy. Experiments are in pro-
gress concerning this point. The transmitted
light intensity was used chiefly for studying point
1 and the scattered-light intensity I; for points 2
to 5.

1. T, change. The critical temperature can be
defined as the temperature at which x, diverges,
i.e., 7 vanishes. In Fig. 3 are reported the ex-
perimental variations of 7 versus shear rate S
at various temperatures. Different behaviors
summarized in this Fig. 3 have been evidenced:

(a) The introduction of shear has no influence
for T>T¢(S,), which is the crossover temperature
T corresponding to the maximum shear Sy.

(b) When T<Tg (Sy), the shear is seen to in-
crease the transmission and therefore to lower
the susceptibility. This suggests that the critical
temperature could be a function of shear, T,
= Te(S).

(c) When T =T,(0) (the critical temperature at
equilibrium) 7 goes asymptotically to zero.
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FIG. 3. Behavior of the transmitted intensity (arbi-
trary units) versus shear Sor time t <— #, Iy (S/S,) at
different temperatures (see text). The right-hand scale
corresponds to (a), () and the left-hand scale to (c), ().

(d) When T.(0) >T>T,(S,), i.e., when the run
is started at a temperature slightly lower than
T,(0), the transmission behaves as in (b), i.e.,
as in the one-phase region. A new critical tem-
perature T (S) is thus evidenced. The transmis-
sion goes to zero for the shear S,, revealing the
critical temperature under shear S;: T=T (S,)
=T, (0) - AT, (S,). We noticed that the scattered-
light intensity diverged for the same temperature
T at the same shear S, withx, > qu, indicating

»that the first stage of the phase{separat'mg process

could occur in stripes parallel to the flow velocity.
This is an interesting phenomenon, in accordance
with the OK predictions,? and which we intend to
study more carefully.

From Fig. 3 we can infer the variations of T
vs T - T (0) at various shears (Fig. 4). A striking
feature is that a mere change in T, is sufficient
to reduce all the data on the single equilibrium
curve, i.e.,7{T - T,(0), S]~7{T - T(S), 0]. This
allows the variation of AT (S)=T,(0) - T (S) to
be evidenced.

In Fig. 5 are reported the variations of the change
in T, with S, evaluted in two different ways, first
from Fig. 4 as we have just noted, and second
from Fig. 3(d) using T,(S,). A close agreement
exists between these two kinds of determinations.
The simple power law

AT (S) = T4S%

is seen to hold, with
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FIG. 4. Transmitted intensity (arbitrary units) versus
T — T, (0) at decreasing shear rates S= 903 510, 288,
163, 92 52, 29, 16, 9.5, 5, 3, 0 sec !

T,=(1.8+0.2)X 10" cgs
and

04=0.53 +0.03.

These experimental values have to be compared
to the OK calculation [formulas (1) and (2)]): 0,=3%v
=0.529 and (To)og =& T, (571 £3/kT ) /**=1.28
X 10™ cgs, using the numerical values of Sec. II.
The agreement between these two sets of values is
quite good.

2. The crossover temperature. In order to de-
termine the temperature Ty below which the
shear affects the fluctuations, it was found to be
more reliable to use the scattered-intensity data
(Figs. 10,11) rather than the transmission data
of Fig. 3. In these figures, the change of be-
havior is clearly evidenced and two scattering
angles (wave vectors ¢ =18 200 and 5200 cm™)
were investigated.

The corresponding variation AT 4(S)=T4(S) - T.(S)
is reported versus S in Fig. 6. Large uncertain-

.
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FIG, 5., Critical temperature change versus shear S.
+ From the variation of the transmission above T, (0)
(Fig. 4); O from the determination of S below T, (0) (Fig.
3).
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FIG. 6. Crossover temperature variation with shear
S, from the scattered intensity data of Figs. 10 and 11,
The straight line corresponds to a power law with an im-
posed exponent 3v=0.53.

ties related to the crossover phenomenon itself
prevents any convincing determination of ampli-
tudes or exponents being made. Nevertheless,
assuming the OK variation Tg(S)=13 T, S*/3* and
fitting the data with the imposed value $v=0.529,
we found T;=1.8 X 10™ to be compared with 1.8
X10™ experimentally found with the T, change,
and 1.28 X 10™ from OK. The agreement is re-
markably good with the determination of T, from
T(S).

3. Susceptibility anisotropy with respect to the
flow divection: x;(q,/|d|). Besides the T, change,
the most striking feature of the shear-induced
effect is the anisotropy of the scattered light, and
therefore of the susceptibility with respect to the
flow direction. Figure 7 shows that the suscepti-

bility is decreased in the direction X, revealing

1 L
! 0.2 0.4 X
0 S$=903

FIG. 7. Reduced scattered intensity x,(T, S)/x, (T, 0)
in the XY plane at T'— T, (0) =1,5 mK (compensated from
the transmission), and at two scattering angles 6 =2° and

10° (g=5200 and 26 000 cm™ 1), Polar coordinates have
been used. Shear rates were S=903, 512, 288, 163, and
92 sec . The best fits to experimental data were used
(see Tables I and II) with the exponent X; imposed at the
OK value$
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a considerable reduction of the correlation length
in the shear direction Y. We notice that the effect
increases with increasing shear and decreasing
scattering wave vector.

Two scattering angles were carefully investi-
gated, with a good angular resolution: 6,=10°
+ 2min30secand 6,=2°+12 min, corresponding
to ¢,=26000+ 100 cm™ and ¢,=5200+ 500 cm™.

Xg' =X, +X,|cosg |%s ,

ON CRITICAL CONCENTRATION...
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We will write AT(0) =T -T,(0).

The anisotropy in formula (3) is determined by
the g variation of the 2nd term. Two numerical
calculations can be made, first by simply sub-
stituting the numerical values in (3) (OK), or
second, by taking into account the results (i.e., T )
of the transmission data (OK expt). With ¢
=(q, V), this gives:

4,=26000 cm™ : X, (OK)=2.28 X10" $%4[AT(0)+ 1.3 X 10-5>55]+ 6.74 X 10°,
X, (OK expt) =2.53 X 10"S%[AT(0)+ 1.8 X 1045%5]+ 6,74 X 10°

X, (OK)=4.02x 10°5%58
X, (OK expt)=5.71x 1085%5
X; (OK)=X, (OK expt)=% ;

9,=5200 cm™ : X,(OK)=2.28 X 10"'S*"[AT(0)+ 1.3 X 10~5%5%]+ 2,70 X 107 ,
X, (OK expt)=2.53 x 10[AT(0)+ 1.8 X 105%55]+ 2,70 X 107,

X, (OK)=2.11x10°%8%% |
X, (OK expt)=3.00x 10°5%5% |
X, (OK)=X, (OK expt)=% .

The experimental temperature difference is AT(0)
=1.5% 10" K for all data. The value X, (OK)

and X, (OK expt) are close together, so that in
Tables I and II where the values of the ratio X, /X,
are listed for various shears we report only the
mean value

X,/X,=3% [X2/X Dok ept+ X2/X)og]
*%[(Xz/xx)ox oot — (Xo/X )ox] -

Also reported are the results concerning the ex-
perimental data. A program of statistical refining

TABLE I. Fit of X;! to X, +X,| cose |*3 for 4=5200 cm™ and T - T,(0)=1.5 mK (T=1 sec).
(X,/Xy)ok is the amplitude expected from the OK theory. Brackets indicate that in the fit the
parameter was held constant at the quoted value,

S (sec™)
or ST X X,/X, X2/ X))ok Q o (X)) %
903 0.36 + 0.05 2.07 £0.01 0.92 28
(0.40) 0.903 28
510 0.30 + 0.05 2.08 +0.01 0.71 23
(0.40) 12 +10 0.65 23
288 0.25 + 0,04 2.05 +£0.03 0.67 21
(0.40) 48+ 2.7 0.56 21
163 0.20 £ 0.04 1.98 +0.05 0.64 19
(0.40) 22+ 1.1 0.53 20
92 0.14 + 0.04 1.88+0.08 0.66 18
(0.40) 1.1+ 0.6 0.55 18
52 0.10 + 0.04 1.74 +0.09 0.71 17
(0.40) 06+ 0.4 0.63 18
29 0.07 + 0.03 1.56 +0.10 0.74 15
(0.40) 0.3+ 0.2 0.70 16
16 0.05 + 0.03 1.38 +0.10 0.87 14
(0.40) 0.84 14.5
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TABLE II. Fit of X! to X; +X,| cos¢|*3 for ¢=26000 cm™ and T —T,(0)=1.5 mK (1=1
sec). (X,/X;)ok is the amplitude expected from OK theory. Brackets indicate that in the fit
the parameter was held constant at the quoted value.

S (sec™)
or ST X3 Xz/Xl (Xz/X1)oK Q o (X,,) %
903 0.52+0.12 2.8 0.8 3.45+0.05 0.72 12.2
(0.40) 3.4 £0.7 0.69 12.2
510 0.52 £ 0.14 2.24+0.6 3.3 £0.1 0.80 12.5
(0.40) 2.74 + 0.6 0.75 12.7
288 0.64+0.18 1.5 +0.4 3.1 0.1 0.996 11
‘ (0.40) 1.90 +0.35 0.87 11.5
163 0.9 +£0.2 1.1 0.2 2.8 £0.2 0.99 9.8
(0.40) 13 +0.3 0.75 10.5
92 15 +0.5 1.0 +0.2 2.5 £0.2 0.96 8.7
(0.40) 0.9 £0.2 0.61 9.9
52 2.0 1.0 0.73 £0.2 2.1 £0.2 0.98 7.3
(0.40) 0.54+0.15 0.59 8.8
29 3.2 1.6 0.65+0.2 1.8 0.2 0.97 6.3
(0.40)
16 38 +1.8 0.53 £ 0.16 1.45+0.15 0.88 5.5
(0.40)

(M. Tournarie'®) has been used, giving the stand-
ard error o(x,) and a “quality coefficient” @ which
measures the contribution of the statistical error
to the total error. @ =1 when no systematical
distortions to the fit exist and @ drastically de-
creases if there are systematic distortions.

The data (noncorrected for the transmission)
were fitted to the following variation:

X =X, +X, |cose | %2,

with X, the adjustable parameters. In a first
step, all parameters were set free, so that both
X, and X,/X, could be compared to the OK values.
Results are summarized in Tables I and II. In
Fig. 8 are reported the log-log variations of x,
vs cosg for the various shears and the two values
of q. ’

For X,;, we see that the experimental values are
close to 3 for the highest shears (X,=0.52 +0.12
for $§=903 sec™, ¢=26000 cm ™, X,=0.36+0.05
for $=903 sec™!, 4=5200 cm!). When the shear
decreases, X; increases for the higher ¢ value
(X;=3.8+1.8, S=16 sec™!, ¢g=26 000 cm™') but
decreases for the lower ¢ value (X;=0.050.03,
§=16 sec™, g=5200 cm™). The amplitude ratio
X,/X, is well defined only for the highest ¢=26 000
cm™, Its order of magnitude is correct for all
shears, and agrees well with the OK value for the
highest shears [S=903 sec™, X,/X,=2.8+0.8
(X,/X,)ox = 3.45 £0.05]. '

In order to have a better determination of the
amplitudes, we next impose X, to its OK value.
The highest g, with the highest shears, gives
the better agreement [g =26 000 cm™!, S=903

sec™, X,/X,=3.4£0.7, (X,/X,)ox=3.45+0.05].

In all cases the order of magnitude is correct.

For the lowest g, a rather good agreement is
obtained for the mean shears, the highest shears
giving rise to an undetermined value [¢=5200 cm™,
§=163 sec™, X,/X,=2.2x1.1, (X,/X,)ox=1.98
+£0.05].

4. Variation of x,, with |a|. Following formula
(3), the same kind of variation as in point 3 should
be found when |q| is varied from 3900 to 23 400
cm™, We consider the experimental data concern-
ing the scattered intensity in the flow direction,
where the influence of ¢ is preponderant. More-
over, in this direction, the Doppler effect very
efficiently filters the intensity fluctuations. Here
also, the intensity data are not corrected for
transmission, so that the shear variation of Xq
cannot be determined.

The (OK) and (OK expt) formulations can be writ-
ten as:

Xg =X+ X, q%+ X, g%

(X,/X ok = 2:28 X 10M18% 4[AT(0)+ 1.3 X 10-45%52] |
(X2/X,)ox expt=2.53 % 10118%4[AT(0)+ 1.8 X 10-45%53] |
(X>/X,)ox =6.90 X 10°5>%*

(/X Dok expe=9.T9 % 1065% |

X,(OK)=X,(OKexpt) =2 .

The experiments were carried out at AT(0)
=3.7%107 K and in the flow direction where gz=g.
The data (Fig. 9) were fitted to the same expres-
sion, where X, are the adjustable parameters.
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FIG. 8. (a)—f). Scattered intensity xz vs cos ¢ [¢= @Vl atT- T.(0)=1.5 mK, in a log-log plot, and at the scat-
tering angles 6=10° (g, =26 000 cm ™) (right-hand scale) and 6=2° (g =5200 cm™?) (left-hand scale). Lines correspond
to the fits from Tables I and II with the exponent X; imposed at the OK value -§

TABLE III. Fit of X} to X, + X,q%3 + X,q? for T— T.(0)=3.7 mK and g= g5 ranging from 3900 to 23400 cm™!. Paren-
theses indicate that in the fit the parameter X; was held constant at the quoted value.

S (sec) X, X, X ‘X, Q o ()%

903" (1.65+ 1,34)x102 (3.1 +18)x107° 0.74 0.6 (1.1 +42) x1012 0.534 2.0
(2.85+ 2.7)x103 (9.9 = 0.9)x104 (0.40) (2.0 + 0.6) x 1012 0.543 2.1

510 (1.3 + 3.6)x10% (1.16+ 0.24) x10°  0.38+0.02 2.8+ 8)x1074 0.587 4.0
(1.8 = 2)x107 (9.3 + 0.6)x10%  (0.40) 2.7+ 7)x10H 0.568 4.0

288 (1.3 = 4.3)x10% (1.0 = 0.17) x10°  0.38 £0.018 (2.8 +10) x 101 0.631 3.2
(1.6 + 1.4)x107 (8.0 + 3.6)x10% (0.40) 2.8+ 8)x10 0.609 3.2

163 (7.9 + 6.5)x10% (1.6 = 3.2)x10% 0.5 +0.2 (3 +11)x10 0.758 3.6
(3.0 = 2.5)x103 (6.2 + 0.8)x10%  (0.40) (1.8+ 5)x10%2 0.841 3.9

92 a1+ 3.5)x10° (3.2 + 6.6)x10% 0.6 £0.2 3 =17)x10M 0.641 3.1
6 = 2)x107 (42 + 0.7)x10% (0.40) 43+ 4)x10™1? 0.704 3.4

52 a1 = 2)x10°3 (8 +16)x10% 0.75 £0.2 (3 +20)x10 0.439 2.4
(7.7 = 1.7)x10% (2.9 + 0.6)x10% (0.40) (5 = 3)x1012 0.520 2.7

29 (8.6 +26)x107 (3.2 +53)x10% 0.35£1.5 (9.6 +10) x 1072 0.341 1.4
9.5 + 1.3)x1073 (1.8 + 0.4)x10%  (0.40) (9 = 2)x101? 0.331 1.7
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FIG. 9. Scattered intensity in the flow direction x; vs
g with § parallel to OX. Data are not corrected for the
transmission. Two temperatures are reported. The an-
alysis is made in Tables IIT and IV. The shear rates are:
$=0, 29. 52, 92, 163, 288, 510, 903 sec 1.

Table III summarizes the results. The exponent
X, is rather well determined for shears 510 and
288 sec™: X,=0.38+0.02, to be compared to the
OK value: 2.

The other shears also gave values which are
compatible with this determination, but no ampli-
tudes could be extracted. So we fixed X; at the
value % and again fitted the results. Table IV
shows that the accuracy is sufficient only for
four values of shear. All the results agree with
OK within the experimental errors. Here also,
the mean value between OK and OK expt has been
reported, the higher values corresponding to OK
expt.

Other data, which are not reported here, and
which concern the temperature difference AT (0)
=9.2X 103 K, support the same general conclu-
sions, although with a lower accuracy.

TABLE IV. Amplitude ratios from Table III with X
imposed at the value 0.40. The values OK quoted are
deduced from the Onuki-Kawasaki theory.

X,/X, Xy/X %)ox X,/X, X5/ Xy)ok
s (10 (107%) (0% (10%)

903 5 2 3.07 +0.53
92 7 £35 3.71+0.70 1 =1 0.919 £0.016
52 4 2 2.65+0.25 0.58£0.46 0.677 +0.0117
29 2.0+0.7 2.76%0.25 0.20+0.09 0.347 +0.086
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FIG. 10. Scattered intensity in the flow direction Xqy VS

"T—T,(S) at various shears (see caption of Fig. 9) for q

=5200 cm™!. The dotted line is the best fit to all experi-
mental data obtained with S=0, and corresponds to the
normal behavior = (T—T,) %, These data have been
analyzed in Table V.
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FIG. 11. Scattered intensity in the flow direction X,
vs T —T,(S) at various shears (see caption of Fig. 9) for
g=18200 cm™!, The dotted line corresponds to S=0 and
behavesas ~{£3[(T - T,)/T ' "%+ ¢%}-!. These date have
been analyzed in Table VI.
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TABLE V. Fit of x;} to X; [T—T,(S)F25%3 + X, 5% + X; for ¢=5200 cm™. Brackets indicate that in the fit the param-

eter was held constant at the quoted value.

X, Xy X
Determination of o) X, X, (107 X 107 Q )%
~allf 8 £2 1.12£0.05 (0.14) 70+ 5.5 1,22+0.12 1.6+100 0.873 8.7
all free 8 £2 1.11£0.08 0.14 +0.05 6.8+ 6 1.22£0.13  (0) 0.874 9
exp;“e“t 33+1.7 1.3 £01  (0.14) 272 +56  (0.533) 1 + 30 038 12
2
e’;’“;“ts 9.7+1.2 (1.0 0.216 + 0.003 2.6+ 0.5 1.33+£0.04 1.3+ 60 0.880 9.2
3 5
exp;“e"t : 13.1£0.3 (1.0 (0.14) 2.6+ 0.2 1.384£0.02 1 + 40 0.845 9.8
5
amplitudes 15 +1 (1.0) 0.14) 107 +45  (0.533) 0.9+ 20 0.243 11

5. Temperature and shear variation of X,_. The
temperature dependence of the susceptibilil%r in the
flow direction has been investigated at various
shears and for two values of ¢ (scattering angles
2°and 7°). The data are corrected for the shear
dependence of the transmission (Fig. 4). Figure
10 (small ¢, =5200 cm™) clearly shows a change of
behavior in the region where T~ Ty, that is, Xax
varies as[T - T,(S)]™ with y=1.24 the standard
value in fluids when T> T, whereas it varies as
[T - Te(S)]"" with 7’ =~ 1 the meanfield exponent,
when T<Tg. This is not so clear in Fig. 11
where we report Xqp for a bigger g,=18 200 cm™,
due to the standard rounding off when g¢>1.

We fitted the data in the region T< Ty to the
following OK variation [formula (3)] where X,
are the adjustable parameters:

x;; =X [AT (S)[*2S%s + X, S%5+ X, .

The results of the fit are reported in Tables V
(g,) and VI (g,). For both wave vectors it was
quite impossible to obtain determined X; values
when all parameters were set free. So we decided
to impose the exponent X, which is expected to

be very small from OK (0.14). For the lowest
wave vector g, used, where X is expected to be
very small, we also tried a fit with X =0.

The temperature-dependent exponent is seen
to have the mean-field value 1.12+0.05 or 1.11
+0.08 (g,) and 0.984+0.068 (g,). The weak expon-
ent X; is determined when X =0 is imposed, X,
=0.14+0.05 (g,), in close agreement with the OK
value; but the shear dependence exponent X, is
found to be about twice the expected value 0.533,
X;=1.22+0.12 (q,) and 0.84 £0.14 (g,). We will
discuss the amplitudes X,, X,, X, below.

We next tried to increase the accuracy of X,
by fixing both exponents X, and X to their OK
values; but the statistical quality of these fits was
not very good, showing systematic discrepancies
(g,: @ =0.386 with 0=12%; ¢,: Q=0.569 with o=6%),
especially for ¢,. So this improvement is rather
delusive and the values found, 1.3+0.1 (g,) and
1.04+0.04 (g,), are not very reliable.

The next step was to fix X, to the mean-field
value and determine both X; and X, or X, alone
with X; fixed. X; was found to be not very far
from the value predicted by OK (0.14): X,=0.216
+0.003 (g,) and 0.23+0.05 (g,). TheX, exponent is

TABLE VI. Fitof x;! to X; [T— T (5)I*25%3 + X, S%5 + X, for ¢,=18200 cm™, Brackets indicate that in the fit the pa-

rameter was held cons{ant at the quoted value.

X, X,

Determination Xy 6
of (10%) X, X3 10%) X5 o) Q o&)%
~ all free 2.3 0.7 0.984+0.068 (0.14) 1.2+1.1  0.84+£0.14 2.9 1.3 0.872 6
exp;“e“t 1.8 £0.3  1.04 £0.04  (0.14) 87404  (0.533) (1.5 £90)10°  0.569 6
2
e’;mn;“ts 14 £04 (1.0 0.23+£0.05 1.5+1.5 0.80£0.15 3.5 1.4 0.803 5
3 5
exp;nent 2.15%0.05 (1.0) 0.14) 1.3+0.6  0.84+0.08 2.9+ 0.7 0.871 6
5
amplitudes ~ 2.17£0.07 (1.0) ©0.14) 8.4+0.25 (0.533) (1.4 +75)10%° 0.533 6
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again found to be larger than the OK value (0.533):
X,=1.3840.02 (g,) and 0.84 20.08 (g,).

For the amplitude ratios X,/X,, X,/X,, or X,/X,,
we found only one value which is determined:
X,/X,=3.920.3 (g,, exponents X,, X,, X, imposed),
which is to be compared with 1 54(OK value) and
1.94(OK expt value).

IV. CONCLUSION

In Table VII are summarized all our results
concerning the transmission data and their rela-
tion to the T, change, together with the scattered
intensity data and their connectionto the suscepti-
bility behavior of the system. The influence of
the wave vector of the fluctuations, the direction
of flow, the amplitude of shear, and the distance
to the critical temperature were investigated.

The agreement with OK theory is generally
very good, especially for the T, change, the ¢

variation of the susceptibility and its temperature
dependence, where clearly a mean-field behavior
is evidenced. An exception concerns the shear
variation of the anisotropy term, whose exponent
is found to be high compared to the expected value.

We did not investigate in detail the susceptibility
in the shear direction, owing to lack of accuracy.
Experiments are in progress concerning this
particular point which, when completed, will
provide information concerning the dynamic of the
shear-modified fluctuations through the power
spectrum of the scattered light.
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