
PHYSICAL B, EVIK% A VOLUME 22, NUMBER 1 JU L Y 1980
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General formulas of the angular distribution and spin polarization of photoelectrons are derived for
arbitrarily polarized incident photons including all multipole eAects of the photon fields. Dynamical
parameters are given in terms of reduced matrix elements suitable for a general multichannel theory in both
the relativistic and nonrelativistic formulations. Low-energy photoionization processes, where the electric-
dipole approximation is valid, are dealt with in detail. Simple explicit formulas of the angular distribution
and spin polarization of photoelectrons are given for closed-shell atoms. Applications of the present
formulation using various relativistic multichannel theories are discussed briefly. A relativistic version of the
K-matrix method, by which both closed- and open-shell atoms can be treated, is also given.

I. INTRODUCTION

Photoionization processes have received much
attention in recent years. The availability of la-
sers and synchrotron radiation has especia, lly
stimulated advances in photoionization studies.
Demands for accurate photoionization data in
plasma and fusion research have combined with
the traditional astrophysical interest to make
these fairly active fields of current research.
Low-energy photoionization processes have been
reviewed recently by Burke, ' Manson, Berkowitz,
and more recently by Starace' on theory and Sam-
son' on experiment. The theoretical treatment of
high-energy atomic photoionization has been re-
viewed by Pratt, Ron, and Tseng" and by Cooper. '
A large body of experimental data for most ele-
ments in the periodic system has been made avail-
able on photoabsorption cross sections by Hubbell. '
Scofield' has given theoretical photoionization
cross sections from 1 to 1500 keg for most ele-
ments. In addition, a complete bibliography of
original studies of photoionization and photoab-
sorption has been given by Kieffer" for the period
1921 through 1974. These references' "and ref-
erences therein should be consulted for recent de-
velopments in photoionization processes.

The main concerns of most photoionization re-
search are with the cross section and angular
distribution of photoelectrons. Nevertheless, a
complete analysis of photoionization processes
requires the knowledge of the spin polarization as
we11. as the angular distribution of photoelectrons
ejected by photons in specific polarization states.
In addition, the polarizations, if any, of the tar-
get atom and of the residual ion have to be con-
sidered if observations are made coincidently
with the detection of the photoelectron. Spin po-
larization of photoelectrons has become increas-
ingly important in recent years, especially be-

cause of the utilization of photoionization pro-
cesses in producing polarized electron beams. '
A notable recent application is the observation of
parity nonconservation in inelastic scattering of
longitudinally polarized electrons from unpolarized
targets. ""

The spin polarization of the total photoelectron
flux ejected from unpolarized alkali atoms by cir-
cularly polarized photons has been calculated by
Fano. " General discussions of photoelectron spin
polarization have been given by Brehm, "Jacobs, "
Cherepkov, "and Lee" in the dipole approximation
in nonrelativistic formulations. Nevertheless,
theoretical formulas of the spin polarization of
photoelectrons exist only for unpolarized and lin-
early and circularly polarized incident photons
while many convenient sources of photons are
elliptically polarized. Well-known examples are
synchrotron radiation and light reflected by metal-
lic mirrors. Additionally, because of the-nonre-
lativistic nature of the above mentioned formu-
lations, the spin-orbit interaction, which plays
an essential role, can only be treated in the Pauli
approximation or in an ad hoc fashion. 2 Further-
more, only low-energy photoionization processes,
in which the electric-dipole approximation remains
valid, were considered by these authors. Pratt
and coworkers'" have calculated polarization cor-
relations between the incident photon and ejec-
ted electron in the relativistic single-particle
picture; however, no explicit spin-polarization
formula of the photoelectron was given.

In this paper, we start with a relativistic multi-
channel formulation including all multipole fields
of the photon and express the total cross section,
angular distribution, and spin polarization in
terms of dynamical parameters. These dynamical
parameters are given as weighted sums of ra-
dial integrals. The most general polarization state
of the incident photon is assumed; linear, circular,

22 1980The American Physical Society



KEH-NING HUANG 22

elliptical, and partial polarizations are special
eases and are treated at the same time. However,
we will confine ourselves to cases where the tar-
get atom is unpolarized, and the polarization of
the residual ion is not observed. In other words,
we will average over the polarization of the tar-
get atom and sum over the polarization of the re-
sidual ion. The results for polarized target atoms
and residual ions will be reported.

We shall derive photoionization formulas in the
helicity formulation. The helicity formulation of
collision processes for particles with spin was
first introduced by Chou" and by Jacob and Wick."
The helicity formulation has several advantages". ":
(a) Helicity is invariant under ordinary rotations
and has simple transformation properties under
Lorentz transformations. (b) The helicity form-
ulation does not lead to complications in the re-
lativistic description of spin states. (c) Parti-
cles with zero rest mass, e.g. , photon, neutrino,
or graviton, can be treated on the same footing
as massive particles. Especially because of (a),
the angular correlation of a scattering process
can be absorbed in a single rotation matrix. On
the other hand, a bound many-particle system
(nucleus, atom, molecule, etc. ) is best described
in terms of the ordinary angular-momentum eigen. -
states. Therefore to use the helicity formulation
in treating particle scatterings on a many-particle
system we have to make the transformation from
ordinary angular-momentum eigenstates to heli-
city eigenstates. It is possible to derive a con-
venient form for the transition matrix of a certain
scattering process by working directly in the heli-
city formulation. This approach was adopted by
Lee" in the nonrelativistic formulation of photo-
ionization processes in the electic-dipole approxi-
mation. However to make clear the connection
between the conventional formulation and the heli-
city formulation, we shall start from the conven-
tional expression of the transition matrix and pro-
ceed to write angular -momentum eigenstates in
terms of helicity eigenstates. In this way, we
can borrow experiences acquired in working with
the conventional method.

In Sec. II, a photon beam of arbitrary polari-
zation is described by the spin density matrix
of photons. In Sec. III, the basic transition matrix
of photoionization processes is presented and then
expressed in terms of helicity eigenstates. The
spin density matrix of photoelectrons ejected by
a photon beam of arbitrary polarization is intro-
duced in Sec. IV. The angular distribution and spin
polarization of photoelectrons are derived in the
same section. Additionally, a simple prescription
is given for transforming the formulas in jj coup-
ling to those in LSJcoupling. Section V discusses

low-ener gy photoionization processes, where the
electric-dipole approximation is valid. In Sec. V A,
the angular distr ibution and spin-polarization form-
ulas are given as functions of photoelectron angles,
with all dynamical effects absorbed in five param-
eters. In Sec. V 8, simple explicit formulas for
closed-shell atoms are presented. In Sec. VI,
applications using various multichannel theories
are discussed. Appendix A introduces a convention of
the photon-spin polarization used in this work. The
phase convention of Dirac orbitals is discussed
in Appendix B. Appendix C summarizes multipole
interactions and their interaction strengths. In
Appendix D, electron and photon helicity eigen-
states are presented. Appendix E gives explicit
formulas for the transformation of the photoelec-
tron polarization vector between different coordi-
nate systems. In Appendix F, an alternative de-
rivation of the general formulas for the angular
distribution and spin polarization of photoelectrons
is discussed. Finally, a relativistic multichannel
E-matrix method is presented in Appendix G. We
note that a letter version of the present work has
been reported.

II. PHOTON-SPIN POLARIZATION

S~ = —p cos2Q eos2y,

S, = —p cos2~ sin2y,

S3 =p sin2a,

or inversely as

P
—(S2 +S2 +S2)1&2

sjn2ot =S (S +S2+S )

tan2y =S,/S, .

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Mathematically, Stokes parameters are the ex-
pansion coefficients of the density matrix p in the
complete basis set of 2 x 2 matrices: the Pauli
matrices 0 together with the 2 x 2 unit matrix;
l.e. ,

There are several equivalent ways of specifying
the polarization of a given photon beam. One con-
venient description is the density matrix of the
form

1 (1+p sin2n -Pe '~cos2ap=-! . (21)
f2@-pe cos2o. 1 -p sin2o.

Here the parameter p specifies the degree of
polarization, e the type of polarization, and y
the azimuthal orientation of the polarization. This
convention, is presented in Appendix A. An equi-
valent description is provided by Stokes para-
meters" ' S» S» S, which are related to p, o,
y as
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p =—/1+ S&rr),2(
1(1+S, S, —iS,)

(S, +iS, 1-S, )
(2.8)

The Stokes parameters (S,S,S,), or equivalently

(Pay), can be determined experimentally by three
polarization measurements chosen properly. For
example: -', (1 -S,) is the probability of linear po-
larization along the X axis; —,'(1 -S,) the prob-
ability of linear polarization along an axis making
an angle of +45' with the X axis; and —,'(1+S,) the
probability of right circular polarization.

III. TRANSITION MATRIX OF PHOTOIONIZATION
PROCESSES

It is well known that the basic transition matrix
of photoionization processes for a many-electron
system has the form, in atomic units,

in the polarization state
l

J —M )&,' the subscript
specifies that the quantization axis of the final

state is along the direction k, and the others
are obvious notations. The reason for choosing
different quantization axes for the initial and final
states will become clear when we express (3.1) in

helicity eigenstates. The described experimental
situation is shown schematically in Fig. 1. For
notational purpose, let us represent the initial
and final states of the total electron-photon sys-
tem as e,e'r'~l(, ) and ink ), respectively. The
superscript "-"denotes the fact that for a plane
wave lk, p) to be detected after the collision the
photoelectron-ion system must satisfy the in-
coming-suave boundary condition. " We therefore
write the basic transition matrix element of this
particular photoionization process as

4m' k
f(qM, pl„)= ( '-: (o'k, go', &p' '' ~g).

(3.4)

(3 1)

where g,. and g& are the initial and final states,
respectively, of the many-electron system. The
incident photon has the momentum k (l kl =co/c)
and polarization &; the outgoing photoelectron has
the momentum k (k =

l
k l), where the subscript

a is the channel index introduced for later con-
venience. The Dirac matrices n have the ex-
plicit representation

ro v)
901

(3.2)

with o the familiar Pauli matrices. The com-
bined final state gz of the photoelectron and re-
sidual ion is normalized such that the differential
cross section is given by

(3.3)

Now we consider the experimental situation
where a photon of polarization & =e, incidents upon
a target atom in the polarization state

l

J'o —M, )&.
Here e, is the spherical unit vector" with q =1
or -1; the subscript k specifies expli. citly that the
quantization axis of the initial state

l
J, —Mo)1 is

along the direction k of the incident photon. The
total angular momentum of the initial state is
J0 with the magnetic quantum. numbe r —M, . After
the photoionization processes, a photoelectron is
detected at a macroscopic distance in the direction
(6, Q) with respect to the incident photon direc-.
tion $. The photoelectron has the linear momen-
tum k and spin component p, in the direction o
the quantization axis P„. The residual ion is left

The magnetic quantum numbers q, M„JIj., and
M on the left-hand side denote the helicities of
the photon, target atom, photoelectron, and re-
sidual ion, respectively. Except the particular
choice of quantization axes, the matrix element
(3.4) is just what we would get in a conventional
formulation of photoionization processes.

The initial state consisting of the incident photon
and target atom can be expended in terms of hel-
icity states of the composite system as

e,e"'
l p.) = g pv'(2J+1)]"'laqM„JM), (3.5)

where M =q —I,. The helicity state of the com-
posite system is given as

r

lkqMo; JM) = QQ (Jo —Mo jq
l

JM)
jm M'.

0

&& (J,M,'jm lJM) X„., (r,.)l J M'),

(3.8)

4 +
~q ~ I Jo-Mo)

k

photon target atom
Mo

photoionization
processes

g'
I &, p&„

(8,$)
0 ———

I J, -M, )
k~

residual ion photoelectron
MN

FIG. l. Schematic diagram of photoio6ization process-
es. The symbols q, Mo, M~, and p are respective helic-
ities.
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where &'Jo- Mojq
~
JM&, etc. are Clebsch-Gordan

coefficients. " The atomic state
~
J,M,'& can be

represented in terms of Dirac orbital. s, which are
described in Appendix B. The multipole interac-
tions of photon fields are discusssd in Appendix
C, and the expansion of the photon angular-mom-
entum helicity state X„,., in terms of photon
multipole potentials is given in Appendix D. Ap-
pendix D also provides a general prescription for
constructing helicity states.

The final. state of the photoelectron and residual
ion can also be expressed in terms of helicity
states as

r
2gr + y a/2

~n&&= g D„."„'!(k.) —
~h.I M. ;J-'M" &,

JPNPP L.
7T

(3.V)

~ X/2

~k l1M;J'M" &
= (, i'~exp(-io„)

K~~ al

(3.9)
where 0„ is the Coulomb phase shift of the photo-
electron 1n the particular channel I&' = (lg ). The
state ~o& J'M") is usually called the oPen-channel
state and has the asymptotic behavior of containing
an outgoing Coulomb sphericalwave only in channel
n. After substituting (3.5) and (3.7) into (3.4) we
can express the transition matrix as

2~3' 1/2

f(qM, l1M, ) = g (24+ l)e'"~d„' ', (0)

(ft )where M' = p, —M . The rotation 111atl lees D~-&&I. &&8~)

in (3.7) effect the rotation of the helicity states
to align with the direction of the photoelectron and

are given explicity as

(3.8)

where d„'~'~, are the standard d functions. "'""'
The final hebcity states must satisfy the incoming-
wave boundary condition a d are given by

x &pM
~

T ~IqM ), (3.]0)

where we have defined

&uM IT'IqM .) && uM. ;=-«.
I g...

(3.11)

In arriving at (3.10), we have used the fact that
ihe electromagnetic interaction is rotationally
invariant which implies J =J' and M =M". To
evaluate the matrix element &&uM

~

TP ~qM, &, we
use (3.6) and (3.9) with the result

&i1M ~T ~IqMo&= g g 2
— i ' exp(io„)(2l + l)(2j+1) "'. ,

f(g J ~ 0

x &l.os p ~~. 1 & &J. M.f.I
~

JM &
—&J, M&q

~

JM&

X J0M0g~ JM
mN' a=1

0

(3.12)

~ &J, —M~q i JM&D, , (3.13)

where the reduced matrix element D, is given ex-
plicitly as

D, =D„I(J.~.)JJ,]
i '~exp(io„)&o& J([ g o&, ~ —X~&,"(r,)((Jo&. . .

i=&

(3.14)
In the foregoing derivations, we have implicitly

This expression can be simplified after applying
the Wigner-Eckart theorem. ." Therefore we ob-
tain

(2l + l)(2j+1)
(l1M.

~

r' ~qM, ) = g
K j

X&I os p,
~
j l1&&J —M jl1

~

JM')

I

assumed the Coulomb gauge (also called the trans-
verse or radiation gauge) for the photon fields.
The appropriate multipol. e interaction operators
in the length gauge"" are given in Appendix C.
Using the interaction strength of multipole inter-
actions presented in Appendix C, we can express
the reduced matrix element (3.14) in terms of
radial integrals. This can be achieved expediently
by using a graphical method. " With (3.13) we
can rewrite the transition matrix element

f(qMoi1M ) in terms of reduced matrix elements
D, as

2w'(21 +l)(2j+1) "'

x e'" d„'«&! (8)&l os p, ~j p&

x p, -M.fI ~JM &&J, -M&q~JM&D. .
(3.15)
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Because we consider only unpolarized target atoms
and do not detect the polarization of the residual
ion, it is convenient to define the expression

1(q'q;P. "P.)=(2J'o+1) ' g f(q'MoP'M ). f*(qM pM )
go@

(3.16)

Substituting (3.15) into (3.16), we obtain

the y axis is perpendicular to both the Z and z
axes. The spin polarization of the photoelectron
is defined with respect to the rotated coordinate
system xyz. The relative orientation of these two
coordinate systems is shown in Fig. 2.

We can easily show that the spin density matrix
element p„.~ of the photoelectron is related to that
of the incident photon p,; by the relation

p, . = p ~ Iqq;p p. (4.1)

Z-=Z (3.18)

f(q'q;p'p) =e'" "~ QZ, „L(q'q;p'p, )D,,D,*,
e'Ot l

(3.17)

where

60
dA

(4.2)

The matrix elements p,; are given explicitly by
(2.1) or (2.8) for a general polarization state of
the photon. The angular distribution and spin po-
larization of the photoelectron can be expressed in
terms of the spin density matrix p= (p„.~) as

and

1 [jj.~][ji'.'~'](-)" ' "2&/'(2l + 1)

L(q'q;p'p) = [l f']d'&. ..&&„„,&(6)

(3.19)

(4.3)

(4 4)

1 =-(Z) = Tr(&/p]/Tr(p].

Here Tr(} denotes the trace of a matrix, and the
electron spin operator Z is

Z=
- t'.- 01

0 j
Evaluation of (4.2) and (4.3) gives the explicit ex-
pressions

&&
(0 s j.'I(0 j.

j
s)

q' q —qj
(3.20)

Here we have used the 3- jm coefficients (the
Wigner 3-j coefficients in the covariant nota-
tion'~'35), and the symbol [j]—= (2j+1)"'.

6"0'

an= p~"p-'-~'

f, = (pi —,
'+ p ,' ',)--

&„=f(p, , -p l, )

P, =(Pi(-P i l)

It is convenient to define

do'

cf0'

dn

(4.5)

(4.6)

(4.7)

(4.8)

IV. ANGULAR DISTRIBUTION AND SPIN
POLARIZATION OF PHOTOELECTRONS

(4.8)

Therefore we obtain the "rotated" density matrix

We define a fixed (at the target) coordinate sys-
tem XYZ such that the Z axis is in the direction of
the photon flux. The X axis can be chosen in any
convenient direction because the photon polariza-
tion is determined accordingly. Of course, the
best choice would be such that the & axis coincides
with the linear polarization vector or with one of
the principal axes of elliptically polarized photons.
We also define a rotated coordinate system xyz
obtained from the fixed coordinate system X1Z by
a rotation with the Euler angles (P, 6, 0).' The
rotated coordinate system xyz is chosen such that
the z axis, making an angle ~ with the Z axis, is
in the direction of the outgoing photoelectron, and

FIG. 2. Geometrical relationships used in spin-polar-
ization formulas. The photon is incident along the Z
axis, and the photoelectron is ejected along the s axis.
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p-=(p, ;)

1+p sin2 -Pe' ~cos2&
(4.1o)

pq g
—p gg

= -tP cosa& sltlap

= i(&, sina@ —&, cosa/) .
In addition, we define for notational purpose

(4.14)

-pe ' ~ cos2& 1 —P sin2&
A~ =—p, D,D*.

Hence we can rewrite (4.1) as

(4.16)

Pll + 0-1-1

pox p-x-x —P sin2+ —S3 ~

p»+ p» = -P cosa& cosa/

= &, cosa/ +S, s ina&,

(4.11)

(4.12)

(4.1s)
I

where y =Q —y, the azimuthal angle of the photo-
electron direction with respect to the linear polar-
ization vector or with respect to the principal axis
k cos& of elliptically polarized photons. We note
that several combinations of the density matrix
elements p... are found to be useful:

lcm'

(4.16)

To evaluate (4.5)-(4.8) using (4.16) we note the
symmetry relations of the coefficients L(q' q; p,

'
p):

L(q'q; p —p-) = (-)'~"~"L(q'q; p p), (4.1&)

L (qq;- p p) = (-) ' ""'"L(qq;p - p),
L( q q;p, 'p)=(-)"'"'L(qq;p'p. ) (4.19)

Hence we obtain the angular distribution and spin
polarization of the photoelectron as

(, , 1)(,
n ar ( —,

' ——,
'

Oj (1

1' /

P
~ ~ g if ( )&' +Ã' - / (
(dQj

2 2

[R +(-)/'/+'R ]P, (cos8)+
~

[R~ ~+( )/+/ +iR ~/dr (8)
(

o)

(4.ao)
~ ~ /

7r(l'1 l+1)
~

[R„+(-)""R,,]d,'0(8)
, -1 1 0.

/

[R + ( )~ +&'o+/+j'+1R ] [di (8) + ( )l&+1z+l dl (8)]
1-2)

(4.21)

P & ~ ~+jo-i &~ ~ ~ g + j+)'+lg yl g

2 2 -1 -1 1 0

-i ~(r r' i+i) '/

[R +( )/ /"&R ]P,(cos8)

o)

(4.22)

+ Y [R, ,+(-)"'"%„]d,',(8) (4.as)

We can express the d-functions in terms of certain
combinations of Legendre polynomials P, (cos8) as

d,',(8) =-[l/(l+ 1)]'/' sin '8(-cos8P, +P, ,), (4.24)

d~~o(8) =l' '[(l —l)(l+1)(l+ 2)] ' 'sin '8

x f[-(l+1)+ (l -1)cos 8]P, +2cos8P, g,
(4.26)

d' (8)+d' (8) =-4[l (l +1)] / sin '8d~ (8) (4 26)

diaz(8) —d~ z(8) = [2/(l+1)][(l —1)(l + 2)] ~/~ sin 38

x ([(l' —l —4) —l(l —1) cos~8] cos8P&

+ [-(l + 2) (l —1)
+(l'+l+2) cos'8]P, g.

(4.2V)
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The transformation of components of the polariza-
tion vector among different coordinate systems
can be carried out easily. The transformation
matrix is given in Appendix E.

In deriving the foregoing results, the jj coupling
is assumed. To obtain corresponding expressions
in the I-SZ coupling, we simply make the following
subs titution:

limit

A' "(kr) ~ (62/') '/' (2 (5.7)

peahen applicable, this considerably simplifies the
numerical calculation of radial integrals. Non-
relativistic formulas are obtained by the replace-
ment

D, = D,,[(J&)J'J6] Q ~ ~ p] (5.8)

-g[(2L+1)(2S+1)(2j„+1)(2J +1)]' '

I E I
x S 2 S D, [(LS)JJ ].

J' j J
(4.28)

Here the final residual ion is specified by (L S )J,
and the combined final system by [(L, I )L(S 2)S]J.

in E(I. (5.5). When (5.7) is also substituted in (5.5),
the matrix element reduces to that of velocity form
with an additional factor of (61/') '/'. A similar
simplification can be made in the length gauge,
which gives rise to the reduced matrix element of
length form in the nonrelativistic limit.

Substituting j =j' = 1 and (5.1)-(5.4) into (4.20)-
(4.23), we obtain the differential cross section and

spin polarization of photoelectrons in the electric-
dipole approximation as

R„+R, , =D(~.')D2(~. ),
R» —R, , = p sin2aD(E' )D*(g ),
R, , +R» = —(() eos2a,'cos2QD(w,')D*(/(, ),

(5.1)

(5.2)

(5.3)

R, , —R» = it/ cos2-(2 sin2(t)D(K')D" (K ) (5 4)

where we have used the relations (4.11)-(4.14).
The reduced matrix element D()t, ) is given ex-
plicitly in the Coulomb gauge as

V. LOW-ENERGY PHOTOIONIZATION PROCESSES

A. Angular distribution and spin polarization

For the photoionization of outer subshell elec-
trons, which requires photons with wavelengths

0
A. & 100 A, the electric-dipole transition domin-
ates. Therefore it is.sufficient to retain only the
electric-dipole interaction in the multipole expan-
sion of photon fields. In the electric-dipole ap-
proximation, we have j = 1, and the corresponding
reduced matrix element does not depend on q. Ke
then obtain the following simplified expressions:

dn(8 "=4.'"" (5.9)

P, (8, (t)) = gp sin2u cos8/F(8, (t)), (5.12)

where

F (8, (t) ) = 1 ——,
'
p [P,(cos 8) ——', t) cos2n cos2T() sin'8] .

(5.13)

The differential cross section (5.9) in special.
cases reduces to previous results. """ The dif-
ferential spin polarizations (5.10)-(5.12) also in
special cases agree with previous results. "-"
For comparison, we note particularly that our
spin-polarization parameters are related to those
of Lee" by f. =-&„q=2E„a dKn=r, . In (5.9)-
(5.13) the dynamical parameters o, P, $, 2I, and f
are given as

P„(8, (())) = ($p sin2o. '+ qp cos2/2 sin2(t)) sin8/F(8, (t)),

(5.10)

P (8, Q) = ti(1+P cos2n cos2$) sin8 cos8/F (8, (t))1

(5.11)

N

6(e, l=i' ~ exp(ie, )(Z, Z;'A "(kr,.) J),
j=l

where the electric-dipole potential is

A(E1)(y r) A(E)

(5.5)

8~4

(dc(2J6+ 1)

p p-1(6 )1/2 P / l(2

~0/ J', gf'I J.' 1
2

~ f

C. ..
Oj

(5.14)

2 '/'j, (ar)Y„.(r) 1 j,(er)Y„„(r).~

~

3r
' '"

3v
(5.6)

Here j,(lr) is the spherical Bessei function and

Y/, (r) the vector spherical harmonies. " We note
that the operator A'E" has the long-wavelength

o-1 (31/2/2) Q ( ) Il /21e/'i'
I 2

e~ J', c~ J'

I C0t ~ a| y

(5.16)
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lz(3)5-1/2

where we have defined

o= Dg D*w

)/~+r +a/a

1)C~r(ggy

(5.17)

(5.19)

It is interesting to note that the functions E, PQ,
P„F, and P+ are all linear functions of the Stokes
parameters S,. Physically, this fact corresponds
to the assertion made by Stokes" that any meascc~e-
ment using Polarized light is a linear function of
the parameters S, For this reason, the differen-
tial cross-section and spin-polarization formulas
of four suitably chosen photon polarizations should
be sufficient to determine the desired formulas
(5.10)-(5.13) for arbitrarily polarized photons. We
will discuss this in Appendix F. To write (5.10)-
(5.13) in a concise matrix form, we define the
column matrices

J J' l J J'
D(~„')D*(~ ).1 1 Jo

(5.20)

As noted at the end of Sec. IV, the corresponding
formulas in LSJcoupling can be obtained by making
the substitution (4.28).

In terms of Stokes parameters we can rewrite
Eqs. (5.10)-(5.13) as

P, (&, P) = [rt( S, sin2-$+S, cos2$)+fS, ] sin&/E(8, p),
(5.10')

P, (&, P) = r/[1 —S, cos25 —S, sin2$]sin8 cos&/F(& y)

(5.11')

and

I',F

S~
'=- 'S

2

(5.21)

(5.22)

P, (8, 4 ) = KS, cos&/F(&, y), (5.12') Consequently, the angular distribution and spin
polarization of photoelectrons are related to the
Stokes parameters by the relation

F(8, &f&) =1-—,'P[P, (cos&)

+ —',(S, cos2$+ S, sin2$) sin'&].
(5.13') where the matrix A is given as

(5.23)

1 ——,'PP, (cos&) ——,'P cos2$ sin'&

-q sin2$ sin&

--,'P sin2$ sin'8

q cos2$ sin&

o

f sin&

g sin8cos& -r/ cos2$ sin& cos& -7i sin2$ sin8cos&

g cos&

(5.24)

The spin polarization with respect to the fixed
coordinate system Xk Z can be derived by using
the transformation formula (E4) in Appendix E.
We therefore obtain

Px(8, Q) =I.-q(1+S,) sing+ [7iS, + (E+ i)S,] cosP]

x sin8 cos&/E(8, P), (5.25)

P„(8,Q) =(7i(1 —S, ) cosQ+ [-r/S, + ($+ g)g] sin&pj

x sin8 cos@/E(8, Q), (5.26)

P (&, 4)

[/i(S, sin2$ —S, cos2$) —$S,] sin'8+ &S, cos'8
E(8, Q)

(5.27)

The spin polarization of the total photoelectron flux
can easily be obtained from (5.25)-(5.27) by inte-
grating over all angles. The total spin polariza-
tion is then given by
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Here the parameter ~ is defined as

(5.28)

(5.29)

where 0 is the polar angle of the photoelectron di-
rection referring to the photon polarization vector.
%e can also simplify the nonvanishing components
of the spin polarization as

'(L——2E), (5.30)

which is to be compared with the spin polarization
of photoelectrons ejected by pure circularly po-
larized photons considered by Fano." Again we
see that the total spin polarization P~ is a linea~
function of the Stokes parameter S,.

Now we consider special cases of the angular-
distribution and spin-polarization formulas (5.9)-
(5.12).

(i) For pure or mixed circularly polarized pho-
tons, we have a= v/4 and n=-w/4, which cor-
respond to the right and lef t circular polarizations,
respectively. Therefore we obtain

dZ {8 &}=—[1—2PP, (cosg)1, (5.31)

( singP.(8~4)=+PI ~pp ( 8)~ (5.32)

(g ~)
'g sing cosH

1 ——,'PP, (cosg) '

f cos&P.(8, 4)=+PI .pp ( g)~

(5.33)

(5.34)

(5.35)

where the + and —signs refer to the right and left
circular polarization, respectively (or the positive
and negative helicities). In the limiting case P = 1,
the formulas (5.32)—(5.34) reduce to those for pure
circularly polarized incident photons. '

(ii) For pure or mixed linearly polarized pho-
tons, we have o. =0. The formulas (5.9)-(5.12)
become

2g sing cosg.{' ~)-1.PP,(-.g)

Pg, )= 2q cosQ cosgcos8
1+PP, (cosg)

(5.41)

(5.42)

By a rotation of the coordinate system xyz on the
xy plane through an angle Q=-tan '(tang/cosg), we
can make the new y' axis coincide with the direc-
tion of the photoelectron polarization vector
P=P e +P e,. In this new coordinate system
x'y'z' we have

2' sin8 cosg
1+PP, (cosg) '

P,.{8,y}=P., (8, y) =0.

(5.43)

(5.44)

(8, Q) =-4 [1—2PP, (cosg)t, (5.45)

P, (8, y) =P.(8, y) =0, (5.45)

q sin8cosg
1 ——,'PP, (cosg)

(5.4V)

%e note that when the photon polarization vector
coincides with the X axis, i.e., @=0, we have

Consequently, the v' axis lies on the FZ
plane (and, of course, the xy plane) and is per-
pendicular to the Xz plane. To compare with the
pure linear polarization result of I ee,"we note
that his x' and y' axes correspond to our -x' and
-y' axes, respectively.

(iii) For unpolarized incident photons, we simply
take P =0, and the angular-distribution and spin-
polarization formulas (5.9)-(5.12) become

q sin2$ sing
P,(8, @)=P F(g @)

q(1+ p cos2$) sing cosg
F(8, e)

P,(8, @)=0,

(5.35)

(5.3V)

{5.33)

The spin-polarization formulas (5.46) and (5.47)
agree with previous results. ' '"

The maximum photoelectron polarization attain-
able by any photons incident on a specific target
atom can be derived by considering (5.10}—(5.12).
The total spin polarization of photoelectrons at
certain angles (8, Q) is given by

P(8, y)-=)P(8, y)~

=[P:(8,~) P;(8, ~). (P~8)1'" (5.«).
E(8, P) = 1 —~P[P, (cos8) ——',P cos2& sin'8].

(5.39)

F(8, $) = 1+PP, (cos8), (5.40)

For pure linearly polarized incident photons, the
degree of polarization p equals 1, and we can re-
write E(8, Q) as

The maximum of P(8, P} is best obtained numer-
ically because of the large number of parameters
involved. However, the maxima of spin-polariza-
tion components P„, I'„, and I', for specific cases
can readily be calculated. %'e give a few examples
as follows.

(a) Circularly polarized photons:
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4 2P z/2

5
—&P& 2 at sin8=

3

-1&P &-, , at 8=-

I~.l...=l~l-
I, .3P (2 P-).

(5.48)

2
I srlmax I ll (2 p)(4 . p)

2P 1/2
at sin8= (5.50)

(5. 51)

2

(1+P)(2 —P)

a/2 . — I2+2P''/'
at sin& =

+

(5.52)

(b) Linearly polarized photons:

These relations can serve as checks on the self-
consistency in the measurement of the angular
distribution and spin polarization of photoelec-
trons. It is also interesting to note that when P
reaches its maximum value 2 the spin polariza-
tion must be zero, and that when P attains its
minimum value -1 there will be no spin polariza-
tion perpendicular to the reaction plane defined by
the Z and z axes. These are demonstrated in Fig.
3.

(c) Unpolarized photons:

.(2-P)(4.P).
4 —2P

at sin9=

(5.53)

The maximum number of independent dynamical
parameters for photoionizations in the electric-
dipole approximation is five. However, there are
cases in which this number is less than five Ex-.
amples will be given in the next subsection, where
we consider the photoionization of closed-shell
atoms.

(4+ p)/4, -1& p&-',

I3P(2- P)/2]'", ;= P = —2

I
n I

-. [(1+p)(2 —p)/21"',

l~l - (2- p)/2

(5.55)

(5.58)

Because the polarization vector P must have a
length less than or equal to 1 at all angles (8, P),
we can establish interesting kinematic relations
between the angular-distribution parameter P and

the spin-polarization parameters $, r/, and f:

B. Explicit formulas for closed-shell atoms

8m-
ET

(dC

where

(5.58)

Because of special interests in closed-shell
atoms, we present explicit expressions of the five
dynamical parameters o, P, 8, r/, and f in this
section. The total cross section (5.14) for closed-
shell atoms is given as

and also c= ID/. I'+ ID/I'+ ID/ I' (5.59)
1 -1&P&-',

(2 —P)/8+ I2P(2 —P)/3)'", —', - P - 2.
(5.57)

Here for brevity we have used the notation j=J,
D/, —=D(x )/ ~ „etc. The other parameters for
closed-shell atoms are

(2j 3) 2 (2j l)(2j+3)
~ P 2j+5 ~D [2 3 2j —1

2(2,) I /. I'-- (2j)(2j„) I
/I'. 2(2j„) I

"I'-,—, ,(,,-„)
(2j —1)(2j+3) "', 3 2j+3 "/'

»(2j+2) . '-' " ' '2j+2 2(2j) (D~D/. , + c.c;)I ir, (5.80)

' = &-&'""'*I- 4(2 j) /-' 2(2 j)(2j+ 2) / 4(2j+ 2)

3 (2j—1 )(2j+ 2)
4(2j), 2

r

(D/ qD/ + c.c ) — . (D/D&+, ~+ C.C. ) g (5.8])3 2j(2j+3) "'
4 2j+2 .
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(2j —1)(2j+ 3)
(D~ qD)* —C.C.)+ 4 .,~ . , (D) qD~*, )

—C.C. )
2j(4j+ 2)

(2j —1)(2j+ 2)
2

+ C. C.

'( )l+j+1/2
1/2

4.2(2j+ 2)

2)+3""-4 )I .
)

(D,fD, - ..c)cI c,

2 2j ~ ' 2j 2j+2 ~ 2 2j+2 ~" 2 2j
3 2j(2j+3)

(5.62)

(5.63)

where (-)' gives the parity of the residual ion. The
expression for )3 agrees with previous results. "4'

The parameter & for the total spin polarization can
be obtained from (5.61) and (5.63) as

D& ——[2(2j)(2j+ 2)] '~'(-MD, D+ (2j+ 1)D„.[(2j —I)(2j.3)]"'D„},
(5.68)

, (i) l =j+-,':
+ ' D~ ~ D~ ]

1 (2j —l)(2 j+ 2)

2j. 2
D),D)*+c.c. o,

(5.64)
(n) l=j-2'

+2 2

1 2 j(2j+ 3)
(D&DP„+ c.c.)j+2 o'.

D~ = D[(LS)JJ,], ' (5.66)

we have explicitly:
(~) i=j+2.

D)) g
= [4(2j)1 ' ~ 2I,[2(2j—1)]' 'D„—(2j —I ) ~ 'D„

+ (2 j+ 3)'~2D„}, (5.67)

I.5
I I

i(I ~

!8l

I(l ~
0.5—

I
!I&l"I.o I

0.0 I.O
ASYMMETRY PARAMETER P

2.0

FIG. 3. Maximum ranges of spin-polarization, para-
meters plotted against the angular distribution para-
meter P.

(5.65)
It is of interest to, note that in the case of (l = 1,
j= 2) different components combine incoherently
as indicated in (5.64).

The corresponding formulas in LSJcoupling can
be derived with the substitutions (4.28). With the
short-hand notation

D&„=[4(2j+ 2)] ' [[2(2 j+ I)]'~ 'D + (2 j+ 1)' 'D»

+ (2j+ 5)'"D„}. (5.69)

(ii) l =j -2.
D& ) =[4(2j)] ' I[2(2j+1)] DM+ (2j+ I)'~2D~~

-(2& —3)"'D„}, (5.70)

D&
——[2(2j)(2j+ 2)] ' ~ 'f MD, D+ (2j+ 1)D»

- l(2j - I)(2j+ 3)1" D.,},
(5.71)

D, , =[4(2j+2)] ' '([ 2(2j +3)]"' D„—(2j+3)' 'D„
—(2q —1)"'D,}. (5.72)

«'= (I -P/2)(I. P) -~',

0 = 1 —P/2.

(5.73)

(5.74)

Note that in these cases when P reaches its mini-
mum value -1 only the longitudinal spin polariza-
tion is possible with the corresponding parameter
g = 1.5.

VI. APPLICATIONS

All the dynamical properties of photoionization
processes are contained in the reduced matrix
elements (3.14). These reduced matrix elements
may be calculated in separate single-channel cal-
culations or a multichannel calculation. Several

It is clear that the maximum number of inde-
pendent dynamical parameters is five because
there are at most Qree dipole amplitudes and two
relative phases. For cases with j = —,', there are
only takeo dipole amplitudes and one relative phase;
hence only three independent dynamical pa.ram-
eters are possible. For examples in the npj/2 or
ns, /, subshell photoionization, we can choose ~,
P, and q to be the three independent parameters
and obtain
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relativistic multichannel theories have been devel-
oped, e.g. , the relativistic random-phase approx-
imation, "~' relativistic quantum-defect theory, '
relativistic R-matrix theory, and the relativistic
equation-of-motion method. In addition, we intro-
duce a relativistic version of the &-matrix theo-
ry, ~ which is outlined in Appendix Q. When rela-
tivistic effects are not important, nonrelativistic
multichannel theories may also be used in comput-
ing the reduced matrix element (3.14) with the non-
relativistic replacement (5.8}. Also we note that
the LSJ coupling may be more suitable in a non-
relativistic calculation, in which case we would
need the transformation formula (4.28). Non-
relativistic multichannel theories have been re-
viewed recently, 4 and references therein shouM
be consulted. Nevertheless, the spin-orbit inter-
actions have to be treated to observe polarization
effects.

The present forxnulation for the spin polariza-
tion of photoelectrons has been applied using the
nonrelativistic K-matrix method with the spin-
orbit interactions included" and using the rela-
tivistic random-phase approximation. '~' Excel-
lent agreement with experiments' ' has been ob-
tained.
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APPENDIX A: A CONVENTION OF PHOTON SPIN
POLARIZATION

To make unambiguous the meaning of parameters
p, 0., andy used inthis work, we will introduce
briefly our convention. We choose a coordinate
system XFZ such that the Z axis is in the direc-
tion of the photon flux. The X axis can be chosen
in any convenient direction because the photon
polarization is determined accordingly. A pure
polarization state (completely polarized) can be
characterized by the polarization vector j which
has the general form

q = &„e '"cos(n —~v)+ e,e'"sin(n ——,'s) . (A1}

Here e, and e, are the spherical unit vectors"
in the coordinate system XFZ and correspond to
the positive and negative helicity states, respec-
tively. We shall refer to e„as right circular and
to e, as left circular polarization; in optics the
converse definition is Nsmally adopted. It is suf-
ficient to restrict the parameters in Eq. (A1} to
the ranges - v/2&a& v/a2nd 0 ~ @&v. The case
n =0 denotes linear polarization at an angle y to
the Ã axis, the cases n = v/4 and -w/4 denote
right and left circular polarizations, respectively,

GHT

Linear

FIG. 4. Types of photon polarization as determined by
parameter e. Right and left circular polarizations cor-
respond to positive and negative helicity states, respec-
tively.

and cases with arbitrary e correspond to ellip-
tical polarizations with the principal axis k cosa.
at an angle y to the X axis. In general, the para-
meter n specifies the type of polarization, which
is illustrated in Fig. 4. The parameter y specifies
the azimuthal orientation of the polarization, and
this is best illustrated by the general case of el-
liptical polarization, where the ellipse traced out
by Re(E} is rotated through an angle y (see Fig. 5).
The density matrix corresponding to the polariza-
tion state (Al) is

1 1+ sin 2&v -e " cos2~p=—
~. -e'2" cos2o 1 —sin2e g

(A2)

FIG. 5. Precession of the electric field at a given
point in space for an eQiptically polarized photon. The
ellipse traced out by the electric field E is oriented with
one of its principal axes making an angle y with the X
axis. The direction (right or left) of precession de-
pends on the sign (positive or negative) of parameter o..

An incoherent sum of equal amounts of two mutu-
ally orthogonal polarization states is a completely
unpolarized state; a notable example is the natural
light. The most general polarization state can be
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1 ]+p sjn2~ pg ' ~ eos2Qp=—
-pe cos 2n 1-p sin2n

(As)

Note that when p= 1, we recover the completely
polarized state (A2). The three parameters p, n,
and y completely specify an arbitrary polariza-
tion state of the photon.

regarded as a mixture of completely polarized
and completely unpolarized states. The probabil-
ity P (0 &P & 1) of complete polarization is referred
to as the degree of polarization of the photon. The
most general polarization state cannot be des-
cribed by a polarization vector but rather by a
density matrix:

APPENDIX C: MULTIPOLE INTERACTIONS
AND THEIR INTERACTION STRENGTHS

We shall first define the normalized magnetic,
electric, and longitudinal multipole potentials

) j./2
A', ")=i' —

I j,(kr) y„(r), (C1)

Therefore to use formulas presented in Ref. 34,
where the convention (B5) is used, we have to
make the substitution

(BS)

APPENDIX B: DIRAC ORBITALS

Cr(G„„G„,„+E„„F„,„)= t)„„,. (Bs)

The angular functiors n„ in (B2) are normalized
spherical spinors defined as

gm ~g)m ~Z P j™Y)~ (B4)

We review briefly the Dirae orbital and its phase
convention used here. Dirae orbitals in central
field can be completely specified by the quantum
numbers n, ~, and m. For a definite I(, the total-
angular-momentum quantum number j and the
orbital-angular-momentum quantum number t of
the large component, which determines the parity
of the Dirac orbital, are given as

K ~
K&0

-g —1, a&0 .
For example, the values v= -1, 1, —2, and 2

I

correspond to s, /» p, /» p, /» and d, /, orbitals,
respectively. The magnetic quantum number m is
associated with the z component J, of the total
angular momentum. Dirac orbitals with definite
nKm have the explicit form

1 (G„„(r) n„„)
) iz„„(r) n„.~

Here the radial functions G„„and E„„are the large
and small components. respectively, and satisfy
the orthonormality condition

i/2
A~. (kr)»(J. ) (r)j+

I/2 ' 1/22 j, ~ A
A', '=i' — 2.—1 j, ,( k)r»(g, ) (r)r 2j'

j~ ] 1/2
+

2 1 j J„(kr)pq(~, )) m(r)j+

(C2)

(CS)

where Y&, are vector spherical harmonies, "and
the radial functions j, (kr) are spherical Bessel
functions (of the first kind). The multipole poten-
tials are normalized such that

Jtd'rA~q", ),A~)')~ = —25(k' —k) &, ,5;.qt))m k2
(C4)

Z(&&v) ()t 'A(&)
gm gm (C S)

where the superscript v signifies that the inter-
action reduces to that of velocity form in the non-
relativistic limit. Multipole interaction operators
in other gauges can be obtained by making gauge
transformations. One particular choice is the
length gauge" ":

(i) Magnetic multipole interactions are the same
as in the Coulomb gauge.

(ii) Electric multipole interactions:

T(,„"=ikX, —()( ~ [A(,s)+ &X,„], (C7)

with a=M, E, or I . The multipole interaction
operators are given in the Coulomb (or transverse)
gauge by

(i) magnetic multipole interactions:

T( M) P .A( N) (C5)jm jm

(ii) electric multipole interactions:

where Y,„is the spherical harmonics, and X„ the
spin eigenfunction with s= 2 and s = p. , given, for
example, by the two-component Pauli spinor.

Note that the phase convention (B2) used here is
different from that of Ref. 34, namely,

where the gauge function X& is

j,. k~ Y~

Note that

(C 8)

1 (iG„„(r) n„

~ p„„(r) n
(B5)
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After substituting (C8) and (C9) into (C7) we get
P+

1/2' + $ 1/2

he

x (jiV,„&'"~. (C12)

(ii) Interaction strength of electric multipoles:

+ I)li"X' '"'(a b)=ii '7& '! . ! Ci(ab)
(2(2j+ I)]

2j+ y x/2
+ . ji i(kr)&T& 1'&&i+» ~

(C10)

Here the superscript l signifies that the interaction
reduces to that of length form in the nonrelativistic
limit.

The interaction strength of a tensor interaction
T& of rank j is defined by the signer-Eckart
theorem" as

&j.m I i Ij&,m»= ' '!Xi(a;b), (C11)(.
1&m, j j&l

where the vector-coupling coefficient is in the co-
variant notation, "and the interaction strength

X,.(a;b) can be expressed in terms of radial inte-
grals. The interaction strengths of the multipole
interactions T~"', T& '"', and T&~" can easily be
evaluated using formulas given in Ref. 34. We
present here only the results:

(i) Interaction strength of magnetic multipoles:

2j+ S"/'
kg; jm 4 J

dkD ",'(k)*A-„,. (D8)

In terms of the normalized electric and magnetic
multipole potentials we get

A „,,„=+(I/W~)(A &e&+ iA &s&), (D7)

where q = + 1 correspond to the positive and nega-
tive helicity states, respectively, of the photon.
We may also define the helicity state

(L)
A~ . , =A (D8)

which, however, is not a physical state of the
photon.

Elect on helicity states. The linear-momentum
helicity state is given by

~ y~ X/Z

D.",&(k) I»; jm&, (

where D&i„'(k) are rotation matrices. Here the
helicity states are normalized such that

(kX!k'X'& = 5'(k —k')5«, , (D3)

(k~;j Ik'~', ~' ')=, a(k-k')~«. b, ,.b....
(D4)

Photon heh city states. The linear- momentum
helicity state is given as

A —(27&) 3/2e eik
ka

The angular-momentum helicity state can be ob-
tained by

x [(jq,S',g'"" (j„,q, )""—],
X& "( b)='i' ' (2j+1)(j 1)1! C( b)

X [(~ gp &even (~ q &even]

(C13)

(C14)

where X, is the spin eigenfunction with the quan-
tization axis chosen in the k direction, s~= p, . The
angular-momentum helicity state can be obtained
by

In (C12), (C13), and (C14), the notations used are
defined in Ref. 34 with the modification of phase
(B6) in Appendix B.

APPENDIX 0: HELICITY STATES

r
(r Ikp, ;jm) = dkD",'(k) &I'Ikti&

= Qi' . (lost' Ijti&(r I«m&,
2l+ ~

(Dlo)
where (r I&&m& is the usual angular-momentum
eigenstate,

Angular-momentum helicity states (or spher
ical helicity states) Ikk; jm) with helicity X can
be constructed from linear-mom entum helicity
states (or linear helicity state) Ikk&, and viceversa.
They are related by the following

I»; jm &
= ' dkD'. „'(k)* Ik~&, (DI)

and

&P I&~m&=-&l„(r)=-—~ "

In the Pauli approximation,

n„.)
0„)
we have

&r I«m&= &r I(ls)jm&

= Q (lmsv Ijm&&r Ilm&y„,
mv

where X„ is the spin eigenfunction with s, = v.

(D12)
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APPENDIX E: TRANSFORMATION
OF THE POLARIZATION VECTOR P

The polarization vector P= (Pz, Pr, P~) in a
coordinate system XYZ can be expressed in terms
of components P~„Py Pz along axes of a ro-
tated coordinate system X'Y'Z'. Assume that the
coordinate system X'Y'Z' is obtained from the
coordinate system XYZ by a rotation with Euler
angles ($, 8, g); this is illustrated by Fig. 6.
Hence the components of the same polarization
vector P in these two coordinate systems are

related by the relation

P'=AP, or P=A-9',
where

f PX Px

P =— P~, P'= Pr.
Pz,

and the transformation matrix A is

(E1)

(E2)

cosP cosg cosg —sing sing sing cosg cosg+ cosQ sing -sing cosg

A = -cosP cosg sing —sing cosg -sing cosg sing+ cosQ cosg sing sing (Es)

cosP sing sing sing

t' PX cosP cosg -sing cosP sing 'P„
sing cosg cosQ sing sing

Note that the transformation matrix A is orthog-
onal, A '=A.

Consider, for example, the two coordinate sys-
tems XYZ and xyz related by the Euler angles
($, 8, 0) as illustrated in Fig. 2. We can obtain
the components in the fixed coordinate system
XYZ by the transformation formula

do'

d = a+ bS, + cS,+ dS3. (Fl)

suitably chosen photon polarizations should be suf-
ficient to determine the desired formulas (5.9)-
(5.12) for arbitrarily polarized photons. As ex-
amples, we shall first show that the differential
cross-section formula (5.9) can be derived in this
way. Because the differential cross section is a
linear function of the parameters S, , we assume
the general form

Pz P
Z &

APPENDIX F: AN ALTERNATIVE DERIVATION
OF THE GENERAL FORMULAS (5.9)-(5.12) (F2)

Suppose that we know explicit formulas for four
different photon polarization as follows:

(i) Right circular polarization: (S,=O, S,=O,
S,=1) or (P =1, n =m/4)

do'

dQ 4m
—[1 ,PP (cos8)]=—a—+d—

As mentioned in Sec. V, any measurement using
polarized light is a linear function of the para-
meters S, Consequently, the differential-cross-
section and spin-polarization formulas for four

(ij,) l,eft circular polarization: (S,= 0, S,= 0,
S,=-1) or (p= 1, o'= -&/4)

do' 0'

dO 4m
—[1 'PP (cos 8] —= a ——d—. (F2)

(iii) Linear polarization along the 1' axis: (S,= 1,
S,= 0, S,=0) or (p = 1, o. =0, y=v /2)

dQ 4m
—= —(1 ,'P[P (cos8)+——',—cos2$sin'8)]

(F4)
Y

FIG. 6. Coordinate system X'Y'Z' is obtained from
coordinate system XYZ by a rotation with Euler angles
(P 0 0)

—:8+C . (F5)

From (F2)-(F5) we can easily solve for a, 5, c,

(iv) Linear polarization along an axis making an
angle of -v/4 with the X axis: (S, = 0, S, = 1,S, = 0)
or (P = 1, & = 0, p = -v/4)

(1 —2P[P,(cos 8)+ —,
' sin2$ sin'8]]
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and d; therefore the general formula (5.9) is ob-
tained. Consider another example. Vfe assume

Pg = a+ bS, + cS2+ dS»

and the following explicit formulas:

Again after a, b, c, and d being solved from (F/)-
(F10), the general formula (5.10') is obtained.

APPENDIX G:. RELATIVISTIC MULTICHANNEL
E-MATRIX METHOD

The underlying idea of the K-matrix method is
to obtain eigenstates of an improved Hamiltonian
H using a complete set of basis states from an ap-
proximate Hamiltonian H, . %e denote the basis
states by

~

nE) where n is the basis-state index
(called the cisanne/ index) and E the total energy.
The residual interaction is defined by

V =H -Ho. (Gl)

The multichannel K matrix (u'E' ~K(E)
~

o'.E) is de-
fined by the integral equation

(~'E'iK(E)
i
uE)

= (n'E'
~

V
~

nE)

„(c.'E'I VI o. "E")(n"E"
I K(E)l nE)

+ P d~ll

(G2)

where (o'E'~ V
~

nE) is the matrix element of the
residua. l interaction (G1). In (G2), the symbol 8'

indicates that the Cauchy principal value of the in-
tegral is to be taken. The integration symbol
fdE" denotes implicitly both a summation over the
discrete spectrum and an integration over the con-

$ sin8= a+ d, S,= 0, S,= 0, S, = 1

-g sin8= a -d, S, = 0, S,= 0, S, = ] (F8)
+x F =( -ri s in2$ s in 8 = a+ b, S,= 1, S,= 0, S,= 0

( F9)
q cos2$ sin8= a+ c, S,= 0, S,= 1, S,= 0.

(F10)

tinuum spectrum. By diagonalizing the on-the-en-
ergy-shell & matrix, we obtain

g («
~

K(E)
~

'E)U„.,(E)= ~,(E)U,(E), (G3)

where X,(E) and U„(E) are the ath eigenvalue and
the associated eigenvector, respectively. The
eigenstates

~

aE) of the improved Hamiltonian H,
called the eigenchannel states, are given by

a I 0.'

A.,(E)= -(1/w) tang, (E) . (G5)

The open-channel state
~

nE ), which has the as-
ymptotic behavior of containing an outgoing
Coulomb wave only in channel n, is given by

~nE)=pe-*' ' U..(E)e '"" ~eE). (GG)

Here 5 (E) is the phase shift of channel ~nE) with
respect to the Coulomb wave. The open-channel
state

~

uE ) defined in (G6) should be substituted
for

~

n J'iVi") in (3.9) in a relativistic multichan-
nel K-matrix calculation.

For the present purpose, the complete set of
relativistic orbitals may be Dirac-Fock or Dirac-
Slater orbitals or orbitals from a model potential.
The basis channel states constructed are linear
combinations of Slater determinants, having de-
finite parity and total angular momentum. Prac-
tically, the eigenchannel states of an improved
Hamiltonian are computed within a restricted
Hilbert space spanned by a finite number of cho-
sen basis channels. For a parity-conserved and
rotationally -invariant residual interaction, these
chosen basis channels should have the same par-
ity and total angular momentum. Certain relativ-
istic interactions' "are suggested.

x U, (E) cosy, (E),
where q, (E) is called the eigenphase shift and re-
lated to the eigenvalue X,(E) by the relation
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