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As a sequel to our previous discussion of a hydrodynamic model for the condensation of a near-critical fluid, we
describe the dynamics of a diffuse planar liquid-vapor interface. We show that inclusion of the thermal mode and its
coupling to the density mode is essential in deriving the dispersion relation for capillary waves, and the isothermal
approach based either on hydrodynamic or mean-field kinetic theory must lead to a nonphysical description of
excitations of the diffuse interface. The problem of the rate of growth of a critical liquid droplet in a supersaturated
vapor is reconsidered, and a corrected-expression for this rate is shown to have the expected scaling behavior.

I. INTRODUCTION

An essential ingredient of any systematic theory
of first-order phase transitions is an analysis of
the dynamics of the interface which separates the
phases. In conventional hydrodynamic problems,
these dynamics can be described by use of the
Euler or Navier-Stokes equations together with
phenomenological boundary conditions imposed
at a supposedly sharp bounding surface. In phase-
transition problems, however, one must use models
in which material is allowed to cross the inter-
face. That is, the interface must be diffuse, and
the applicability of conventional boundary con-
ditions is not obvious. This problem arose in
our earlier theory' of the nucleation of a droplet
during condensation of a near-critical fluid.
(Our previous paper' is hereafter referred to as
I.) It was argued in I that, although the equili-
brium properties of the interface —its energy
the density profile, etc. , —can be described by
means of an isothermal free-energy functional,
the dynamics of the interface require a full adia-
batic description. Indeed, the rate of growth for
the critical liquid drop is determined by heat dis-
sipation in the vicinity of the growing embryo of
the new phase, and the isothermal calculations
give rise to an incorrect rate of growth.

In I, we developed a generalized hydrodynamic
model for the description of a diffuse liquid-vapor
interface. That model is used in the current work
in which we address the problems of the dynamics
of a planar interface separating the bulk of the
liquid from the bulk of the vapor. This classical
van der Waals problem has previouslybeenstudied
in the literature~', but we feel that these earlier
attempts are not completely satisfactory, especial-
ly near the critical point. In fact, both of these
calculations are isothermal; and the more recent
one, ' based upon kinetic theory, leads to an

expression for the spectrum of capillary waves
in which the temperature dependence is non-
phys ical.

The plan for this paper is as follows. In Sec.
II we shall recall the basic assumptions of our
hydrodynamic model from I and discuss in detail
the formulation of our problem. In Sec. III we
apply the model to the problem of capillary waves
on a diffuse interface. We prove that inclusion of
the slow thermal mode is essential in-restoring
the validity of the Laplace boundary condition for
the velocity field on the interface. The correct
expression for the spectrum of capillary waves
is also derived in that section. In Sec. IV we
rederive our expression for the rate of growth
of a critical nucleus of the new (liquid) phase
growing in the supersaturated vapor. Our cor-
rected expression now agrees with the prediction
of dynamical scaling ].aws and with explicit cal-
culations of Kawasaki. ' Section V contains final
comments and conclusions.

II. THE HYDRODYNAMIC MODEL

Fg= 202 CA tl r)A 1 (2.2)

and F~ is the thermodynamic potential. For pres-

The basic quantity which enters our model is the
coarse-grained free-energy functional F dis-
cussed in detail in I. [See also Ref. (5).] Here
F is a functional of the fluid density n(r), the
local velocity u(r), and equivalently, the tempera-
ture T or the internal energy density per unit
volume e(r).

As in I, we hypothesize that F consists of two
parts:

F =F„+FU,
where F„is the fluid kinetic energy
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ent purposes we write

F~= d'r e r +&K &n —pn-Ts e, n . 2.3

The second term on the right-hand side of F„ is
the van der Waals-Cahn-Hilliard gradient energy
term, p. is the chemical potential, and s is the

entropy per unit volume. The states of the sys-
tem for which F is stationary include the homo-

geneous liquid and vapor phases and also states
in which a critical liquid drop is immersed in a
supersaturated vapor. Yet another stationary
state is one in which there is a undirectional
change of the density. In that case the conditions

5F 5F 5F
5n(r) ' 5u(r) ' 5e(r)

(2.4)

reduce to the one-dimensional version of Eq.
(4.1) from I. This equation is just a generalization
of the van der Waals equation. for the density
profile and therefore describes the van der Waals
"soliton, " that is, the hyperbolic-tangentlike
density profile.

In the following section we shall investigate the
stability of the one-dimensional solution of the
stationarity conditions (2.4). It is convenient in

this analysis to use the local temperature rather
than the energy density as the basic thermal vari-
able. Linearizing the full set of hydrodynamic
equations around the stationary solution n =n(z),
u=O, and T=constant, we obtain

8p

8t
= -Kv = -0 ~ (n u}, (2.5}

8u 1 5~F 1 8P=-Ku=- —~, v — ~ 8, (2.6)
Bt m 5n' pnn

88 T 8P—=-K8= — ' ~in+ V 8.
et nC ~ 8T nC~

(2.7)

In the above v, u, 8 are the deviations from their
stationary values of the density, velocity, and

temperature, respectively; O'F/5n' is the dif-
ferential operator discussed in I; P, C ~, and ~

denote the pressure, the specific heat at constant
volume, and the thermal conductivity, respec-
tively. Barred quantities are functions of the den-
sity and the temperature evaluated at the values
corresponding to the stationary solution. These
quantities are position dependent and, away from
the interfacial region, they become equal to their
constant values in the corresponding phases.

The stability analysis of the van der Waals
soliton is equivalent to computing the eigenvalue
K in Eqs. (2.5)-(2.7). In contrast to the conven-
tional theory of capillary waves (see Landau and

Lifshitz), we do not have at our disposalthebound-
ary conditions for the velocity, density, and tem-

perature fields at a sharp interface between the

phases. These conditions must be inferred from
the solutions of Eqs. (2.5) and (2.7). It turns out
that the Laplace condition for the velocity field is
the most important of these conditions and, as we

shall see in the next section, inclusion of the heat
mode into our analysis effectively brings that con-
dition into our calculations.

It is possible to see on physical grounds why the
thermal mode is essential in determination of the

eigenvalue K. Consider a small bulge in the sta-
tionary density profile. This bulge may be due

either to a hydrodynamic deformation of the inter-
face or it may result from excess condensation
of the vapor. The latter mechanism, however,
involves the generation and dissipation of latent
heat. For systems of the kind we are considering,
the thermal modes are generally much slower
than the hydrodynamic modes; thus thermal ef-
fects impose important constraints on the kinds of
motion that can occur at the interface. In the fol-
lowing section we shall see how this picture
emerges from the mathematics of Eqs. (2.5)-
(2.7).

The model described above is quite simplified.
We have neglected two factors which are impor-
tant in the description of real experimental sit-
uations, namely, viscosity and'gravity. One can,
if one wishes, include both of these in the cal-
culations; however, these additional effects do

not contribute to the main results and tend to make

an already involved calculation quite complicated.

III. CAPILLARY WAVES

Equations (2.5}-(2.7) form a set of linear dif-
ferential equations with position-dependent coef-
ficients. We shall solve them for the eigenvalue
K by analyzing them separately in the interfacial
region and in the bulk of both phases and then

matching the solutions at the boundaries of these
three regions. In the process of doing this we

shall consider only those perturbations of the in-
terface whose wavelengths are larger than the

only characteristic length in our problem, that
is, the thickness of the interface. Specifically,
we assume that k(«1, where the wave vector
k lies in the plane parallel to the unperturbed
interface and $ is the interface thickness, equal
essentially to the critical correlation length.

Our first observation is that the velocity field
u(r, t) determined by Eq. (2.6) can be written in

terms of potentials 4 and 4' defined as follows:

u(r, t) =-~4' ——
n

where
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1 O'F 1 aP4}=—
2 V, 4= — 8. (3.2}

Equation (3.1}tells us that the velocity field u is
generally rotational but that its vorticity is local-
ized in the vicinity of the interface and is essen-
tially due to the coupling between the temperature
variation and the stationary interface profile:

0 x u = (I/h')lh x V4 . (3.3)

Outside the interface the velocity field is po-
tential, and one can define velocity potentials:

14~=4~+ 4' (3.4)

where the subscript o.(o.' =l, v} denotes either liquid
or vapor.

We now look for solutions of our equations by
Fourier transforming in the directions parallel
to the unperturbed interface; thus

(
4 =4, (z) exp(ik x —vt),

=g (z}exp(ik x —zt),

where k is a two-dimensional wave vector. In
each of the bulk phases we are looking for so-
lutions which decay when we move away from the
interfacial region. (We assume that the interface
is located near z =0.) We assume therefore that

g (z), y (z) ~ exp(-q
~

z
~
) . (3.6)

Using Eqs. (3.5} and (3.6}, we can simplify our
basic equations considerably. Recall from I that
O'E/6h' in either of the bulk phases becomes equal
to I/(e' Kr ) where Kr is the isothermal com-
pressibility of the eth phase. The resulting equa-
tions for the amplitudes v and 8 are

mg v =(n J'6 ) '(q' —k')v +I' (q —k )8

N, (BT) (3.11)

(3.12)

Inserting the above expressions into the definition
for the velocity potential (3.4} away from the
interface, we obtain

exp(-q, ~z ~), (3.13)

where the symbol P (without the argument z}
denotes. the value of the velocity potential at the
interface and is given in terms of the previously
defined amplitudes N by the ratio ( N, y /-
men' Kr ) Note that . the q, terms have canceled
out so that only the long-range hydrodynamic mode
remains in this expression. Finally, we can write
the z components of the velocities at the inter-
face (z-0} in the form

ug —-q2 Qg, u„=q,Q„. (3.14)

Having derived the important relations (3.14),
we turn to an investigation of our equations within
the interfacial region. Our first step here is to
solve Eq. (3.2) for the density field. This requires
inversion of the operator O'E/5h'. Following the
discussion in I, we use the approximate form of
that operator, namely,

Let the amplitudes of the density v (z) cor-
responding to the solutions (3.9}be denoted by
N, ~ and N, ~, respectively. Thus,

v.(z) =N. em(-q lz I)+N, exp( q Iz I) (~3.10)

The analogous amplitudes of the temperature
deviations 8 turn out to be

(3.7)

v8 (zT/n' C„)I' v —D (q -k )8, , (3.8) (
O'F ' 1 dn dn
O-' ok' dz dz ' (3.15)

where we have used the notation D —= (X/n C» ),r.=(sJ/sT)„..
The condition for nontrivial solutions of the

above equations gives us an expression for the
wave number q as a function of k', ~, and the sys-
tem parameters. This expression simplifies if
one keeps only the lowest order terms in k', but
this approximation is not essential to our argument.
The two solutions for q' are

m K dTf dt's

crk dz dz' '

and therefore

(3.16)

where o is the van der Waals surface tension:
@=KJ (Ch/Cz) Cz. Using Eq. (3.15) we can relate
the potential P(z) to the interfacial displacement
A defined by the relation v(z) = -A Ch/Cz. Solving
(3.2) we obtain

q,'= —zy /D„q', = k'+O(k'), (3.9) A=- d '(Ie)( ')
where y =C~ /C„. The first of these solutions
would describe thermal diffusion in a homogeneous
compressible fluid. The second is the hydro-
dynamic mode. For small k, we expect ~q, ~

The use of this approximate form of the operator
(6'F/6n') ' is in agreement with our basic as-
sumption that k$ «1. With the same accuracy we
conclude from the heat balance equation (3.7)
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8 8P
BT

(3.19)

Our next step is similar to that in Eq. (6.23) of I.
We integrate (2.7) across the interface and ident-
ify the quantity Q:

"eP m
Q = -T V.udz =— T $(z)(V ~ u)dz (3.20)

eT eo

as the rate at which latent heat is generated per
unit area at the interface. Our evaluation of this
integral in I was incorrect; and a correct argu-
ment is as follows. Suppose that the interface
moves with velocity V. Integrating the continuity
equation across the interface we obtain the first
of the so-called Kotchine conditions from continu-
ous media mechanics, ' that is,

that 8 is nearly constant over the interfacial
region, and therefore we write

8(x, z)=8, exp(zk x); (3.18)

thus the potential g is equal to

where we have used again the condition (3.21). We
now can use Eq. (3.26) in the evaluation of the in-
tegral in (3.20):

V ~ udz-= ' dz

1 dn (aiba, (u, -u,
))n' dz ~ nn2

~
dz

I
V

~
v

tI

and by virtue of (3.22)

1 dn 80L
4(z)=„. ~ (3.27)

(3.28)

Recalling Eqs. (3.1) and (3.4), we rewrite (3.28) in
the form

Because the velocity Geld u, (z) given by (3.25}
is finite in the interfacial region, we conclude that,
to lowest order in k$, we have

n,u, -n„u„= (d,n)V, (3.21)
dz n + = n +/+ dz,

q = fn, n„(u, -u„)/(an), (3.22)

which gives us the value of the integral in (3.20).
We turn now to the continuity equation. To low-

est order in k$ we can write V ~ u=du, /dz. Then
the continuity equation becomes

where 6n=n, -n„and, as previously, u is the
limiting value of the z component of the velocity
field when z approaches the interfacial region.
(Notice that this makes sense only if k( «1.) The
rate of evaporation g (in molecules per unit area)
is n„(u„- V); therefore the heat generated at the
interface in the process of condensation is Q= -lg.
Solving (3.21) for X we obtain

[nP+g] =a APA/mz . (3.30}

Similarly, integrating the velocity field u, across
the interface, we obtain

0= Qg dz = — dz +
&df 1 dg\
(dz n dz)

1 1 dn= 0+=0-
n n dz

(3.29)

where the square bracket denotes the jump of the
bracketed quantity across the interface, viz.', [M]
=M, -1N', . From Eqs. (3.29) and (3.17) it follows
that

d dn

dz
(nu, ) -=z v = zA (3.23) Using Eq. (3.27), we obtain:

where we have used Eqs. (3.16) and (3.17). Be-
cause the interface velocity V is just the time de-
rivative of the interface displacement, V=aA, we
obtain from (3.22)

—(nu, ) = V (3.24)

and after integration

n(z)u, (z) =n(z)V+n, (u, —V) . (3.25)

It follows that the derivative of the velocity field
is equal to

du, 1 dn gnv dn
dz n' dz ' n'an ' " dz'

—n, (u -V)= "
(u -u)—

(3.26}

1 g~l (3.31)

Equations (3.30), (3.31), and (3.14} are the condi-
tions that we need for final derivation of the dis-
persion relation for capillary waves.

From the jump condition (3.21) and the deGnition
of the interface displacement, as well as from the
conditions (3.14), we have

xA(an) = q, (n, Q, +n-„P„+P,+g„) .
Eliminating A via Eq. (3.30) we obtain

'«*q*(n~&z+&z+n &.+&.
m(hn) (n, g, + g, —n„Q„-g„

(3.32)

(3.33)

which can be converted easily into an expression
which will be specially convenient for the following
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di scussi on:

ok q, n~u& -n~u,2

m(e )(n, , +n.g. )' (3.34)

Equation (3.34) is our main result in this section.
Before showing how the correct dispersion rela-

tion for capillary waves follows from (3.34), let us
~ observe what goes wrong with this formula when
the thermal effect is neglected. In the isothermal
case the potential g vanishes, 8, =0, and Eq. (3.31)
asserts that P, = P„, that is, the velocity potential
is continuous across the interface. From (3.32) it
follows that

eJPq
tr ~~~ ——,„(ng +n„) .

mj4ng
(3.35)

This is a nonclassical expression for the capillary
spectrum which has questionable scaling proper-
ties in the vicinity of the critical point. Experi-
mental results" leave little room for doubt that
the capillary spectrum is classical even very close
to T, . One should notice that, away from the crit-
ical point, Eq. (3.35) gives results numerically
similar to those of the normal dispersion relation.
Since the incorrect expression (3.35) follows from
a theory in which the heat mode was neglected, it
is not surprising that recent mean-field kinetic
theory calculations' also give a dispersion relation
for capillary waves which differs from the correct
one.

The final step in obtaining a correct dispersion
relation from Eq. (3.34) is based upon thermal bal-
ance in the interfacial region. Using heat conser-
vation and Eq. (3.22), we can write

X(En) d8
Q) -Qy =—

ln&n„dz (3.36)

oA'q, /m(n-, +s„). (3.37)

The fact that ~' is less than zero implies that the

Equation (3.36) plays the role in our theory of the La-
place condition for the velocity field in the conven-
tional (sharp interface) theory of capillary waves.
In order to estimate the jump in the heat current
we recall that the interfacial temperature is al-
most constant [see Eq. (3.18)]. The main contri-
bution to the jump in d8/de comes then, in the limit
k( « I, from the short-range solution in Eq. (3.8),
that is, from q,. Because q, is proportional to ~
[see Eqs. (3.11) and (3.31)], it follows that the
right-hand side of Eq. (3.36) is proportional to

In the long wavelength limit we expect that z
will vary as k and therefore, in that limit, ug
-=u„. This means that the velocity field is continu-
ous across the interfacial region while the velocity
potential ft) is not.

Substituting u, =u„ into Eq. (3.34) we obtain

van der Waals soliton is stable against small de-
formations even in the presence of heat conduc-
tion. Setting z =in and recalling that, according to
(3.8), q,'= 4'+O(k'), we obtain the conventional dis-
persion relation for capillary waves:

(u'=ok'/m(sg+n„) . (3.38)

We want to emphasize again the role played by the
thermal mode in our derivation of Eq. (3.38).
Without the thermal mode the basic relation (3.33)
would be different and the velocity field would be
discontinuous at the interface. Because the Lap-
lace condition for the velocity follows from heat
conservation, we conclude that it is impossible to
obtain the correct capillary spectrum in an iso-
thermal theory without making inconsistent as-
sumptions about the continuity of the velocity
field. '

IV. THE GROWING DROPLET

[nu ]=[a]V„,
[S'] = -2cSC,

(4 1)

(4.2)

(4.3)

The main part of the analysis in Sec. III was de-
voted to the derivation of three conditions which
have to be satisfied at the interface by velocity
potentials and the density and temperature fields.
These calculations were necessary to prove that it
is legitimate to use jump conditions such as (3.30),
(3.31), and the Laplace condition in studying the
dynamics of a diffuse interface. The main result
is that, for excitations whose wavelengths are long
compared to the interfacial thickness, it is entire-
ly possible to use such jump conditions. The most
general versions of these conditions are called
Kotchine relations in the theory of continuous med-
ia, and these relations are ordinarily derived by
integrating the conservation laws for Quid mechan-
ics in regions containing singular surfaces. ' In
what follows we shall write the Kotchine conditions
for the specific problem of a spherically growing
droplet of liquid, and shall use them in a rederiva-
tion of the expression for the rate of growth of a
critical droplet from I. In contrast to the planar
problem where recovery of the Laplace condition
was crucial to the derivation of the capillary-wave
dispersion relation, the spherically symmetric
growth mode in the droplet case is one in which
matter does cross the interface. We shall see that
the correct growth rate, the rate which scales
properly, comes out naturally from the full adia-
batic treatment. Again, coupling to the thermal
mode is essential.

The Kotchine conditions for a spherical droplet
have the form:
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ts,sos„]/(as) = -X[(VT)s], (4.4)

Here P is the pressure, p is the chemical poten-
tial, o is the surface tension, K is the curvature of
the interface, and the subscript R denotes the com-
ponent of a vector normal to the interface. In our
spherical case, this is always the radial compon-
ent; and K= 1/R where R is the radius of the drop-
let.

It is slightly more convenient to linearize the ba-
sic hydrodynamic equations using not the density
but the excess pressure in either phase as the in-
dependent variable. Let P be the pressure for
two-phase equilibrium at temperature T, and then

write, for phase a,

nor diminishing. It is not generating latent heat,
therefore 8, must vanish, and

2s 0'

(as)R' '

The resulting expression for 8, is

2''~~ 1 1 l

ts, ~iR* R )

(4.12)

(4.13)

(4.14)

The remaining two conditions, (4.1) and (4.4),
now provide an equation of motion for R. We have

1pa=-Pa-P~= va+I'a8a .
+a&ga

(4.5) With (4.13), this becomes

spa smn E~ -Vp =mF g K~ (4.6)

The velocity field u may be eliminated in the equa-
tions of motion (2.5) through (2.'l) by means of the
continuity equation. The resulting equations for the
pressure and temperature fields are

dR 2&T J(R -R*&)
dt L'e, ~&R*B'

&

' (4.15)

(4.16)

which is our basic equation of motion for R. Lin-
earizing (4.15) around R ~ and looking for solutions
of the form R -R ~~ exp(xt), we 5nd

For present purposes, however, it is adequate to
use a quasistationary approximation in which these
equations reduce simply to

v'p„=v'8 =0. (4 6)

Moreover, because neither phase can support a
pressure gradient in the slow mode of interest
here, we can assume that the quantities p =p„p„
are constants, that is, independent of position.
The thermal field does depend on the radius r mea-
sured from the center of the droplet:

8, = 8,= constant, r &R

8„=80R/r, r &R.
(4.9)

pi ~p l80
sg s T

(4.1Q)

where l is again the latent heat per molecule. Us-
ing (4.2) to eliminate p„we find

(4.11}

It is useful to rewrite (4.11) in terms of the critical
radius R* instead of the excess pressure p„. At
exactly R* the critical droplet is neither growing

We now apply the Kotchine-conditions to evaluate

p„, p„and 8,. Continuity of the chemical potential,
. Eq. (4.3), leads via standard thermodynamic mani-

pulations to the relation

Equation (4.16) is the Kawasaki result' and should

be used instead of ~. (6.34) from I in the calcula-
tion of critical supersaturations. It turns out that
the numerical error brought about by use of the
improper expression for z is less than 2%. The
physical difference, however, is more profound.
The rate of growth from I does not scale properly
while the above expression for ~ leads to the fol-.
lowing scaling law:

~~ t' '(t'/R)' (4.1V)

This is precisely the critical behavior of & that one

should expect on the basis of dynamical scaling
laws, which predict that ~ should have the form
( 'f(R/$) with an undetermined function fg). Here,
as usual, $ is the interface thickness, i.e., the
critical correlation length. Essentially the same
technique, with additional algebraic complications,
can be used in the theory of capiQary waves on the
surface of a growing droplet. As expected, one ob-
tains the classical result of Lamb for the spectrum
of waves which adjust themselves adiabatically to
the instantaneous droplet radius.

V. FINAL COMMENTS AND CONCLUSIONS

%e have investigated dynamical effects associated
with planar and spherical interfaces separating two

phases of a one-component Quid. We have shown

that the dynamical theory of such an interfacial re-
gion must include coupling between the density and

heat modes. This is particularly crucial close to
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the critical point of a Quid where the heat mode be-
comes the slowest mode in the system. We have
shown with examples of capillary waves and the
growth of a liquid droplet that omitting this cou-
pling leads to wrong and inconsistent results.

Although our theory was purely hydrodynamic,
we feel that it illuminates certain points in recent
kinetic theories of inhomogeneous Quid systems.
The liquid-vapor interface is certainly the simpl-
est example of a unidirectional density inhomo-
geneity, and the microscopic as well as pheno-
menological theory of such a system was recently
discussed in a review paper. " No systematic kin-
etic theory of such a system exists and the mean-
field theory developed in Ref. 3 suffers from the
same difficulties as the hydrodynamic isothermal
approach. We infer from our phenomenological
theory that any future microscopic theory should
include the mode-coupling terms. The coupling
between the density and heat mode would be de-
scribed essentially by the same procedure as in
this paper. One notices that there also will be an

additional coupling between the shear modes and
the thermal mode. This fact follows from the ex-
pression for the Quid velocity field vorticity in Eq.
(3.3).

There are many possible extensions of our work.
One should look more closely at the surface ex-
citations close to the critical point of a binary
mixture. Various hydrodynamic instabilities as-
sociated with the surface effects should also be
reexamined. Finally, it would be very interesting
to repeat all the calculations for the case of a
quantum system where a Qrst-order phase transi-
tion of the form of the liquid-vapor phase transi-
tion is observed, namely in the theory of the elec-
tron-hole liquid.
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