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Trarssit-time effects in optically pumped coupled three-level systems
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A density-matrix calculation of the line shape for an optically pumped coupled three-level system subjected to two
traveling wave-laser fields with Gaussian intensity profiles is presented to third-order in perturbation theory. A
closed-form expression for the line shape in the extreme transit-time limit is obtained. The line shape of the narrow
resonance (Raman-type processes) is found to be an exponential function of the detuning, with half-width at half
maximum 4~*'M 0.98(u/2nD) (D is the intensity 1/e diameter and u is the thermal speed). The saturation
intensity is also modified by the transit rate y, =+2u/D (rad/sec).

I. INTRODUCTION

Doppler-free laser spectroscopy' ' of optically
pumped atomic and molecular systems' ' exhibits
a number of unique features. ' ' Specifically, for
coupled three-level systems [see Fig. 1(a)] in
atomic barium and sodium, three novel effects
have been observed (i) saturation signals of anom-
alous sign and amplitude, (ii) greatly reduced
saturation thresholds, and (iii} linewidths far
narrower than the natural radiative limit. " For
an experiment utilizing weakly saturating copro-
pagating pump and probe beams [see Fig. 1(b}t,
the line shape consists of a narrow (Raman-type)
resonance superimposed on a broader (rate-
equation effect) background, which in turn is
superimposed on a much broader Doppler back-
ground [Fig. 1(c)]. Each of the three features
mentioned above are readily explained in terms
of the optical pumping and the very long lower-
level lifetimes for these systems. "

Since the experiments are typically performed
at very low pressures, one expects that the tran-
sit time of an atom across the laser beam will
limit the effective lower-level lifetime. Hence,
the width of the narrow Raman resonance and
the saturation threshold will be determined by the
beam transit time. However, the width of the
rate-equation background will be essentially un-
affected, since it is determined by the (short}
upper-level radiative lifetime.

In the present paper, the shape of the Raman
resonance is found to be an exponential for the
important limiting case in which levels (1) [see
Fig. 1(a)] and (2) are nearly degenerate and where
the upper-level (0) lifetime is short compared to
the beam transit time, while the ground-state
lifetimes are long. The half-width at half maxi-
mum (HWHM) is given by &n"„'„'M= (V2 ln2)u/2vD
=0.98u/2wD, where u is the thermal speed
(v'2kT/m) and D is the intensity 1/e diameter. As ex-
pected, the effective saturation parameter depends

on the transit rate y, (=W2u/D}. The rate-equa-
tion background is Lorentzian in shape, with the
width being determined by the upper-level life-
time.

The above results were obtained by calculating,
to third-order in perturbation theory, the line
shape of a coupled three-level system [Fig. 1(a)]
subjected to two traveling wave-laser fields with
Gaussian intensity profiles. As depicted in Fig.
1, the 0-2 transition is pumped by a strong
(though weakly saturating) field E„while the
0-1 transition is simultaneously probed by the
weaker field E,. By assumption, p, i2 0 and E,
and E, are such that they only interact with their
respective transitions. Transit-time effects arise
from the Gaussian radial dependence of the fields.
Optical pumping is included by introducing spon-
taneous decay rates into the density-matrix equa-
tions (see the Appendix). The results of the gen-
eral calculation are contained in Sec. II, where
a closed-form expression is presented. The
details of the calculation can be found in the Ap-
pendix, where the method employed is analogous
to that of Refs. 10 and 11 (below).

Previously, Rautian and Shalagin" have cal-
culated the transit-time contribution to the line-
width of the Lamb dip using third-order perturba-
tion theory. They found that in the extreme transit-
time regime the line shape is non-Lorentzian. In
addition, the linewidth does not broaden as rapidly
as might be expected by varying the effective
beam transit rate. As the beam is made smaller
and smaller those atoms with low-transverse
velocities interact longest with the beam. Hence,
the contribution from these atoms increases and
the beam acts as a low-transverse-velocity
selector. However, this effect is limited due to
the fact that the number of atoms with radial
velocity v„ is proportional to v„. This indicates
that the contribution from slowly moving atoms
is weighted by number and interaction time.

Baklanov et al."have given the linewidth as a
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intensity profile. It was found that the power-
broadening contribution to the line shape can be
distorted due to the interaction with a beam of
finite width.

H. DERIVATION OF LINE SHAPE
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For simplicity, only a brief outline of the im-
portant features and results will be given in this
section. As mentioned above, the details of the
derivation have been deferred to the Appendix.

The probe (0-1 transition} and the pump (0-2
transition) fields are, respectively, given by

E, =E,"' exp(-2r'/D') cos(k, Z —0, t)
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function of the ratio of collision frequency to
transit-time frequency. They also present closed-
form expressions for the linewidth in the extreme
collision dominated and transit-time limits. The
effects of a Gaussian beam in a gas-laser cavity
have been studied by Maeda and Shimoda. " An
asymmetry of the shape of the Lamb dip and a
shift in its center frequency was found. Borde
et al."considered the transit-time problem for a
Gaussian beam including the curvature of the phase
front and found a shift in the line center. This
result was verified experimentally by Hall and
Bord'. ' More recently, Thomas et al."cal-
culated to fifth order the line shape for a Doppler-
broadened two-level system interacting with a
plane-standing-wave-laser field with a Gaussian

(c)

FIG. 1. (a) The optically pumped coupled three-level
system being studied. I'~, I'O2 are the spontaneous de-
cay (optical pumping) rates for the 0-1 and 0-2 transi-
tions, respectively, whereas po, p, , and p2 are the non
radiative rates for levels 0, 1, and 2. (b) Schematic of
experimental setup for observing Raman resonance. (c)
Typical line shape including optical pumping.

E, =E,"'exp(-2r'/D') cos (k, Z —0, t), (2)
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The density-matrix equations (with optical
pumping) given by Eqs. (Al) are integrated using
time-dependent perturbation theory (third order
in V), subject to the initial condition that the con-
tributing atoms originate in level 2. Atoms orig-
inating in level 1 give only Doppler-broadened
contributions to the line shape in third order and
will not be considered. Proceeding as in the
Appendix, the result for the average absorbed
probe power per unit length is given by (special-
izing to nearly degenerate levels 1 and 2 and co-
propagating waves}

where D is the intensity 1/e diameter. The inter-
action (in the dipole approximation) is of the form

V= —p ~ (E,+E,) (2)

with p, the dipole moment.
The field amplitudes E,'" and E,"' are deter-

mined from the traveling wave power in each
beam, which is given by

5P e &fh' -ro&-ro2)x& Z r
dx& F2 '

2 e 1 2g ]+1+2x,'+2x, x,+x', .r, -y, ~o
(5)

where dimensionless variables (x} have been
introduced for convenience. Dimensionless fre-
quencies (see Table 1 below for decay-rate definit-
ions). are denoted by a prime and are defined
relative to the beam transit rate y, =Wu/D. The
detuning is &'-=n/y, = (9,—0, —&o„)/y, and
y'—= y/y, for each rate y. A is given as

~

etio) g+x &ox 'Ex Moo 'Eo
E 2 i '

ku/~w 2k 2k y',

(6)

The integrals in Eq. (5} can be done numerically
(e.g. , see Ref. 14). However, this is not required
when considering the extreme transit-time regime.
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TABLE I. Decay- rate definitions.

70~ Ygs Y2

1 og. I'02

~0 ~0 ~01 ~02

y, +y, +ro(+ro,

yo2=4&yo'y2+ ro(' ro2}

y(2-$(y(+y2)

Nonradiative level decay rates.

Spontaneous decay (optical pumping) rates for the
0-1 and 0-2 transitions, respectively.

Total decay rate for level 0.

Total coherence decay rate, 0-1 transition.

Total coherence decay rate, 0-2 transition.

Total coherence decay rate, 1-2 transition.

In the extreme transit-time limit yf
but y,'„y,'„ I'o» 1 (i.e., long-lived lower levels,
short-lived upper levels, relative to the beam
transit time), one can set xf =0 in the denominator
of Eq. (5) and take y,'=0, y,', =0. The integrals
are then easily done and yield (to lowest order in

small quantities} the resonant contribution to the

probe absorption in third order

where
\2

g (s ) 01 (yo + yOQI

1 0 ~ + (yox+yo2)

sures. The exact second derivative of this term
at the origin (&'=0) is

g~(R AMAN )
I

d2gp DRAMA»
j.

rt &~2
'

which is finite but large (y»- 0).
Atomic sodium is one example of a system in

which the limiting case of Eq. (8) is applicable.
Reasonable numbers for Na are typically of the
order I'„=1 o2=10 MHZ and z, =0.1 MHZ. Figure

+ exp (— ).
The saturation parameter S, is defined as

s—=I2 '/I, ~(

and I„,the saturation intensity is

ck 2
l(yo +yo }

p o2 7t' )

(8)

R
~ 0

-100 100

~(y., +y.,),2gl p»( I, D) ox o2 y
(10}

where u is the thermal speed and D is the 1/e
intensity diameter. P,"' is the incident traveling
wave power of the probe. no is the small signal
absorption coefficient for the 0-1 transition and is
given by

( )2 N(o)
X
~ 0

-10
(

10

Note that the Doppler factor must be included in

Eq. (11) for detunings far from line center.
Equation (7) is a closed-form expression for

the line shape in the extreme transit-time
regime, with fast upper-level decay rates. The
exponential form of the Raman term in Eq. (8)
is valid for 4'» y'„(i.e. , 4»y»). This is not
a serious restriction since the 1/e width is y,
which is very large compared to y». at low pres-

FIG. 2. Upper: Plot of the line shape (Eq. 8) in the
extreme tranait-time limit for (p++ p02) = 100pt and ~~
= 0.51 03 where 4= (Q2- Q~ —m~2)h't. Lower: Detailed
plot of the narrow resonance.
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2(a) is a plot of 8(&) for (y«+y«)=100y, and
I'»=0.5 I'o. As expected, it shows a narrow reso-
nance (Raman term) superimposed on a broader
Lorentzian (rate-equation term) of opposite sign.
At zero detuning there is gain due to the Raman
transition 2-1. With increasing detuning, how-

ever, optical pumping (fast radiative decay} be-
comes important and absorption begins to dominate.

The most interesting feature of Fig. 2 is the
exponential form of the narrow resonance. Figure
2(b) shows this resonance in greater detail. The
half-width at half maximum &„„«is given by

4„'"„*„'„=y, ln2 = 0.98u/2vD, (13)

where u is the thermal speed and D the 1/e inten-
sity diameter.

It is important to note that, in the extreme
transit-time limit, only the shape of the narrow
resonance is appreciably affected by the finite
time of flight of the atom through the beam, where-
as the shaPe of the population-saturation reso-
nance remains essentially unaffected. Thus, for
the case considered here, Raman-type or coherent
double-quantum processes appear quite sensitivb
to transit-time effects. However, population-
saturation processes are relatively insensitive.

Equation (10) for the saturation intensity and

Eq. (13) for the half-width, together with the above
discussion, suggest that in this limit a plane-
wave theory can be used to calculate the approxi-
mate line shape. In this case, the plane-wave
theory yields a narrow Lorentzian Raman-ty'pe

resonance superimposed on a broader Lorentzian
rate-equation background. Although the precise
shape of the Raman resonance is incorrectly
predicted (i.e., Lorentzian instead of exponen-
tial shape), the intensities and widths of the broad
and narrow resonances are given to approximately
a few percent accuracy if the effective lower-level
decay rates y„y, are taken to be -u/D (rad/sec).

In studying the transit-time regime as presented
here, the Raman term makes it possible to use
long lower-level lifetimes as a means of studying
transit-time effects. As a result, one is provided
with an excellent method of investigating the manner
in which beam transit-time enters into three-
level line shapes.
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APPENDIX: DETAILS OF LINE SHAPE CALCULATION

The density-matrix equations for the system shown in Fig. 1 are

p„=—(i/K) (V„p„—p„V„}—(i /8) {V„p„—p„V„}—1',p„,
P'„= (2/ff)(v„p„- p„v„) r, P„+r„p„,
p = —(2/ff)(v„p„p„v„) -r, p„+ r«—p

P'0, =-(r., +201.,)p., —(2/)t)(p„- p )v„- (2/g)v„p„,

Po. = (ro2+ o2-}po. (2/ff)(P22 -P~) V02 -(/@ o1 P-12.

P12 (y12 12}P12 (~/g)(V20 P02 P10 02}

(Ala)

where

~o = yo+ ~ox + ~o2 y

1
yo1 = 2 (ro+ r1+ o1+ o2}

1r„=2(r,+r, +r„+r„),
1r,.=o(r, +r.),

(Alb)

as defined in Table L The y„y„and y, are the
nonradiative decay rates of levels 0, 1, and 2,
respectively. I'„and I'„are the spontaneous
decay rates (optical pumping) for the O-l and 0-2
transitions, respectively. I' is Planck's constant

I

divided by 2w. The interactions are V„=—p» ~ R,
and Vo, = —F02 ~ R„where the slowly varying en-
velope approximation (1/Eo}(dE0/dZ)l «1 is used
with l the order of a mean-free path. By a suit-
able choice of phase for the wave functions of
levels 1 and 2, one may take p.go ppg and p~
= &o2.

Owing to the Boltzmann factor, for an optical
transition, the unperturbed population of level 0
is negligible compared to that of level 2. The
population of level 1 produces only nonresonant
(Doppler-broadened) contributions to the line shape
in third order. Therefore, the initial conditions
on the density matrix are taken to be
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Ptt ( 0 0& 0& } (2 j2 &
(A2)

which indicates the creation of an atom in state 2

at time tp at position r, with velocity v. It is

assumed that the atoms move in straight lines and

simply decay out of the appropriate levels. These
assumptions lead to the following results in third
order:

p01' (x, v, t;t„2)= i i I dt, ~ dt, dt(([e '"0("~«'" '3'
tp tp tp

&( V„(t,) - 0«3-(2&V»(t, ) -(202-«01&«2-(1&V»(t, ) c.c.]

+e 201 (~01&(t t3&V (t ) (212 ~(12 (&t 3t2 V (t )02 se 02 2

02 ~02 12 1 V (t )) 2 2 0e 02' i Ie

where

t3 t' t2-I —,i I dt dt' dt dt e '"0&'"»'" '3'
2 1

tp tp tp tp

&([e """''V„(t,)e "o" '2'V„(t, )

&(e '"o2-t"02&«2 t(& V (t,}+c.c.]e~2"1 'o' (A3)

V(&1(t„)=- t(01 E1"U(x, +v, (t„—t(&))U(y(&+ v„(t„-t,)) cos(k( [z, +vt(t„-to)] -Q, t ),
V»(t„) = —i102E,'"U(x, + v, (t„-t,))U(y, + v„(t„—to)) cos(k2[zo+ v,(t„—to)] + Q2t„),

(A4a)

(A4b)

U( ) = exp(-2x'/D'),

U(y) = exp(-2y'/D') .
(A4c)

(A4d)

Only atoms which arrive at position x at time t influence the measurement of polarization at (x, t) This is.

equivalent to replacing x, by x- v, (t —t,) in the potentials, due to the assumed straight-line motion of the

atoms. Therefore, in Eti. (A3) let

Vo, (t„) Vo((t„) = —i(01E1 ' U(x —v, (t —t„))U(y —v (t —t„))cos(k1[z —v,(t —t„)]—&(t„j,

V 2(t„)—V,',(t„)= —t(02E2'& U(x —v, (t —t„))U(y —v„(t —t„))cos(k2[z -v, (t- t„)]+&2t„j.

(A5a)

(Asb)

In equilibrium the number of atoms created in

state 2 between tp and tp+dhp is given by

N,"'(v)d'vy2 dt„where

N,"'(v) =N2'&1/(uWm)2exp (v,'+ v,'+ v-,/u2) . (A6)

Then the total contribution to po", &(x, t; t„2}due to
atoms created at all times t„with all velocities
vy ls

first, the order of integration is changed in the
usual manner to obtain

dt 0 dt, dt2 dt,

dt dt, dt, dt

(Av)

where the cell diameter is assumed large com-
pared to the mean-free path so that the lower limit
may be replaced by -.

From E(ls. (A5a} and (A5b) it is evident that the

V(t„) do not depend on t, so that the only t, de-
pendence appears in exp[-y2(t1 —t,)] and in the
integration limits. To perform the t, integration

0 dt 3 dt dt 2 dt)
0 0 0 0

dt3 dt' dt2 dt, dtp .

Using
t

dt y e 2 i 0=10 2
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and by making the following change of variables: 7i= i~+ 7

t t3y

7'=t3-t'

t -const,
t, —const,
t, —const,
t, —const,
t' -const,

or
T ~ T ~ 7I I

2

2', =2 (2, + V )) 0,

2'=2 (2, -2 )) 0,
one obtains an expression for p(021'(x, t; 2). Fur-
ther simplification is obtained by defining

with a Jacobian= 2.
Then, Eq. (A7) yields

t(~2)O

p,',"(x,t;2)=(-i/ii)'
J d2, J

d2', jl d2, e (&01""02"3
p 0 0

Vpl t T3 — " e»'2+ 1 + " e
~, -rl ( ~p-r, )

&&[V02(t —32 —v3) e '"02 ' o2"1V,', (t —2'1 —2'2 —33)+c.c.]

+V' (t —v )e &12 (~12 201 3

(AS)

= exp(- —,
' k'u 22 2). (A9)

where &,-~„since 7, is a dummy variable.
Substituting the explicit potentials into Eq.

(AS) results in a somewhat complicated equation
for p pl Simplification is achieved by retaining
only the first-harmonic components in (01t ),
which contribute to the time averaged absorbed
power [Eq. (A12) below. ] One finds that the com-
bination Q, (t —2'3) appears in each term (due to
V,', ) and these in turn are multiplied by the factor
exp(i(0»2 3). Therefore, the resonant (slowly
varying) contributions to the 33 integration must
contain exp[itl1(t —T,)] . The complex conjugate
first-harmonic components are antiresonant
and may be neglected.

The number of terms in p'0-", can be further re-
duced by performing the v, integration in Eq. (A7).
A typical term is of the form

I (v) = dv, exp(ikv, T)exp[ —(v,/u)']
2

=2 (A10)

Now, a term with v = v3 —v, samples whenever
F3= 2, while a term containing (v, +2'3) samples
only for &1 &3 0 since T j) 0. Hence, contri-
butions of the latter type may be dropped by
comparison to the former. Completing the v,
and v„ integrations in Eq. (A7), one finally ob-
tains for copropagating waves

I

The terms retained from Eq. (AS) have v= (r 3 + v, ),
etc. , and are slowly varying in v. Hence, I (v)
is sharply peaked in v, since ku» y (y is a homo-
geneous width). This enables one to take I (2)
proportional to 5(2). Integrating I (v) determines
the proportionality constant 2W((/ku. Thus, one
has

(3& (~ . 2) N(0&i' ~-jQ 0 t)F
P 01 & & 2 2I ~01 ~02) 1Q

dT dV dT e ~01"' ol "1"7. e-i~02-' "02-"2' '1
3 2 1 3

0 0 0

ie-X, 2+ 1+ ie- o 3r., i, i r.,
r, -y, & & r, -y, &

5 V, -~ V3, k, ) k2
2

k,
( u
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where

I
k,

k
k, &k,

1

6~~ -~r +er ~, k -k
k

~ (zs 1t » 3} (y& 1&» ~) ~ (Alla)
~+e7 ~,k &' k

(A11b)

~ (z t gvt rgb T3)

per unit volume is

1P = — dz((5&, ' E,)),
p

(A12)

s-'"*'"' U, (t,)U, (t,)U,(t,)
Q

where L is the active length of the cell, ( ) de-
notes time averaging, and Pp~ is the polarization
on the 0-1 transition, which is

exp [-z'(3a —a.'I3'/1 /u '+ u A)]
(1+ou2A)' ~ t (Al lc)

pl ~pl ~lp ~13~pl

J (y, v„v„r,) is the same as above with z and y
interchanged; (Alld}

= 2 Re p. yp ppy

a = 2/D'

A = ( Tq + 'r2+ TB) + ('Ta + Tq} + Tq,

(Al le)

(Aiif)

E, = Re E,"' exp(- 2&'/D') exp[- i (k, z —Q,t )J .

The power absorbed per unit length is given by
B= 3T3+ 2T2+ 7~ ~

Equation (All) is valid for any two coupled Dop-
pler-broadened transitions (inverted V configura-
tion).

The time and spatially averaged absorbed power

F"'"(L=f 2 rchP(r)
p

(A13)

For nearly degenerate or degenerate case (k, =k,
—= k), Eqs, (All), (A12), and (A13) readily yield
Eq. (6) of the text.
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