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Power spectrnin of light scattered by a two-level atom in the presence of a pnlse-train driving
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The power spectrum of the light scattered by a two-level atom in the presence of a coherent continuous-pulse-train

driving field is analyzed. Separate expressions for the coherent and incoherent components of the spectrum are
obtained. The coherent part of the spectrum consists of a series of spikes (delta functions) which are displaced from

the optical carrier by multiples pf the pulse repetition frequency. The incoherent spectrum can have fixed peaks at
these same frequencies plus sidebands equally spaced on opposite sides of these fixed peaks. That is, the spectrum
consists of a series of triplets. The special case of a two-mode driving field is treated numerically and graphs of
spectra are presented.

I. INTRODUCTION

The spectrum of light scattered from a strongly
driven two-level atom has received much attention
recently. ' The experiments of Vfu, Grove, and
Ezekiel2 support the predictions of the theory pre-
sented by Mollow. ' In Mollow's work it is assumed
that the 'atom is driven by a perfectly monochro-
matic optical field. It is the purpose of the pres-
ent paper to extend Mollow's work to the case of
a pulse-train driving field such as that produced
by a mode-locked cw dye laser. As in the Mollow

theory, it is assumed that the atom has come to
equilibrium with the driving field through radiation
damping

II. THE THEORETICAL MODEL

Following Ref. 3, we consider a single atom
fixed at the coordinate origin and driven by a near-
resonant classica14 optical field. The atom fluor-
esces through its interaction with a bath of quan-
tum field oscillators. It is assumed that only two
atomic levels are involved in the interaction: ~0)

and ~1), having energies 0 and S'&u„respectively.
The following atomic operators may be defined at
t = 0 in the Heisenberg picture:

b;, is the annihilation operator for the quantized-
field mode with wave vector k and polarization
index s(= 1,2), &oi is its frequency, e-„, is its
polarization vector, and F is the quantization
volume; &(f, t) represents the positive frequency
part of the classical electric field, with polariza-
tion vector 00. Near resonance, the dipole inter-
action Hamiltonian may be approximated by

Hz(t) = —(I /v 2)[a~(t)P E"(0,t) + a(t)P, * E ' '(0, t)],
(4)

where p -=(1 ~d ~0), with d being the atomic-dipole-
moment operator (at t= 0 in the Heisenberg pic-
ture). We write, for the positive frequency
part of the classical driving field,

&(0, t) = [e,(t) —fc,(t}]ge '"'/W2(P e,), (6}

where &o is the optical carrier frequency, &,(t) and

g, (t) are real quantities representing the field
envelope at the position of the atom, and the time-
independent factors have been inserted for later
convenience. In Ref. 3 (Eq. 3.16), the classical
driving field was assumed to be perfectly mono-
chromatic (q, and q, constant}. In the present
paper, we generalize this work by assuming that
the driving field is that of a pulse train. Thus q,
and q, are assumed to be repetitive with period &„:

a(O) = ~0)(1 ) (la) ~,(f+ &,) = ~, (&),

c,(t+~,) = e,(&).

(6a)

(6b)

at(0) (1b)

E(P, t) = (I /~2) [E'(r, t) + E ' '(r, t)],

The electric field operator may be decomposed
into its positive and negative frequency parts:

As discussed in Ref. 3, the positive-frequency
part of the scattered field is given approximately
by

E'"'(F, t) = P(r)a(t —r/c}+ Er"(V, t),
where

$(r) —= ((o,/2v 2vc'r')r x(g xr} (6)

(3)
and E"'(P, t) is given by the adjoint of (3). Here

and Er($, f) is the "freely-ProPagating Part" of the
electric-field operator —a linear combination of
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annihilation operators b;,(0).
In Ref. 3, the following expression is evaluated:

7 OO

d(v)=—f dt f dr(e'(l)e(t+t))e'"'.
7 0 e t()o

t(l') , f=-d (E''('F, t).E"('F, t e))e'"'

Any reasonable definition of the power spectrum
must satisfy certain requirements —it must reduce
to Mollow's definition in the special case that the

field correlation function is independent of t; it
must be time independent; and it must be every-
where real and positive. Equation (9) clearly
satisfies the first two requirements. To see that

the third requirement is also satisfied one may

replace ~by 7- t, extend the t averaging to +~,
and bring the integrations inside the expectation-
value brackets. The resulting expression is the

expectation value of a positive operator and is
thus necessarily real and positive. In this paper,
we take Eq. (9) to represent the power spectrum
of the scattered light when the driving field is that
of a pulse train.

Using {7)and (9) and assuming that E~(T, t) does
not contribute to the field correlation function, we

obtain

f(~, z)= ~@(r) ~'g(v),

where

(10)

This quantity is interpreted as the power spectrum
of the scattered light. In the analysis of Ref. 3,
this expression is independent of t because the
atom is in equilibrium with a monochromatic driv-
ing field. In the present paper however, we as-
sume equilibrium with a pulse-train driving field.
As wiQ be.seen below, the second-order field cor-
relation function (E' '('P, t) E "(P, t+ r)) now has a
periodic t dependence, with the same period as
the pulse repetition time. It might at first seem
natural to proceed with the above definition of the

power spectrum, allowing the spectrum to be t
dependent. However, this would not be consistent
with the frequency-time uncertainty relation. In

order to resolve features narrower than the repeti-
tion frequency, a real detector must sample over
many periods. Thus its output would not vary
significantly over a single period. The above-de-
fined quantity therefore does not represent the re-
sponse of a real detector.

A calculation of the response of a high-resolution
Fabry-Perot interferometer to a narrow-band-
width classical input field with a periodic envelope

suggests that the observable power spectrum is
given by the following t-averaged expression

t(v, r) -=—f dt f dr(E' r, t) t(E "(dt r)) ',ee
r 0 (9)

The quantity g(v} contains the frequency depen-
dence of the power spectrum and its evaluation is
therefore our primary concern in the remainder
of this paper.

n(&}= (a(&)},

a*(f)= (a'(f)},

n(&) = (a'(&)a(t}),

m(t) = (a(t)a~(t)) .

(12a)

(12b}

(12c)

(12d)

We find it convenient to transform from the above
variables to real atomic variables I, e, m, and x.'

u(f) el tet e-(ted p p &(f)

v(f) fe'~' ie '"-' 0 0

u)(t) 0 0

.x, 0 0 1 1

n(t)

m(f)

Applying the same change of variables to the equa-
tions of motion [Ref. 3, Eqs. (3.12)] one obtains
the Bloch equations'.

u(t}
I,-gK -n(0 -g, (t) 0

'
u(f)'

o(f)

dt u)(t)

-2x ~,(t)

q, (t) -e, (t}

0 e(f)

-K u)(f)

0 0 0 0

(i4)

Here 4~ is the off-resonance parameter for the
atom

(15)

and z is the radiative relaxation rate (inverse
lifetime).= ~}i~'~;/2.ge.
The general solution to the first-order linear cou-
pled equations (14) at a time f, is related to the
solution at another time t, by a linear transforma-
tion:

III. THE BLOCH EQUATIONS

It is shown in Ref. 3 on the basis of a Markoff
approximation that two-time atomic expectation
values such as the atomic correlation function in

Eq. (11) may be obtained directly from the solu-
tions to the equations governing the evolution of
the single-time expectation values, e, a*, n, and

m, defined in Ref. 3 by
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u(t, ) u(t, )

v(t, ) v(t, }

tv(t, ) —" ' ~(t,}
= T(t„t,)

Bloch vector, "' with components u,(t), v,(t), and

M, (t) defined by

r
'

u, (t) v,(t)

Z
la Z ( )

v,(t) v,(t)

u, (t) ni, (t)
(24)

where T(t„t,) is a 4 x4 matrix. Unfortunately,
with go.0, the matrix function T(t„t,) cannot be
expressed analytically except in the special case,
treated by Mollow, of a monochromatic driving
field (&, and q, constant). However, insight into
the structure of the power spectrum can be gained
by treating T(t„ t,) symbolically. For comparison
between theory and experiment, T(t„t, ) can be
readily obtained by numerically integrating the
Bloch equations. ' Some of the properties of T(t„t,}
follow

(i) T(t„t, ) has the group property:

T(t„t,) = T(t„t2)T(t2, t,}.
(ii) As a consequence of Eqs. (6), T(t„t,) is

periodic in the following sense:

(16)

T(t, +r„,t, +r,)= T(t„t,).
(iii) Since x is constant in the Bloch equations,

the fourth row of T(t„t,) has a very simple form

0, i=1,2, 3

[T(t„t,)]„= (2o)

(iv) It is easy to show using Eqs. (14}that for
t2& t~ and z=0,

[u (t2)+ V (t2) + R (t2)]

~ e~"2 "'[u'(t, )+v'(t, )+co'(t, )]. (21)

That is, a solution with z = 0 decays away in a time
comparabl|. to the atomic relaxation time. This
may be translated into a statement about some of
the elements of T(t„t,). We define a 3 x 3 sub-
matrix T,(t„t,):

[T,(t„t,)],&

=—[T(t,, t, )];&, I,j =1,2, 3. (22)

Equation (21) implies that for t, ~ t„
(
T (t t )|I (

~ e ""2 '&'a )II )
(23)

1 1

Using (20) and noting that as a consequence of (23)
the 3 x 3 matrix I, —T,(t+ r„t) (where I, is the
3 x3 identity matrix) is invertible, the equilibrium
Bloch vector is easily obtained:
r r

u, (t) [T(t+~„t)]„
v,(t) =[I,—T,(t+ ~„,t}]' (T(t+ 7'„,t)]„(26)
gv, (t) [T(t+T, t) ]

Any solution to the Bloch equations (14) repre-
senting a physical atomic state (i.e. , having x= 1)
decays to this equilibrium solution within several
atomic relaxation times. This follows from Eq.
(21) since the difference between the given solution
and the z= 1 equilibrium solution is itself an z=0
solution to Eq. (14). Thus the difference decays to
zero according to (21) and the atom comes to a
periodic equilibrium.

IV. THE POWER SPECTRUM

A. The power, spectrum in terms of the Bloch equations

In Ref. 3 (Eq. 4.6) an expression for the atomic
correlation function is obtained via a "quantum re-
gression theorem. " Transforming this expression
to our representation using Eqs. (13) one obtains
(see Appendix)

(a~(t)a(t+ ~})= —,'e '"'(1, -i, 0, 0)T(t+ r, t)M v,(t)

u, (t)

(26}
where ti is any 3 x 1 column vector and the bars
indicate the length (norm) of the vector.

Though the driving field envelope is periodic
(Eqs. 6), the general solution to Eqs. (14) is not
periodic. For example, as noted above any solu-
tion with z=0 decays to zero as t- ~. However,
solutions representing a physical atomic state,
as defined by Eqs. (12) and (13), must have x
= (a~a+ aa~) = l. In this subset of solutions, there
is a unique periodic solution —the "equilibrium

for ~ ~ 0, where we define

0 0

0 0 i z

-1-i 00
1 i 0 0

and (1, i, 0, 0) is -a 1 x4 row matrix. It is as-

(27)
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(a (t+ &„)a(t+7.„+r)) = (a'(t)a(t+ ~)) . (28)

sumed in writing (26) that the atom is in equili-
brium with the driving field at time t. Referring
to (19), (1'l}, and (24) one can see that the atomic
correlation function given by (26) is periodic in t:

T (n)

g(v') = Re dt dr e' '(1, i,-0, 0)
0 0

Q,(t)

x T(t+ r, t}M
w,(t)

, 1

(30)

Using (28) and noting that (a~(t)a(t')) = (a~(t')a(t))*,
we can rewrite Eq. (11}as

=2 T~

g( )=—Re f d( d (a'(t)a(t+ T))e'", (29)
0 0

where Re denotes the real part. If we now insert
(26} into (29) we obtain

(31)

B. Separation of the coherent and incoherent parts of the
power spectrum

The ~ integral in (30) may be written as an in-
finite sum of cycle integrals:

where frequencies are now measured relative to
the carrier frequency ~:

I
V -=V-.

f00 T

e'" 'T(t+ r, t)d7'= g e'" 'T(t+ &, t)dr = g T(i+ r, 0)LT(v„, 0)]"T(0,t)e'""""'~)dr,
0 5 no n& 0

where Eqs. (18) and (19) were used in the last step. Thus we can write g(v') as

Q,(t)

g(v') =—Re d& dt e'"'(1, i, 0, -0)T(t+ r, 0)S(v')T(0, t)M
t' t' v,(t)

0 0 so,(t)
(32)

where

S(v') = Q LT(r„, 0)Te'"'"'~. (33)

Q,(o)

(0, 0, 0, 1) .
Q),(0)

(36)

P= lim [T(r„0)]".- (34)

Since T(r„0) has an eigenvector with unit eigen-
value (the equilibrium Bloch vector defined by Eq.
(24) with t=O), part of [T(7„0)]"persists as n- ~.'
This means that the quantity which is being Fourier
transformed in Eq. (30) has a repetitive compon-
ent, so the power spectrum is expected to include
Dirac delta functions. It is desirable to separate
the part of the spectrum composed of delta func-
tions from the continuous part. With this goal in

mind, we introduce a projection matrix P defined
as the part of (T(v„,O)]" which persists as n- ~:

1

ClearlyPis a projection matrix (P =P). The
definition (34} implies that

T(&„,0)P = P (36)

lim[T(r„O)]"(I —P) = 0.
tt-~

(3't)

Thus P may be used to project the part of [T(r„,0}]"
which persists as n- ~ in (33). By replacing S(v')
in Eq. (32) by S(v')P+S(v')Lf —P], we can separate
the spectrum into two parts:

The existence of this limit is apparent from Eqs.
(21) and (24). Explicitly, we can write

g(v') =g h(v')+g~. (v'),

where

(38).

T T

g h(v')=——Re dr dte'"'(1, i, 0, 0)T(t-+&, 0)S(v )PT(0, t)M
0 0 Q),(t)

(39)
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u, (t)
T1' Tg

gz,-(v') =- Re dr dt e'" '(1, i-, 0, 0)T(t+ r, 0)S(v')[I -P]T(0, t)M
0 0 u),(t)

(40)

The subscripts anticipate the result that g„h and

g~, are, respectively, the coherent and incoherent
components of the power spectrum. We now ex-
amine each of these components separately.

g,.„(v')= Q a,.„(m)5 v'—
ms-~

where we define

(45)

C. Reduction of the coherent component of the power
spectrum

Using Eq. (33) and (36) we can write

S(v')P=Pg e'""'~. (41)

Hence one can write g~h(v') as
oo T

ga(v')= Re Q e'""' f ')'(r)e'"'d
f1~ 0

(42)

wherefb). 'u, (t)

(1, i, 0, 0)T(t+-v, 0)PT(0, t )M ' dt.v.(t)

u),(t)

'(43)

Equation (43) reduces, with the help of (35), (1t),
(20), and (27) to

1
f(7) = [u,(t+ r) iv, (t+ v)]-

x [(u,(t)+ iv, (t) ]dt. (44)

Due to the periodicity of u, and v„ f(7') is itself
periodic and one can show using (44) that

'I 2

a~(m} —= —— e" "'~[u, (T}—iv, (r)]dr . (46)
0

D. Reduction of the incoherent component of the power
spectrum

We can rewrite Eq. (33) as

S(v') = lim S„(v'), (47)

where

This component of the scattered light is due to the
semiclassical dipole moment of the atom and we
therefore refer to it as the "coherent" part. Equa-
tion (45) shows that the coherent spectrum con-
sists of a series of spikes displaced from the
optical carrier by multiples of the cycle frequency
2e/7„. The presence of these spikes is due to the
periodicity of the semiclassical dipole moment
at equilibrium. We note that in the special case,
treated by Mollow, of a monochromatic driving
field, u, —iv, oscillates harmonically and the co-
herent spectrum consists of a single elastic spike
at the frequency of the driving field. It will be
seen in Sec. VI that in the more general case, the
spectral profile of the coherently scattered energy
is different from that of the driving field —the co-
herent scattering with a pulse-train driving field
is not in general elastic.

fT

f(~)e'"'" ""'dT
0

Sgv') =- Q [T(r„,0)]"e'""'~.
ad

(48)

is real. The right-hand side of Eq. (42) can there-
fore be written as the product of the above expres-
sion and

e&1 ff ye&"' g/2 —— e

I' 2m+ $u'Tv e Se- Tr

where the Dirac delta function appears in the last
step. Therefore Eq. (42) reduces [using (44} and
replacing r by & —t] to

Sgv')[I —T(r„,0)e' '"]= I —[T(r„,0)]'"'"e'

We define a 4 x4 matrix K(v') as follows:

(48)

L~(„i), [I,—T.(&„0)e' '"],',
V

0 otherwise

and note that due to (35),

i,j =1,2, 3
(50)

Using Eq. (48) one can obtain the following identi-
ty:
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PK(v') = 0. (51)

Multiplying (49) from the right by K(v')Li- P) and

using (22) and (35) we obtain

SN(v')Li P]-=K(v')Li-P]

—[T(r 0)]'"'K(v')Li —P]e'" '""v~

(52)

With the insertion of a factor of P+ LI P] b—efore
the matrix K(v') in the last term of (52) and use of

(3t) and (51), we can see that the last term in (52}
vanishes as N- ~ Th. us the infinite sum S(v') Li -g]
in (40) may be replaced by the matrix K(v )Li P]. —
Using this result, we obtain

gh~(v')=Retr(K(v') G(&)e' 'd~&l,
0

where

truncated Fourier transform of G(r) in Eq. (53}
may be small or orthogonal to Kgv') at a point,
preventing occurrence of a peak. In the special
case, treated by Mollow, of a monochromatic
driving field, only a central peak and its sidebands

are present in the incoherent spectrum. The ab-
sence of additional peaks is traceable to the fact
that the spacing 2w/7'„ to any additional set of peaks
may be arbitrarily chosen since ~„ is arbitrary in

this case.
The spacing Q/r, between a fixed peak and a

sideband may be predicted in certain special cases.
In the case of a monochromatic driving field, the
Bloch equations describe a uniform rotation about
a fixed axis at the Rabi frequency 0= (z,'+e',
+ haP)'s. Thus Q = Q7„and we obtain the well-
known result that the sidebands are separated from
the fixed peak by the Rabi frequency Q. Another

interesting case occurs when q, = 4+= 0. 'The

Bloch equations again describe a rotation about a
fixed axis and P may be expressed simply:

p= J E(l)dl.
0

(56}

1

x (1, i, 0, 0-)T(t+ &, 0)dt. (54)

Certain conclusions may now be formed about
the structure of the incoherent spectrum. The v'

dependence of Eq. (53) is due to two factors —the
matrix K(v') and the truncated Fourier transform
of G(r}. In view of the frequency-time uncertainty
relation, the truncated Fourier transform is not

expected to produce features narrower in frequency
than -2w/~„. However the matrix K(v') can have

very sharp v' dependence if the atomic decay rate
is small. This is because in the limit of smaD e,
the 4 x 4 matrix in Eq. (14) is antisymmetric and

the 3 x 3 submatrix T, defined by Eq. (22) therefore
represents a pure rotation in 3 space. The eigen-
values of T,(&„,0}are thus 1, e'~, and e '~, where

P is the angle of the rotation represented by

T,(&„).0Therefore I, —T,(7„0)e' '~ becomes non-

invertible and K(v'} defined by Eq. (50) blows up

at triplets of frequencies v' given by

v —2tlt1r/&~ = 0, Q/T, —Q/T„& m = 0~ 4 1~ +2~
(55}

Sharp peaks may therefore occur near these fre-
quencies when x is small but finite. That is, for
g « ~P ~/r„, the incoherent spectrum can have

fixed peaks separated from the field carrier fre-
quency by multiples of the basic repetition fre-
quency 2&/r„and "sidebands" equally spaced on

opposite sides of these fixed peaks. There is how-

ever no guarantee thai a peak will occur at any
particular one of these possible locations. The

V. TOTAL INTENSITY

The mean total intensity of the scattered light

is given by'

(57}

Inserting (ll), performing the v' integration, and

using (12c) and (13) we obtain

(7) =-,' iy(y) i'(1+so,}„ (58)

where the t-subscripted angular bracket denotes

cycle averaging. Thus the mean total intensity is

This integral is Simply the pulse "area, "familiar
from pulse propagation studies. ' With a pulse-
train driving field of nonzero area, the separation
of sidebands from fixed peaks thus varies linearly
with driving field amplitude when 4&=0. This is
highly reminiscent of the behavior in a monochro-
matic field. However, it should be kept in mind

that as a sideband recedes from one fixed peak,
it approaches the next one. Thus in contrast to
the monochromatic field case, the separation be-
tween sidebands and fixed peaks can decrease as
the driving amplitude is increased. Another inter-
esting property which may be proven in the special
case that q, = &&=0 is that the power spectrum is
perfectly symmetric about the driving field carrier
frequency (v'=0) regardless of the driving ampli-
tude.
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&u'. + v', &, = -2& u, (1+u, )&, . (60)

This formula may be used to simplify the expres-
sion for the incoherent part of the mean intensity,
Iu, (F), which is obtained by subtracting (59) from
(58). The result is

(61)

Thus the mean incoherent power is proportional to
the average of the square of the atomic excitation.
It can be seen from (58) and (61) that in the limit
of weak excitation, when 1+w is small, the fluo-
rescence is almost entirely coherent.

It is interesting to note that (60) implies an upper
bound to the average inversion at equilibrium:

&u,&, & 0. (62)

This in turn imposes an upper bound on the mean
total intensity given by (58):

I~ ~(r'} ~ ~ 14(r) I'. (62)

proportional to the average excitation of the atom.
The coherent part of the mean intensity is ob-

tained by inserting gca(v') from Eqs. (45) and (46)
in place of g(v') in (57) and performing the v' inte-
gration. The result is

f.g, (r) = ,' g)(P—)I'&u', + v', &, . (58)

Thus the mean coherent intensity is proportional
to the average square of the atom's dipole moment.

It is clear that at equilibrium,

du de dm
N—+v—+w—=0.

dt dt dt

Evaluating this expression using (14}we obtain a
useful relationship between the components of the
equilibrium Bloch vector:

VI'. THE SPECIAL CASE OF THE TWO-MODE DRIVING
FIELD

Perhaps the simplest nonconstant pulse-train
envelope is that of two laser modes beating to-
gether. Specifically we write [referring to Eq. (5}]

e, (t) fe-, (f) = ~,.+ g,.e """, (64)

where e„and e„are the (constant} amplitudes of
the two modes. Two-mode oscillation is attainable
in practice" and has the advantage that experi-
mentally the field envelope may be known with

certainty —the relative phase is unimportant with

only two modes and the observable intensity,
+ q22is sinusoidally modulated, with 100% modula-
tion indicating equal intensities in the two modes.

Figure 1 shows the result of a numerical cal-
culation of power spectra of an atom driven by
the field of Eq. (64}. The left-hand set of curves
shows the incoherent power density g. ,(v'} while
the graphs on the right show the amplitudes acoh(m)

of the coherent spikes (which are in reality super-
imposed over the incoherent part). As noted a-
bove, the coherent spikes are located at v'

=2mv/~„with m=0, +I,+2, . . . . In the figure, these
spikes are represented by small rectangles. The
height of each rectangle represents the power in
the corresponding coherent spike. The rectangles
have been given a finite width such that their areas
may be compared directly with areas under the
peaks in the incoherent spectrum. That is, the
areas on paper of the rectangles in the right-hand
graphs represent the same power as similar areas
under the curves in the left-hand graphs.

As can be seen from Eq. (64}, the driving laser
modes are located at v'=0 and 2v!~,. These fre-
quencies are indicated by small arrows on the v'

(horizontal) axes and thickened grid lines in the

3 ~ 3
f~

&r Smc

1.3—

1.
1.Og

0.5
0.0

)

-4m -2m 0 2m 4m

vier
6~ -4m

V Tr

FIG. 1. Power spectra due to two-mode excitation, as the intensity of one mode is varied. The laser modes are
located at v'=0 and 27i+„. Here e«=4. 0p„, 6~=0.2 w/~„, and ~2, is varied from one curve to the next. The locations
of the laser modes are indicated by small arrows and thickened grid lines; b,co is indicated by a dashed line.
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incoherent graph. Here he@, the off-resonance
parameter for the atom, is fixed at 0.2v/&„—very
near to the laser mode at v'=0, as indicated by
the dashed line in the figure. Figure 1 illustrates
the transition from the monochromatic driving
field case treated by Mollow to a more general
pulse train. The amplitude q„of the first laser
mode is held fixed at 4.0/7„while the amplitude
q„of the second mode (labeled along the left) is
varied from curve to curve. With q„=0.0, the
incoherent spectrum is the "ac Stark" triplet,
familiar from Mollow's work, and the coherent
part consists of a single spike. As the amplitude
of the second laser mode is increased from zero,
the spectra become much more complex. Addi-
tional sidebands appear and the initial symmetry
is lost. The coherent spectra develop multiple
spikes including spikes at frequencies other than
those present in the driving field. Thus the co-
herent scattering is inelastic, as already men-
tioned.

In Figs. 2 through 4, spectra due to a driving
field composed of two equal-amplitude modes are
presented. We label their common amplitude by
e,(a, =—c„=—e„}.Figure 2 shows spectra resulting
from symmetrical excitation. That is, d~ (indica-
ted by the dashed line) is fixed at v/&, —halfway
between the two laser modes. The driving ampli-
tude q, is varied from curve to curve. The most
striking feature here is the perfect symmetry
about the atomic resonance frequency, regardless
of the strength of the driving field. This symmetry
is due to the existence of a rotating frame in which

q, =4&=0. In this new rotating frame, q, varies
sinusoidally with period 2~„and the pulse area per
period defined by Eq. (56) is zero, independent of

Thus peaks can only occur at the fixed-peak
locations, which are now at multiples of v/~„ from

the carrier frequency. This perfect symmetry
and independence of peak spacing on the driving
amplitude should be interesting to observe experi-
mentally. These features will make it possible to
determine exactly when the driving laser is tuned
symmetrically over the atomic resonance.

In Fig. 3, the atomic resonance Ear, indicated by
the dashed line, is fixed at 0 2v/. ~„as in Fig. l.
Thus the atom is excited asymmetrically. For
weak driving field amplitudes, the incoherent
spectrum shows the characteristic "ac Stark"
triplet and the coherent part shows a single
spike —the atom responds linearly to the nearby
mode. However, with increased driving field
strength, the spectra become very complicated.
The symmetry is lost, and the spacing of the
peaks becomes a complicated function of intensity.
We note, however, that fixed peaks still occur at
frequencies v' given by multiples of 2vlv„, and

for fixed q„ the distances from the fixed peaks to
the adjacent sidebands are all the same, as pre-
dicted in Sec. IV.

In Fig. 4, the strength of the driving field is held
fixed (q, = 4.0/v„) and the atomic resonance fre-
quency b,&, shown by the dashed line, is varied in
steps of v/67'„ from well off-resonance ( v/7'„} to-
halfway between the two laser modes (v/r, ). The
spectrum depends on her in a complex way and is
symmetric only fora&a= v/r~

VII. SUMMARY AND CONCLUSION

We have analyzed the power spectrum of the
light scattered by a two-level atom which has re-
laxed to equilibrium with a pulse-train driving
field. The definition of the power spectrum, gen-
eralized to the case of a pulse train, is given in
Eq. (9). In Eq. (30), the power spectrum is reex-

3
gev

+r RWc

1.3-

o

3.
e T~ 3.0~

2.Sg
2. 0~

1.5g

-4m -2n' 0 2m
PT~

6~ -4m
P 'T~

FIG. 2. Power spectra due to symmetric excitation by two equal-intensity laser modes. The driving amplitude is
varied; A~=a fr„.
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3 ~ 3
f»

Tr R~c
1.3—

%oh

3.
e v~ 3.0~

2. 5g
2. Og

1.5g

0.5~
0.0

-4m -2m 0 2m 4n 6m 4~ 6m

VT V T~r
FIG. 3. Power spectra due to asymmetric excitation by two equal-intensity laser modes. The driving amplitude &,

is varied; hen=0. 2 7rP„.

pressed in terms of the solutions to the atomic
Bloch equations. A projection operator for the
equilibrium atomic state is defined in Eqs. (34)
and (35}. This operator is used to separate the
coherent and incoherent components of the power
spectrum [Eqs. (39) and (40)]. The final expression
for the coherent part of the spectrum [Eqs. (45) and

(46)] shows that this component consists of a
series of spikes (delta functions} displaced from
the field carrier frequency by multiples of the
pulse repetition frequency. The incoherent part
of the power spectrum is given in final form in
Eqs. (53) and (54). With weak atomic relaxation,
the incoherent spectrum has a series of peaks.
Fixed peaks can occur at frequencies displaced
from the field carrier by multiples of the pulse
repetition frequency, and sidebands can occur
equally spaced on opposite sides of these fixed
peaks. Thus the peaks occur in triplets. These

features are apparent in the power spectra shown
in Figs. 1-4. The spectra were obtained numeri-
cally, assuming the driving field to be that of two
laser modes beating together. Experimental veri-
fication of the new features predicted here will
provide a test of the Mollow model of resonance
fluorescence, extended to the case of a periodically
varying field.
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APPENDIX: DERIVATION OF EQ. (26)

Mollow's expression (Ref. 3, Eq. 4.6) for the
atomic correlation function can be written in ma-
trix form as

3 ~ 3
f»

Tr Rmc,

1.3—
eoh

&G1T~ 0~

-0.5m~

-4m -2m 6~ -4m
V T~

0 2n' 4n 6m

V T~

FIG. 4. Power spectra due to two equal-intensity laser modes, as the detuning (bee) is varied. The driving ampli-
tude ~o is held fixed: ~o=4. OP„.
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(a (t)a(t+ r)) = (1,0, 0, 0)U(T; t)M'
a*t
n(t}

.m(t),

where U(&;t) is the time-translation matrix defined in Ref. 3:

(Al)

Ua a Ua a* Utlf Ua ff

U(r; t) =-
Uw Uww

Une

Ua

U--
fill

Ua*s

U=
nm

Umph

(A2)

M'=—

0010
0000
oooo

(A3}

0100
Equation (Al) can be rewritten as follows:

'a(t) '

(a~(t)a(t+ r)) = (1,0, 0, 0)R '(t+ &)R(t+ &)U(&; t)R (t)R(t)M'R (t)R(t)
a*(t)

n(t}

m(t)

(A4)

where R(t) is the 4 x4 transformation matrix appearing in Eq. (13) and we note that R '(t) = &R'(t). Equation
(26) is obtained by making the following identifications:

(1,0, 0, 0)R (t+r)= .'e '"""-(l,-t, o, o),

R(t+ r)U(r; t)R '(t) = r(t+ r, t),
R(t)M'R '(t) = '. e'"'M. -

(AS)

(A6)

(A 7)
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