
PHYSICAL REVIEW A VOLUME 22, NUMBER 5 NOVEMBER 1980

Collisional redistribution of radiation. III.The etlnation of motion for the correlation function
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We present a calculation of the scattering of monochromatic radiation by a degenerate atom in the binary-collision

approximation. We limit ourselves to field strengths such that Qr, &1, where 0 is the Rabi frequency for the atomic

transition, and r, is the duration of a strong collision. Our calculation is not limited to the impact regime,

4co&v; ', or to the region where thermal correlations may be neglected, i.e., 4copkT/k (Here 4' is the

difference between either the incoming or outgoing photon's frequency and the atom's natural frequency. ) To do this

we derive an equation of motion for the correlation function, valid outside the quantum-regression regime, whose

solution for practical cases is straightforward. We present solutions for the weak-field (linear-response) regime in

terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles created.

I. INTRODUCTION

We shall. now turn to the calculation of the cor-
relation function. This problem is similar to the
ones we tackled in the first two papers": We
start with the formal and exact equation of mo-
tion for the correlation function and attempt to
reduce it to a convenient subspace. ' The resulting
equations of motion now differ slightly from those
for the projected density matrix since the de-
struction terms must be kept (even when cal-
culating a steady-state spectrum) and appear as
separate inhomogeneous terms in the equation of
motion for the correlation function. As far as
weak-field scattering is concerned, the destruc-
tion terms pLay the same role with regard to
emission as the correction to the collision opera-
tors did with regard to'absorption. We obtain
corrections to the scattered spectrum from the
correlated events in absorption and emission.
It is found that the type of event where absorption
and emission ta, kes plaice during a single strong
collision is, in the context of the binary-collision
approximation (BCA}, of little importance except,
perhaps, for the Stark broadening of hydrogenic
lines. The same physical processes we include
have been considered in a somewhat heuristic
manner by Cooper. ' Our treatment justifies his
analysis, while at the same time giving more
amenable exprehsions for the corrections to the
scattered spectrum due to the breakdown of the
factorization a ssumption.

The paper is divided as follows: In Sec. II, we
discuss the formal implications, for the correla-
tion function, of working outside the domain of the
quantum-regression theorem. In Sec. III, the
equation of motion for the dipole autocorrelation
function of a degenerate system is derived and
expressed in irreducible form. Using this equa-
tion, we derive the weak-incident-field scattered

spectrum that includes al.l the effects of correla-
tions. In Sec. IV the new terms due to correla-
tion effects are discussed, their relative impor-
tance estimated, and their detailed evaluation for
cases of importance outlined. Section V gives a
summary and discussion of our principal results.
It is shown how correlated events in the scattered
spectrum are related to those in emission that
may be observed by studying integrated inten-
sities of fluorescence.

The analysis of this problem is novel in the
following sense: We are able to calculate an ex-
act two-time correlation function outside the do-
main of the quantum fluctuation-regression theo-
rem. It shows clearly how extra dynamical in-
formation, from correlated events, appears in the
scattered spectrum when either the microscopic
process that causes relaxation cannot be assumed
to be Markoffian, or one studies a system outside
thermal equilibrium. We hope that as well as
providing a means of describing collisional re-
distribution, and showing how the extra dynam-
ical information —in this case for atom-perturber
collisions —may be extracted, it provides a con-
crete model for some fundamental issues in
statistical mechanics.

Alternative approaches ' to the redistribution
problem have been presented for nondegenerate
systems that are, as yet, valid in a more re-
stricted domain. They are, in the belief of the
authors, quite capable of being generalized and
we feel that they will reproduce the essential
physics of our discussion.

II. THE CORRELATION FUNCTION: FORMAL
CONSIDERATIONS

We want to calculate the amount of scattering
into a given mode of the radiation field and the
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way we do it is quite standard. First, we recog-
nize that the rate of detection of photons may be
related to the correlation function of the electric-
field operator, i.e.,'

(E (t, ) ~ e,E'(t,}~ e2) (2 l)

2Re e'"' d't ~ &,d t+v ~ E,* .
0

(2.8)

In this expression t must be a typical time in the
steady state, so that we do not ignore the effect
of initial correlations on the steady-state spec-
trum. We can write the ensemble average in the
form

C(7) = Tr[pd'(t)d (t r)+],

where

d'(t) =d'(t) ~ e, ,

d (t}=d (f) ~ f~*,

(2.4)

and p is the complete density matrix for the atom
in the presence of radiation and perturbers. For
t in (2.3) to be a typical time we must be con-
sistent with our choice of initial conditions. We
take the origin of the time evolution as t = -~, so
that the Heisenberg picture operators (the d"s)
coincide with the Schrodinger picture operators
at this time. In papers I and II we argued that it
was a very weak assumption to take t =--~ as a
time when the density matrix for the complete
system of atom + radiation+ perturbers can be
written in product form

p(-~) =p,~xp~ x p
Ps

=~at X ~SW ~ (2.5}

It is then consistent to suppose that the d opera-
tors commute with the perturber and radiation
operators, i.e., are Schrodinger operators in the
atomic subspace at t = -~.

Our aim is to reduce (2.4) to a single time aver-
age involving just the time difference v. To this
end we write C(r) in the form

((. . .) denotes an ensemble average). Here E
and E' are the negative and positive frequency
components of the electric-fieM operator. This
is, in turn, proportional to

C(t„ t, ) =(d'(t, ) ~ e,d (t, ) ~ fg), (2.2)

where d is the dipole moment of the atom. '
We assume that both t, and t, are times when

the atom has reached a stationary state in the
presence of the driving field and, consequently,
that C(t„t, ) depends only on the difference between

t, and t,. In that case it can be shown' that the ob-
served power spectrum is proportional to the
quantity

C(r) = Tr[U(r)[p(t)d'] d ), (2.6)

where p(f) is the Schr5dinger picture density op-
erator at time t, and the Liouville-space evolu-
tion operator U(r}' acts only on p(t)d'. From
papers I and II we know how to calculate the
steady-state density operator p(t) in Eq. (2.6).
We could directly reduce C(v) if we could make
the factorization assumption [Eq. (2.5)] at all
times. Then Eq. (2.6), rewritten thus,

C(r) = Tr„(Tr~~ (U(7)[p(t)d']}d ), (2.7)

could be further simplified to the following form:

C(v) =Tr[e '(p~d')d ]
=Tr[p~(e 'd')d ]
=Tr[p~d'(v)d ]
=Tr,~ (Tr~,~ [p d'(7)]d j. (2.9)

The equation of motion for the correlation function
would once again be obtained directly from the
equation of motion for the reduced density matrix.
Thus we would just need the equation of motion for
a single time variable, Tr~a [p d'(r)], to obtain

absorption and emission profiles. This is just
Kirchoff's law for thermal equilibrium radiation
processes in a different guise.

We are, of course, unable to use either of
these simplifications. We cannot make the Markoff

(or factorization at all times} approximation-
since it does not hold for the atom-perturber
interaction' on the short time scales we want to
study. Making the factorization assumption in

calculating the emission spectrum amounts to
the assumption that no emission evident is cor-
related with a particular perturber state or atom-
perturber orientation. Since we know that emis-
sion in the far wings of a spectral line «u» 1/r„
only occurs during a strong collision —when atom
and perturber are strongly coupled —the factor-
ization assumption must fail at some point.
Since, in addition, we are driving an atomic
system with an external field the steady state
cannot be thermal equilibrium and we must,
therefore, stay with the general equation (2.6).

C(r) =Tr, fTr [U(t)p (0)][p, (t)d']d ).
(2 6)

The equation of motion for p„(t)d' would then
have precisely the same form as the equation of
motion for the reduced density matrix p, (t} (ob-
tained using the factorization assumption). This
is the quantum-regression theorem. ' In a sim-
ilar fashion we could reduce the correlation func-
tion in the case of thermal equilibrium. To see
this we write
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a.e.,
s,g(v) ={L +V+S+L (t)}g(r). (2.14)

The important quantity we need to calculate is
P,g(t). This is the projection of g(t) onto the

We shall proceed to derive an equation of motion
for C(r), using the same projection operators we

did in paper I. The Markoff approximation for
the matter-radiation interaction alone is, how-

ever, valid and it implies for our purposes that

P„p(t) =—p(t) . (2.10)

Physically, this means that the driving field has
a negligible effect on the virtual processes that
cause radiative relaxation, a direct result of
their very short "memory" time. We can then

write

C(r}= Tr,~ {Tr~[U(r)][p„, (t)d']d },
(2.11)

where

8, Tr [U(t)] =[La +I) +S+L (t)]Tr~[U(t)]
(2.12}

[see Eq. (2.32), paper I].
We concentrate now on the equation of motion for

U„(r)Pa(t) d' =g(v'), (2.13)

(2.15}

Note that the initial condition at some typical
time, taken as t =0, now plays an important role
since the last term in (2.15) is distinct from the
others and cannot be simply combined to give an
equation on the interval (t, -~) of any use to us.
Now Q,g(0) =[@,pa(t)]d', since we assume that
the dipole operator does not couple different
translational. states of the perturbers, and we

have already calculated Q, pa(t) [Eq. (3.6),
paper I]:

t

Q, Pa(t) = 9.(t, t')Q, VP, Pa(t')dt'.
m OQ

(2.16)

Here 9,(t, t'} satisfies the usual equation of mo-
tion [Eq. (3.2a), paper I], which is equivalent to

s,9,(t, t') = Q, [LO + V+8 + L (t)]9,(t, t') .
So the equation of motion for P,g(t) may be writ-
ten in the form

factorized part of the atom-perturber system. -

Its equation of motion may be written in a sim-
ilar form to that-for the corresponding projection
of the density operator P, p(t), i.e.,

B,p,g(t) =P, [LO+ L (t)+S]P,g(t)
t

+ P,VQ 9(t, t')Q VP,g(t')dt'
0

+P,VQ, 9,(t, 0)[Q,g (0)].

t

8,P,g(t) =P,[L +L (t)+S]P,g(t} + P,VQ, 9,(t, t')Q, VP,g(t'}dt'
0

0

+P,VQ, 9,(r, 0) Q, J 9,(0, 7')Q,VP, j)a(t')dt' Q'
m 40 )

(2.17)

Note that the object in large parentheses must be
calculated first, before it acts on the d' opera-
tor. Now that we have the equation of motion for
P,g(t), the initial condition through (2.13) and the
steady state for p„(t), we can calculate the spec-
trum. We shall, as before, concentrate on the
BCA to these equations of motion, i.e.,
s,P',g(t) =P,'[Lo +S+L (t)]P',g(t}

+No PcV,@cec t, t' V,Pcg t' t'
0

+Iv, P',v,Q,9.'(t, 0)
0

g', 9,'(t, t')g V,P', p„(t')dt'id' .

(2.18)

Here N~ is the number of perturbers in the nor-
malization volume we choose. These equations

describe the formation of the emission spectrum
via the time dependence of the correlation func-
tion. Emission can occur outside or during a
collision, and Eq. (2.18) describes all possible
sequences of radiative and collisional events. It
is, therefore, not limited to either the impact
t » r, or t » k/kT regimes where T is the trans-
lational temperature of the perturbers. To use
these equations we shall need to express them in

irreducible form, as we did with the equations of
motion for the density matrix. This is achieved
in the next section.

III. THE EQUATION OF MOTION FOR THE
CORRELATION FUNCTION IN IRREDUCIBLE FORM

We shall now consider the correlation function
for a driven two-level atom the upper and lower
levels having angular momentum j, and j„re-
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spectively. There may be other states that the
collision couples into these two states, but we
assume that the direct coupling to these levels
via the driving field may be neglected. We shall
not be concerned with effects due to inelastic or
repopulating collisions from these other levels,
as this has been discussed elsewhere. '" They
are mentioned since they are necessary for the
existence of an effective interaction within the
upper-state manifold (see paper II). Equation
(2.18) shows that we need the corrections to the
collision operator that we calculated in paper II.
We also need the destruction terms in Eq. (2.18).
The destruction terms, and corrections to the
collision operator, represent correlated emission
and absorption events and have, therefore, a
very similar structure when expressed in terms
of collision matrix elements. To show this we
use the same methods as we did above to expand
the exact propagator Q,(t, t') in powers of the
driving fie1d. If we wish to calculate only the
weak-field scattered spectrum, an examination
of the destruction operator informs us that we
need only the first-order correction to the destruc-
tion operator. This is so because the presence
of the dipole operator in the definition of g(r)
makes the zeroth-order term in the destruction
operator equivalent to the first-order term in

the correction to the collision operator. By the
same token, we see that we only need to expand

the destruction operator to first-order in the
driving field to obtain a consistent set of equations
in which the collision operator is expanded
to second order. The validity of the expansion in
the driving field is, of course, the same as dis-
cussed in paper I, i.e., Q~, «1 where 0 is the
on-resonance Rabi frequency. We shall limit our
detailed discussion to the weak-field case, but it
should be borne in mind that 07,«1 is the only
fundamental limitation on our treatment.

We shall consider here the equations of motion

in the one interacting level (OIL) approximation,
as this case exemplifies the interesting physics
without unrealistically simplifying the problem.
In Appendix A, we give the form of the destruc-
tion operator for the more general case where
upper and lower levels interact with the perturb-
ers. We use the fol.lowing, slowly varying,
quantities rather than the matrix elements of
g(~):

ff,g, (t) =«KQj.j.lt(t)»
fg, ; (t) =«KQi, i lg(t)»

fg g (t) =&(KQieielg(t)» e'"",
f,,y, (t }=«KQiei. lg(t)» e '"~'.

Here ~L, is the frequency of the driving field. Then
the Laplace transform of Eq. (2.18), written in
irreducible form, is

2I'egi+fee (ru) --fee (t =0) =~e~eM (ru)fee (ar) - . " f O
(&u)

ee&e &e&e &e~e &e&e (2j + I ) ~e~e

x [1+8'(K;ee; eg; (u, ~~)] fr~~(a))

Se( e, ) e&je ll dll je &,
'

&
Gore(-1)~e ~e[1+&'(K; ee g e, a&, ~i )]f& z (ar),

-i(~+~, —~. )+ . " fj ~ (&)-fg g (t=o)
(3.2)

=J'&" M(~ ~+)f~ ~ (~)+ —+ &j.lldllj, &(e ')-, g.

x( e' Ger' ( I)r+r'eo+eIfz'0'(

Here

+ ~ ~ G o o,(-1) [1+S'(K', qg, ee, &o, ~~)]f~ ~, (~))

+D,(K, eg, ee, a&)+D, ' (K, Q; qg, ee, eg)+D, " (K, Q; eg, ee ge)+D, (K, Q; eggg, ge).

De(K, eg, ee, &u) = p (em), .(j,lldll je&& &
Gore. (-1)~"~e 8'(K', eg, ee, (u)oz z

X'Q 'a '

Then f~~~~ (&o) can be obtained from the same equation for fpe& by using the tensor relation Tee(jej, )
=T e(j j,) (e-1) e'~e'o, and dropping the destruction terms

(3.3)
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-i(df, ; ((d)-f, , (t =O)- e(ju,j„K)f...(~) =
)I Z &,&j II dllj, )(e')-.(-I) "[;g

Go'"g](-I)" "f,';'(~)
eQ' E'

The driving field has the form E(t) = he, +
tion vector e', and tII is defined thus

——Z &i~lldllj. &(-1)" "' [) gGo o](e!)'hof, , (&) (3 4)
aQ 'lC'

8 E, , S=Spe '"~', the outgoing scattered field has polariza- .

(j„j„K)=(-1)"'" "(2j,+1)l~ ' '
}I 2,g.

Here, we need the following quantities [for the definition of the G's and &'(K, eg, ee, &u), see paper II]:

' e+s++ &d&+ L, +S

u &((.'u*. & u I.. '. - - «, ((,(--)) ( u ( u ')).
'. . .e+iz+L, +S

(3.5)

where the summation is over the p. 's, Q, and j,'. Here the Tr' indicates the angular part of the average
over perturbers, which has been performed. The number of perturbers in the quantization volume is h'~.
Note that the intermediate states in the collision operator include other excited states coupled to j, by the
coll.isiona l interaction:

DI' (K Q, ; eg, gg, ge, &o) = —. g (2K, +1)' '(2K3+1)' ~$0(-I)'u "~'ri'rs"

&& (e, ) ~(c,),d (K„eg,gg, ge, (d)(2K, +1)g) /K3 1 K, )t /K~ 1 K~'}

Q. -f' Q,) ~-Q. ~ Q

(K, 1 j j (K, 1 j~p

where the summation is over the q's, Q„K„K„j,', andj,', and

„()(K, , ) Q fjl j(( 3) ( j: j 3 'I (,)((.-(u,

Qs) ( —t(,, )(., -Q~j3 1 1 2 4 1

'1 1 1 1N, lim ju')).,'jg)),g' Tr IV I le)te jg)4))
u~o 'x((d+(()I,)+L, S++ e

the summation being over the p, 's and Q3'.

x «j,u,' j,)),'I . - -
I &,)),'f, )),'))

sur+L, +S+ e

«&(, ;,:u:~ , , v, u, ~
..u,*u.u:));-scoi+ a+L, +S

(3.6)

li2 2K2+1) E -o uj'-JD," (K,Q„eg, ee, ge, (()) = g(2K, +I)" '. (2K, + I)(-l)r~ o~"u )~

xg(;) (;)X P61
E~, -Q. Q i I,-«. Q.f Ei K

x(j,ll dll j:)&j'.Ildllj. )
I

-4 X
) d ' (K»eg, ee, ge, (())or~ ~
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where the summation is over K„K„j,', j,', j„j,', all the Q's and q's, and

i '& ee K w /'e 'a K X 4 e 4 e
d(ul)(K . e ee ge +) g t ja ua 3 t t Ja ja $

II ( I)gsuja+Ja+uauea

( Pe P-e Qg j (Pe -I&a -Qe i
u

x lfmNe j,'p,' je pe' Tr,'ll' - - I je'pam jeg&»
S + L + a (&u + wz, ) + e

x«j.l.!j,l!I' e+S+L,

ugly,

ulilu!I --. v, uI&u!eu,!)).S+L, -ie&+
The summation in this case is over the p. 's and Q~.

D,"'
(KQ; eg, ee, eg, e}= (2K, + I)'~'(2K, + I)'~' '/1 K K ~ t'1 K

(q' -Q, -Q, j (q Qs Q~i

(3 'I)

'
I

(-1)" '"" "(2K.+1)&j, Ildlli!&&j!Ildlli, &

( ja Ke Kgj (je Ke Ke j
g+

(e, ) (e2e) & ed'. " (K» egee, eg)c
f~~fz

where the summation is over K„K„all q's and Q's; and

(Pe Pe Q-ej (Pe Pe Qej

x IimNe Pale je pe Tr~
I

I je 0'e jap'e))
e e ~ 5 Lz +S+z((d +(al~)+e

x «JeWe jeWe I
- - Iles a jel e»E+Lj +S

«(&j!u.'i, u,'I - - . e,u, l j!u ju)); '(u,.s)
Li+S +14'+ E j

the summation being over the p, 's and Q,'. Here the e's are the steady-state values of the reduced density matrix
expressed in irreducible form (see paper II). The generalizations of these operators to the case where
both levels interact with perturbers are given in Appendix A. We have labeled these destruction terms
(i), (ii), and (fii) since they are, in essence, the correlation corrections to the Fi'l, Fi"l, and Fi'"l
terms of Omont, Smith, and Cooper. " Cooper' has considered these corrections, but was not able to ex-
plicitly separate them from the "uncorrelated" terms. Our analysis achieves this separation and as we
shall see clarifies his analysis. Now we note the following:

C(&u) = Tree [g(a&)d ]
= g &j&m, I g(~) I j2mg(j. m. l dI j,m, &

e 2»

fye'gg (~ &S.) =

= 3+g'... (~)(-»" "&j, lldllj. &(e'.},.
The weak-field solution for g)'& '(v) =f&'z'(u& —&oz, ) is thenfefg fef

1

2j +1j

'o' 're

(3.9)

+ f~'~' (f =0)+ P (e,),.&jaII dII je) & ~ 6',e(-I) "8'(K', qg, ee, ar)c e (j j,)

+Di'l(1, -q; eg, gg, ge, &u- ra~}+D "l(1, -q; eg, ee, ge, ~ —u&L)+Di'"l(l, -q; eg, ee, eg, ru- &o~}I.

(3.10}
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We need the following:

fg, g, (& =o) =«&Qfgfgl e(& =o)d' 'e
)&

= Z
E'Q 'a'

So we have

(-Q' -q' Q) (i, f, i.f
(3.11)

fg.'j;(&=o)= Z eg, g, (-1)' ""'~(&.)„~
E'Q'a'

(2K'+1)'~ l ( l
&~, (pl~

(-Q' q' -qf ~i, f. f.)
We note also,

(3.13)

flag (&=o)= Z Og g
(-1)'' (em),. (~+1)' (~'+1)" &i. lldlli, &, (3 13)

(-Q' q' +Qf (f, i, f.j
where

ef;,, = Z (—I [&i,ll dlli. &(~, ) .h.' . (-1)"""'&3

x 6(& =1)6(Q =q ).
Here, N, is the ground-state atomic population. Thus

fg g (t =o) = Q ' (-1)"'~"(&.).,(e,')-.,tk

(3.14)

x&i. ll dlli, &&i, ll dlli. & Z. , 1 ~
~

(~+1)'+
(i, f, f.)

1
r„z(v,~

—es,)-~ )' M'(m )I+g e 2g~+1

From paper II we know also

(3.15}

g (2e"(ii ) = "
&i, ll dlli. &'(~+1)' P (e;).,(~,)- (-1)"""'""

(q. -q, -Qj (i. i. i.J

X N~

8 8~+ 0 8E 2j +1

x 2Re
M ((dg) +X ((Uqg QP}+

(
.

)

[1+6'(K, ee, eg, or~)]

(3.16)

Thus the weak-field scattered spectrum may be written in the following form:
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c.-a

c(~)=g "" " "' (-1)" "(jrlldllj. &(~,),
a

(3.1'I)

(-i(cu- cu,r)- . ' -r'ra M'(cu)f2j, +1

x g(-I)" 'r&j, ll dll je&

Z (-I)" "(~.). & (2K'+ I)'~&j.'ll dll j,&
«rara ~

x [I+8'(K', eg, ee, cu)]
K 1 1 K' 1 11 ~o.o" (j.j.)

(-Q q qj ( jr je Je)

x g ' .' (-1)"'r (e,), (e,*)a (2K'+ l)~'fg

a2a1

f 1 1 K') (I 1 K')
{j.II dII j &{

(-q. q, Q') le, j, j!f
1

(-c(cu„- cu~) —,","M (ccu)+ I'.,/(2 j,+1)&

+DCc'l(1, -q; eg, gg, ge, cu- cur)+DCc"l(1, -q; eg, ee, ge, cu- cur)+DCc'"l(1, -q; eg, ee, qg, cu- cuz) .

(3.18)

IV. CORRELATION TERMS IN THE SPECTRUM

Now that we have the formal result for the scattered spectrum we shall discuss the reLative importance
of the uncorreLated, the D, and the C terms. First, let us consider the D, ' term which is a correction to
the Rayleigh scattering, in the sense that the same sequence of density matrix elements occurs in it, as
does in the normal F ' term" that gives the Rayleigh scattering. This sequence includes a propagation
in a superposition of the initial and final states —this is Shown most clearly when one considers Raman
rather than Rayleigh scattering (see Fig. 1).

We write the spherically averaged operator that occurs in DC'~ and d '~ in the following form:

x lim
g ~a'0

"2'3d7'3
0

5 44' T I T12 2 2
0 0

dr g'4"1'1
1

x Trc [(&j.Pe paler I Vl (vc + +2+ rs) Ul (+c + T2+ r3 rl + r2) I je W' jr Pr»

x((j,p'j, p,*l U,'(r„o)V,'(0)p, (- )II',g'j, p,'»],
the summation is over the p'sand Q. Here 4cu, =cu„—cu+iyrr/2, &cu, =cu, -cue, iy„/2, &-cu„=cu-cuz„
and we have introduced interaction picture operators U,

' (see II). This DCc' term vanishes in the weak-
collision limit obtained by putting the 0"s equal to the identity operator in Liouville space, since the
expectation value of the interaction V, (r) in any given state vanishes. If we suppose that we can use an

I

adiabatic approximation, for the coupling of other excited states of the atom into j„ then we can replace
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V,
'

by V&&eff, and treat [j,)j,, ) as a complete set of states. We can then reduce the K =0 component to, the

following form. We shall only estimate the K =0 components of d", d ", and d '"', since we expect
them to provide reasonable estimates for E t 0 also,

$~0 je+ & Q

X gj deggT2 I12 g jhel
Q Q

x Tr,'[(j,)&,,'[ V,'(T, + T,) U,'(TQ+ T„T,)V', ( T,-)U,'(0, T,) -~j,p,')) . , (4.2)

(4.3}

If, on the other hand, A&d)&0» T, ', we can replace T, by I/iAQ)». Thus, we can summarize our estimates,
for d ' and E =0, in the following expression:

1 & 'M'(-&o) ), M'(&d))1 ib(d)~A&&)0 (; M'(&d)) 'M'(-&d] ))~

(j) &)„+diT, '}.( j)«d), A&d), & (&d) —(dj~+iy„) k A&d)', AQT'] )

(see Appendix, B).
We can estimate d " in the same manner as we did d '; the weak-col. lision limit vanishes, and the

effect of the ~, propagation, now in the excited rather than the ground state, can be estimated by putting
T, =0 and replacing f dT, by T, Apart .from angular factors d " for K =0 may be written in the form

' 'f dr e' ' f dve' '
Tr, '[(rr,'I[0'tr 0) (][(j'(o„r,-)v (]Id.',)-]-

Q"e

(4.4)

If (u —+1.=&(c)„ is less than 7', , we can use the following argument to give an upper estimate to the
integral. We know that the integrand takes its maximum value (as a function of T,) when T, =0, and decays
on a time scale comparable with the duration of a strong collision. An upper estimate is, thus, given by

)im P . ' f e ":dr f e"" ' dv, rr [(j u'I'v(v)0'(r O)V(„-v)(vl(O, r)vlj -o )]'
8~Q g 8 Q Q I

"e

=rim g . ' (eire dre )f e "
dv, f e ' rTdr [(j !1[r'rrr(o)v',- ][r)() ro') )]Ij ir -)].2je+1 Q

(where we have used the results of Appendix B). We have to lake more care with the D&"') term, as the
weak-collision contribution does not vanish. We can, however, evaluate this contribution and express it
in terms of width and shift operators. We now consider the K =0 component of d "', i.e.,

I

j' j"0' (2je+ I) 0 0 0

x Tr& [((j i]0jeJ&e ( V&(T& + TQ + TQ ) U& (T& + TQ + TT&Q o+ TQ ) [je Pe je joe ))]
x «fe )

aerate]

el U&(T& + Ted T&)l

queue

je) e ))
X ((j')&ejell U' ( OT)V'(0)})(- ) I joyce je)&ee)) ~ (4.6)

The weak-collision contribution is
00 00 QO 2

dT, e '0"*TQ dT, e Td['0 e ' "&'& —. Tr&j[(je]jg 'V( ,T+,T+T)QV(&0)P&(-~}lje]je))r (4.7}
1 je+ 0 0 0 sk"e

where «d),' = &d)« —&d)~ -iy„/2. We note that we have taken the other states mixed into e to be degenerate with
it; this is true in the most important case, where this weak contribution may not be negligible, i.e., in the
Stark broadening of hydrogen. Equation (4.7) may be written in the form

f~fg„( ) [' 'j'M'( ):j,'M ('y /2);;M'( ) l) 4 6)
(((+g. —~) [~~ —~«+(irN/4 [~- ~«+(irjd/2)l[ i —~«+Srjd/4)

+
(~~ —~)[~- ~«+(irj&/'ll)

Here
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(4 9)""M'„(~)= g . e"" ""' '"" 'l,—.
l »,'[(jewel V,'(v)V,'(0)p, (-")1jeÃ&].

e

The weak-collision contribution to the spherically averaged operator in D,"', d "', for K4 0, may be
written in the same form with M (w) replaced by M„(ru), where

Mr(&y) = t f f (2K' + 1)(-1)"e ee e ~ ~eeeS&d&Se
/ ff)* e, x

x (j,g,' I Tr,'[V, (v, )V, (0)p,(- )]Ij,p,"), (4.10)

the summation being over the p, 's and Q. In estimating the relative sizes of the D's and the other term in
the spectrum below, we use the fact that for Stark broadening of hydrogen lines, it may be shown for
I & - ~eel ~~ &w 1

q'qe M'„(ru)- -y„iyer-„b(o.
8 g

(4.11)

Here Z and y, are, respectively, the weak- and strong-collision linewidths, and T is the duration of a
weak collision (inverse of the plasma frequency}. We can estimate the strong-collision contribution using
the same method as we did above for d, '~ and dl "l. We find the following estimate for (4.5):

di'"l — ' [ ' eM'(&u)- ' eM'(-(u )]i(~ ~ ) Jete ~ fete +L (4.12)

Now that we have estimates for these extra collision operators we can compare them with the other terms
in the spectrum. "

We define the following quantities:

1 y'(&~)
v [ru —&u,e —b'(&u)]'+ y'(b &u)' '

1 &o —ro„—b'(b~}
v [(u - (u,e —b'(b(u)]'+y'(&(u)'

Here, y'(b&u) =y'(b&o)+-,'y„, b'(b~) =b'(b&o), where

y'(b(o) = -Re[;'eM'(a))],

(4.13a)

(4.13b)

(4.14a)

(4.15)

b'(«u) = -Im[;; M'(~)] (4.14b)

[see Eq. (3.10), paper II]. We can then write the frequency-dependent factors in the complete Ei'~ term
(Rayleigh scattering plus the Dl, correction) in the following form:

1 i e; M'(-u~);e M'(&u) &tu, b&u,Be .~ ~+. +ib s&»+ e ib&u»+ r, ' . «u, «u, (&u —ra&, +iyz)

( eeM'((O) ee; M'(-S)~)l'
+ "

b~ I ([f(b~,)+in(be, )][f(b&o,)-in(«u, )]).
2

This term is represented by the diagram given in
Fig. 1. The first term of (4.14), the ordinary
Bayleigh term, is obtained when we can average
separately over the three time intervals (r„r„
and r, ). This is the same as ignoring the cor-
rections to the collision operators destruction
terms. The D, ' correction to Rayleigh scatter-
ing represents the physical process where a single
strong coll.ision overlaps the three time intervals.

Let us consider how the D, ' correction modifies
the spectrum in the most important regions of the
spectrum. Suppose we excite the atom in the far

wing, &aoI, && r, , the 6 function is modified by
(i) a term of order -y, (b&u, )v, times a function
with width y„and (ii) a term of order b, («o, )/«u,
times a function with width v, ', both these are
negligible in practical circumstances. The mod-
ification to the 5 function can be understood as
follows. Rayleigh scattering occurs when the atom
is unperturbed and y(br')r, represents the fraction
of atoms undergoing strong collisions. We should,
therefore, expect the Rayleigh scattering to be
affected to that order. The D, ' correction also.
affects the fluorescence, i.e., b&u, -y, (0), by an
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Jo)

Y3 Z'3 7( 73

(e/

FIG. 1. The EI& term: ~ represents overlap of the
time intervals tn (1):D~, (2}:6 (gg, eg}, (3): 8 (ge, gg}.

FIG. 3. The E~&&&~ term: ~ represents overlap of the
time intervals in P):D~, (2): 8 (ee,ge), (3):6 (ge, ee).

amount of order y„/«u, in the same limit
(&~, && v, '}. This, again, is negligible. In the
impact limit &m, and &oo2&& v', ' the D, ' term mod-
ifies the (t function by an amount -y, (0)v, times
a function of width y„, and may be neglected. Our
conclusion is that we may ignore the D~'~ in all
important regions of the spectrum.

We now turn to the E " term which is repre-
sented by the diagram in Fig. 2. Again, dropping
the destruction terms and, of course, the cor-
rection to the collision operator, is the same as
averaging separately over the three time inter-
vals. The Dy correction represents the process
where a single collision overlaps the three inter-
vals. For &~„&&7', ' the analysis of this correc-
tion is identical to that for D,' . When we excite
in the wings, i.e., «o, » r, ' then (3.23) shows
that D," produces a correction ~N7; to the
fluorescence. Once again, this should be expected,
for the following reason. Once a photon has been
absorbed during a strong collision, the probability
that it will be reemitted during the same strong
collision must be -Einstein A coefficient x duration
of collision, i.e., -y„v', . Note that ~, is the dura-
tion of a strong collision, since the correction
vanishes for weak collisions. If y, was the dura-

fe)

2 3

«I

FIG. Z. The 5'&&O ter[n: ~ represents, overlap of the
time intervals in g):Dg, (2): g (ee, eg), (3): 5' (ge, ee).

tion of a weak collision r, then there are prac-
tical cases, e.g., in the Stark broadening of hy-
drogen where y„v can be comparable with 1. So
we are just left with D(,"'~ to analyze (see Fig. 3).
It appears in the scattered spectrum in the form

Re{d("'~[f(4v, }+in(4ru, )][f (4&v, ) +in(4&v, )]).
(4.16}

Let us first consider the strong-collision con-
tribution Eq. (4.12). When «u, » T, ' then we ob-
tain a correction -y„7, to the fluorescence. This
is the same order as the D, '" correction, and is
expected on the same basis as the argument we
gave for D," . For &co, && v, ', the Rayleigh peak
(8 function} is changed in magnitude by the order
y, («a, )t; In the i.mpact limit &&a, and &&u, and
4~, && v, ', the corrections to the Rayleigh and
fluorescence peaks are, respectively,
-y„7,[dy(«u, )/d&o, ]and y,v, [dy(4u&, }/d&o, ]
[y, =y'(4&v =0)]. Though we can always neglect
the strong-collision contribution from D,"', the
weak-collision contribution [Eq. (4.8)] needs a
little more care. When [ &ar, [» t', this weak-
collision contribution gives terms
(y„v )[y,/y'(4&v, )] compared to the fluorescence
peak and a term ~,(4&v, )/4&@, compared to the
Rayleigh peak. In the impact limit the correction
is of order (y, +y„)v compared to the fluores-
cence. For neutral perturbers we can ignore this
correction in most circumstances of interest.
For Stark broadening of hydrogen lines, h'owever,
it may (under extreme circumstances, e.g. , in
the sun) be important if y„Ts [y'/y'(&&u}] is of
order one. Note that in this situation the correc-
tion to the normal collision operator, from the
effects of spontaneous emission [via the presence
of S in the definition of the M(z)'s, Eq. (2.17),
paper II], also becomes important. In fact, the
weak-collision limit is quite calculable, as we
saw above [Eq. (4.8)]. In the above discussion we
have been careful to show how the correction
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V. RESULTS AND DISCUSSION

Now that we have a formal result for the scat-
tered spectrum, along with estimates of the rela-
tive importance of the correction terms, we
should like to cast our result for the scattered
spectrum in terms of generalized absorption and
emission profiles, ' and link up our discussion with
that of papers I and II. To do this we use the fol-
lowing definitions (valid in the OIL approxima-
tion):

f„(«u) =f (&m)[1+ReC'(K, ee, eg, &u)]

(5.1)+n(«u) 1m[8'(K, ee, eg, ru)],

f, (&u}=f (&&cr}[I+Re 8'(K, eg, ee, a&}]

+n(&u&) 1m[8'(K, eg, ee, &o)]. (5.2)
The scattered spectrum may then be written in
the form

Z kf
~

' 5(&~,.)+ «f.~(&~,)f.. (&~.)
«/f (&&a,) 2
ly&~, " +y" "

[f (&~~}n(&~a)-n(&~i}f(&~2)] I
~

1
+~im i

(5.3)

terms D ', etc. , may be estimated for both weak
and strong collisions. We note here that there
are also weak-collision contributions to the ~'
operators that may be of comparable importance
in the Stark broadening of hydrogen. In fact, for
Lyman a (in work performed in collaboration
with the late Yelnik), it is possible to show for
scattering from the far line wings, that a weak-
collision contribution from a 6' term exactly
cancels the D '" weak-collision contribution.
Once again, we stress these weak-collision con-
tributions are straightforward to calculate and
present no problem [similar to Eq. (4.8)].

We conclude that for most purposes we can ig-
nore the first-order [in L*(t)] terms in the de-
struction operator and need retain only the zeroth-
order terms. The important quantities we have
left in the spectrum that have to be calculated are,
therefore, the 6"s that'arise in the first-order
corrections to. the collision operator and the
zeroth-order destruction operator. We can see
from Figs. 1-3 that the destruction terms, for
emission, are the inverses of the corrections to
the collision operator for absorption. That is why
we use the same symbol 6' for the angular-aver-
aged operators we need to calculate, in order to
emphasize their close relationship. The 6"s
allow us to account for the physical processes
where a strong collision overlaps the processes
of absorption (or emission) and propagation of the
atom ip the upper-state manifold.

The M» in this equation is defined in Ref. 11 and
contains all the angular information relevant to
the ingoing and outgoing fields. 1t is not related
to our collision operators (the authors apologize
for the double use of this symbol). Note that we
have left out the weak-collision contribution from
D, " . We should point out that there may be re-
gions of the spectrum where the other destruc-
tion corrections, ignored in our discussion, be-
come comparable with the terms in Eq. (5.3).
These regions are, however, ones where the
scattering is, in any case, negligible. Equation
(5.3) thus describes the spectrum accurately in
most regions of importance. This profile is valid
in the BCA and OIL approximation from line center
to the far kT wings. The way in which the
8'g', ee, eg, ~~) describes absorption accurately
in the far kT wings was discussed in paper I. The
&'(K, eg, ee, &u), that appears in the destruction
operator plays exactly the same role in the emis-
sion spectrum. For E =0 we show in Appendix C
that this &' is of order y, /(kT/ft}, when c &o «kT/ft
and may be neglected in this region. This correla-
tion term allows for the effect the upper-state
potential has on the trajectories of the perturbers
as they come in and begin a collision with the
atom, during which a photon is emitted. For the
K 4 0 terms we would, of course, also be con-
cerned with how the ~ levels were mixed by the
collision as well as the effect on the trajectories.
m& state mixing becomes important long before we

'
get to the thermal correlation b ru &kT/g regime,
and the K 4 0 terms have to be retained as soon
as me go outside the impact approximation. Since
the K 4 0 terms contain extra information about
the mixing of m~ states in the excited level of the
atom before the emission of a photon we believe
that they can be used to extract more detailed in-
formation about the interatomic potential than is
possible from the usual. pure emission or absorp-
tion profiles. When &e and «u~ && kT/g, i.e.,
we can ignore the effects of the curvature of per-
turber trajectories, it is straightforward to show
that f,„(&u) =f„(e) (as is required by detailed
balance).

The scattered spectrum [Eq. (5.3)] was obiained
using an equation of motion for the dipol. e auto-
correlation function for the atomic system de-
rived outside the validity of the quantum-regres-
sion theorem. The quantum-regression theorem
fails, since we are studying systems outside
thermal equil. ibrium, and outside the Markoff
(impact} approximation. The scattered spectrum
is expressible in terms of generalized absorption
and emission profiles, in the OIL case [see Eq.
(5.3)], the former of which may be studied via
the relative intensities of the integrated Rayleigh
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and fluorescence peaks if the polarization of the

light is studied (see paper II). Most importantly,
the scattered spectrum has been shown to con-
ta, in information that is not contained in the emis-
sion or absorption profiles alone. It is, there-
fore, as we stated above possible to extract a
great deal more information about the coll.isional
interaction from scattering experiments than is
accessible from pure absorption or emission
profiles. In particular, the polarization of the
scattered light is sensitive to the mixing of m~

states, and thus to the anisotropy of the inter-
atomic potentials, at large internuclear sep-
aration.
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APPENDIX A: DESTRUCTION TERMS IN IRREDUCIBLE FORM

In this appendix, we shall present the forms of the destruction operator, including corrections to it from

the driving field, that are valid when both levels of a transition interact with perturbers. We shall not

give a detailed derivation, as it would follow the lines of Appendix B of paper II very closely.
The zeroth order in L has two terms, the first of which couples ~K,Q,ee)) into [K,Q, eg)), and is

D,(K,E„eg, ee, ~}= g (2K, + 1)"(2E2+ I}'~(f').(j.II dll j.)(-I)"-o2

(E, E, 1), ro,8'(K„K„eg,ee, ru)e
&

'& ',
(e, -e. q)

(Al}

see Appendix B, Eq. (B15), for the definition of 6 (K„E„eg,ee, ~). If the lower level does interact with

perturbers, this reduces to

g(2E, +1)' (2K, +1) (e,),(j,([d[[j~)(-I)'~'~~ e2 ' ' ' 6'(E, eg, ee, &u)e E, 1 K, b K, K, lb

I,e, -e. q)

The other term couples ~E,Q, ; ee)) to
~ E,Q„eg)):

(A2)

D,(K„E,;gg, eg, co) = g (2K, + I)'+(2K, + 1)~'(e,}-,(j, II dll j,)(-1)~~ em

K, Emx 8'(K„E„gg,eg, &u}
~

(&i -@a

(-&l &: @s)

(A3)r,e,
&e&e '

qf
(j' j. E.& (j. j 'l (E, K, I I

((iAi ~ I, „,~ ~.',p, i,~!i.u'')) .

(A4)

Here the summation is over all p, 's and Q's. This term, of course, vanishes if the lower level does not
interact with perturbers. We now give the first order (in L s) correction to the destruction operator. The

first we consider is a correction to the normal E«& term; it couples ~K,Q,j j,)) to ~E,Q,j,j,)). We have
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(KiQi~ eZ Zg ge (e —(eg, )
(0

=((E&eg"()'~(e((.+ (p~(' )e-.(g).,(g).,(&j.lldllj, ))'
CC

/1 K K7) /Ki «71 /1 Kg K. & (j. jg
(Qg q Q.j (q' Qg -Qvj (Q, Q, Q,j (Q, Q, -Q,'j (ue' -ug Q j
f'Je j, 1 } (jg j, 1 ) ( j, j, Kg)

\ Pe Pg Qej (9g Pe -Qgj E Wg P-e Q((j

xlim j,p,'j,p,' Tr,' ~, .
L & j.p,'j,p,'

1
((jg&g jg}'Ã;(~ ~ )+e+g ~ jg&gjglgg&&

g 2Q2 g & y g 1 p2 y 5 ps' p Ql
(A6)

I

The OIL form of this operator has been given in the text.
The correction to the E " part of the scattering can be written in the form

(K„Q,; gI', ee, ge, (d —e~)(«)

=N, (2K +1)'~(2K, + 1)'"-Q (~.), (~,) .((iell dllig&)'
aa'

(K, 1K,) (1K, K, ) (K, 1 K, ) /1 K. K, ) (i.
(ebegEgtet+e(g70 gegQ eQ e0 eQ gQ (Q q/ Q j (q Q Q j (Q Q Q&j (Q Q Q j ( P P Qg j

„ f'j, i. 1) (j. i, 1 't (j,
((, Pg Pe Qej-(4e l(g Qs j-E-4'g We Qs j

X limNg jepe'jet Tr,' V, . —
g I jegejgpg»SQ)+ E+ Lj +8

X ((je g(( je ge I g g I
J'e We je We )&

X( l.)e g g g 7 7 eg egg
6 j, 2 3 g Q

fgfe (A6)

Finally we have the D '" correction
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D '
(K, eg, ee, eg (d) - (d)z, )

=~IX ' '~ ~ ' ' ~ (~,),(~.). l(j, lldllj. &i'(-1)z"""(2A., +1)"(2f~,+1)'"(2ff,+»"' (-Q, e' Q,j (e Q. -Q,)
/'jd j, K, ) (j, j, 1 I fj, j, 1

~[! -u,' Q.j ~u,
' -~.' Q,) [,[j.' -u,' Q.)

„fj. j, ff, l (A; 1

k-~.' ~,' Q.) ~Q. ~'
EV) [ 2 EU ) ( 1)j+jly

e g e e g e

Q,'f l, e Q, -Q,'f

JePe2gPg Trl ~l ~

L g Je &eJgP'g Pebe2eP'e L g JeP'egest e

x ((j,lj,,jdljd I . ~ ~ V,p, (- ) j,lj(jjdljd
14)L+ l + ~e&g

where the second summation is over &„E„the p, 's and the Q's, except Q, .

(A7)

APPENMX 9: ESTIMATES FOR THE D&'~ AND D~"~ OPERATORS

We start with the RHS of Eq. (4.3), i.e.,

e ' " dv' f e" d,vT,' ([j')v([U, ( v,t) )—1][U (D, -v;) 1[)j Vv'))
0

(ed

1

f'e

x e' "&'ld~, Tr,' j,p.,' Ul v3 0 -1 j,p,,' + j,p.,' Ul -~l -1 j,
0

-(j lj'~IUD(Ts 0)U[(o -ri)' —1]~j.&'&).

Consider the following integral:

" ' de e "l ld l Trl 2ePe Ul 3 Ul 0s ~1 2e&e
0 0

23d73 e de pdP gePep e 03 "e s" d p pl
I ~ ~ ~ 1

3

~
~ 4~ 1

I

~
2 I

e ~I
I Ie H ~ Ih I ~ H ~ Ih 3 I ~

I
~

I
0 0 0

X P2 p2 e 0&~ e l j,p, p
2

P2

=Z f d'dd fdd(je. e(( jd)(d, d(-) j))
Pg

x 1
(B2)

When &~y» v', ', me can use a quasimolecular picture for the absorption process and the Franck-Condon
principle then tells us that the internuclear (atom-perturber) translational motion is not changed in the
absorption process. We can then put E(p') =E(p) in the second resolvent [i.e., in (z -H) '] and remove
the complete set of intermediate states to obtain
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If we ignore bound states, the effect of the spontaneous emission damping operator, and use an adiabatic
approximation for the coupling to other excited states, we know the following identity holds:

g lim v,p, (-~)Ij,pdj, p,,')) =exp[-(0'+Hss)/kT] g—I j,p,,'j, p,,'))p, (-~)
4 6~0 1 4P8 ~8-=p, (kT) —ps(kT) . (C2)

Here, H' =H', +Hss+V'„where H; is the atomic Hamiltonian for the upper-level manifold, 8~s is the free-
perturber Hamiltonian, and V', is the effective interaction with the perturbers when the atom is in the

upper level. (The effective interaction is obtained by making the adiabatic approximation. } This identity

implies

S( Peg, ee, u) f P' PdI, , d'P (pju,')P'. . . , ))ju p)',
0 (2/8+ 1) I[Z 6 + (d 4)8g QPy (H8/S

X (j PsmP& I [Ps (kT) —P,(k T)]Ijs Pe~ P) p (C3)

Inserting this in (3.31) we find, for &v = (d) —(d„«kT/g, that

j. "Pdp~ 1 ~. , ", 1 1(' (0, eg, ee, (d))=
kT ~(2. I) Pjsp I V| g(. g /k)

V|l pisps& p

0 8 Z E + QJ —478g (dP—
"8

i.e., (."(0,~, ee, (d) = (-y, i&,)/(k-T/g) Thus t.he E =0 term for. a correlated emission event is negligible
unless &ru &kT/K. The physics is the same as we discussed for the corresponding term in absorption
[see Eq. (4.18}, paper I].

Now in the wings of the line one can show (as we did in paper II) that it is only the part of (3.31}with

the full density matrix p, that contributes. Thus, we need just
O )

8~0 0
P'dp Q (2j, 1)

d'P, &pi. p! I &,g,,„„„,~ (H /If)]l j.Ãp&&i. Ãp, lb. ( kT)li, !pp&
gl p, 2 8g+ P 8

8 8

(C5)

sd g I ds &pjs psl ( gl js ps E(p')+&&js psE(p')+ Ijets p) -dp(s ) kr
d-us s y 2 (2Js + 1) g( e+(d) (d)ss + (d) (d) ~)~1~2

where E(P) =S&u; =p~/2m, m being the mass of a perturber. We can use the same method as we did in

paper I to estimate &j,g,'p, I p, (kT) —p, (kT)I j,p,'p) [see paper I, Eq. (4.15)]. We find

&~(u, ) -~(u) y r
&i.p.'p, l p. (IfT) -p.(kT)li. p! p&= e """' -, (- &i. p! pl V;I j.(!I&. (C4)

p ) E p

pads g d sp I(PjsPsl js lies (P') +) I -s())~)erg(
6~o o „i„2 ff(Xe + (d) (d)SS + (d)i) —(d)pu)

8 8

Here"

Ij u!E)p) ~ ) -=)im) i ~ - . . p;)) j u! p).
s~p E E p +Ed ~ +z'E

(C6)

Then the real part of the RHS of Eq. (C6} is just the type of overlap integral we should expect to obtain lf
we approached the emission problem in the thermal equilibrium case using a quasimolecular picture.
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