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Comsional redistribution of radiation. II.The effects of degeneracy on the equations of motion
for the density matrix
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We apply the analysis of paper I to degenerate atomic systems and calculate the effect of correlations between an

atom (the absorber) and perturbers in the binary-collision approximation. The result of our calculation is a
generalized absorption profile that specifies the final state of the atom after an absorption event. This profile is then

related to the total intensities of Rayleigh scattering and fluorescence Iredistributed radiationI from the atom. The

profile is expressed in terms of collision operators that depend on the index of the multipole of the atom that is

created. Some of the operators represent correlations between radiative and collisional events and cannot, except in-
certain»~its, be expressed in terms of the usual line-broadening operators. This, of course, implies that one needs

extra dynamical information, on top of that obtainable from ordinary absorption experiments, to be able to describe

redistribution. Conversely, redistribution offers a probe of collisional dynainics& not given by absorption

experiments, via the polarization of fluorescent light. We give practical expressions for the calculation of these

operators and discuss their implications.

I. INTRODUCTION

In the previous paper' we established a formal
equation of motion for the density matrix of an
atom in the presence of radiative and collisional
relaxation. The example we gave of these general
equations of motion was the two-level atom (each
nondegenerate}. (Degeneracy was discussed ex-
plicitly only for the radiative self-energies. See
Appendix B of paper I.) We saw [in the binary-
collision approximation (BCA)] that the correlation
effects we included in our equation of motion were
important in the region where the driving-field
incident on the atom is detuned by an amount corn-
parable with kT/K. When degeneracy is present
the correlations can play an important role as soon
as we go outside the impact region for the colli-
sional broadening, i.e., as soon a,s

~
4&v,

~

=
(Qpp Rp [

& I/7', . (Here ppp is the natural frequency
of the transition being driven by the field whose
frequency is ~~, 7, is the duration of a strong col-
lision. } The reason for this is that the orientation
of atom and perturber are more strongly coupled
than their translational states, and the "separation
of time scales" assumption for the internal states
breaks down before it does for the translational
motion.

Our main result will be an absorption profile
that is generalized to allow for the effects of cor-
relations. These cor relations amount physically
to the m~ mixing that occurs, after an absorption
event in the middle of a strong collision, and they
should offer an excellent probe of collision dy-
namics via the polarization of the fluorescent light.

In our analysis we shall assume for simplicity
that the perturber distribution for each radiator is

spherically symmetric. This is not an exact sym-
metry as the motion of the radiator establishes a
preferred axis for collision. For most practical
cases (and especially in the line wings) we can
ignore this complication. We shall, therefore, be
able to use irreducible tensor techniques. This
subject, in the context of density operators for
atomic systems, has been discussed in detail
elsewhere. Our correlation collision operators
are more complex than the usual collision opera-
tors that appear in line-profile theory. They are,
however, still amenable to irreducible tensor
analysis.

In Sec. II we shall derive the equation of motion
for a two-level system (both levels degenerate) in
irreducible form, including the correlation terms.
We have already discussed the radiative self-en-
ergy operator S for this case in Appendix B of
paper I. We shall also consider the case where
the lower level of this two-level system does not
interact with perturbers as this is a case of some
practical importance. In Sec. III we shall calculate
the steady-state response of this system to a
monochromatic driving field. We shall also dis-
cuss the implications of the correlation terms for
the intensity and polarization of the integrated
Rayleigh and fluorescence peaks in a scattering
experiment.

II. THE EQUATION OF MOTION FOR THE DENSITY
MATRIX IN IRREDUCIBLE COMPONENTS

The reason for employing an irreducible basis
for the reduced density matrix of an atomic system
is to exploit the spherical symmetry of the distri-
bution of perturbers. In a ~j&mtf&m&)) basis the
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.mg -mg -Q
(2ff + I)'~'

(2.1}

(Ref. 2), then we find that the ordinary collision
operator (averaged over atom-perturber orienta-
tion) becomes simple in this basis. The correla-

ordinary collision operator (with no corrections
from the effect of the driving field) mixes the
states. If we transform to a basis that is irredu-
cible with respect to the rotation group (in three
dimensions), e.g. ,

)j|j/q)}= g )jimijpm, }}(-1)'~™ic

tion terms cannot, of course, be reduced to diag-
onal form by such a transformation since they
couple different manifolds of the density matrix.
The angle-averaged correlation operators do,
however, reduce to a particularly convenient form
in an irreducible basis. In particular, in the one
interacting level (OIL) approximation the first-
order corrections (in the driving-field strength)
to. the collision operators are rather straightfor-
ward.

We shall now proceed to the equation of motion
and discuss each term in turn. The BOA equation
of motion for the density matrix may be written
formally in the following manner (see Sec. IH of
paper I):

t

3,c(t) =[La +S+L (t)]tr(t)+ NTri[V|Ui(t —t')V&pi(- )]o(t')dt'

t t'
+ NTr| ~ViUi(t -t )L (t') Ui(t -t )V,p&~o(t )dt dt'

~QQ i
t

+N dt'Tr& V~U~(t-t )L (t') dt" U(t'-t")L (t") Ui(t'-t )V|p~(-~)~&(t )dt
W g) M49 j (2.2)

Here, V, is the single perturber-atom (radiator, absorber) interaction,

U)(&) = exp[(L~ +L~o(1) +S+V()T], (2.3)

Lo and LD(1) are, respectively, the free-atom and single-perturber Liouville operators, and pi(-~) is the
single-perturber density matrix of the atom-perturber pair (at time t =-~}.

The first term we consider is the simplest, i.e., L&. We find from Eq. (A5), Ref. 1,

((jipijipii~@~LD ij3ps74P4tf'0')}=5(&', &)6(Q,Q)6(A, ii)5(j2 j4)CE(j3) E(j4)1/ttt)5(P1 Ps)5(PI P4) ~ (2.4)

We have assumed, as we did in paper I, that we do not need to consider the translational states of the
atom explicitly. The "P" labels, therefore, refer only to the perturbers. The components of the radiative-
damping operator may be established using the results of Appendix B of paper I. One finds (see Ref. 2
also)

((j|pi,jipi;&0 ~S ~j&p»j, p, ;K'Q'}}= — . " [6(2,4)5(e, l)6(e, 3) + 6(1,3)5(e, 4)6(e, 2)] +21„(-1)""

~ ~

x ' ' 6(4')6(2g)5(3e)6(4e)6(P| —Ps}6(PI —P4) 5(& &'}6(@ &'}~

& &e&e-

(2.5)

Here j, and j~ are the angular momenta of the upper and lower states of the transition. The tetradic ele-
ments of the I iouville operator for the driving field have been given by Ducloy, and we reproduce his re-
sults here. We assume the Hamiltonian Hz(t), corresponding to L (t), has the form

H (t)= —d'E(t). (2.6)

Here, E(t), the laser electric field at the position of the atom is assumed to be polarized with polarization
vector &

..
E —gq +gag 4

where

g g ECOL t

In the rotating-wave approximation (RWA) we obtain the following tetradic elements:

(2.7)

(2.8)
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«j.pit. prKQ g '(t) p,pii, p4K'Q'» =6(pi —pi}6(pi -p4) —
&j,lid ll j,) pe', 8 [i' Go'oz](-1)&e &e (2.9a)

((j.pit PPQ iL (t}
( jeWEP4K Q'» =6(pi -Ps)6(P2-P4) —

&ig~~d ~~ je&g(~', .)*&*(-I)"' [j' Gq'o]( I-)

((jgPi j,~Q ~L (t)
( j,P3j,P4K'Q'&& =6(Pi -Pi)6(Pi-P4) —

& j,lid llj ) ge' h(-I}"' '[~ Gz z]('1)-&e &s

(2.9h}

(2.9c)

«j,pi jgprKQ (L'(t)
~
j.p3j,p4K 'Q'&} =6(pi —pi)5(pi —p4)-& j,lid IIj,& g (-I)" '~ "™(~')*8*['Gz'z] (2.9d}

«j Pi, PIKQ g'(t)
) j P3j p4K'Q'» =6(pi-P3)5(pi-p4) —

&j,Ilail j ) g(e )*6*[' Gzz']
a

(2.9e)

&(j pi j.p+Q [L'(t)
~
j p3j,p4K'Q')) =6(p, -p, )5(p, -p4)-(j, lid ll j ) Q(e', )*8"(-1) ' ' [;,Gozzo].

a
(2.9f)

Note also,

(2.10)o~(i,i.)'=co(j.i,)(-I)" '~ o.
Here, oo(j,j,}—=((KQj,j, ~a&) and in the notation of
Ducloy,

[g Ga'r] ( 1}ii It+0 [(2K
' + I}(2K+ I)]i /2

K' 1 K 'K' 1 K'
(2.11)

( j~lldll j,) is the reduced matrix element which,
unlike Ducloy, we do not assume to be real.

We now proceed to the discussion of the collision
operators the simplest of which, the ordinary col-
lision operator, has been discussed in detail else-
where. See paper I and references cited therein.

I

Note first, that for Imz & 0,

e' N~ Tri [V,Ui(7')V, pi(-~)]dT
0

1=N, »i Vi . — - Vipi(- )
~

. (2.12)-iz -L) -S i

Here N~ is the number of perturbers and L~ =L0
+L, (1) + V, (see paper I). Its average over atom-
perturber orientation is obtained using standard
rotation operator techniques (see Appendix A and
Ref. 5). We quote the result here for convenience,

Np jgj Q Trg V) . -
~ Vpp) j3j4K'Q'

= 6(K,K '}5(Q,Q')M (z) . (2.13)

Here

& P~ Pz @i P3 P4

ji)IiME( } g ( I)gim4 ji JR K j3 j4
i Si4

Qgtt gN3P4

x j~& jap~ N~ Tr& V& . -
~ V&p& j3p3 j4p4

The prime indicates that the angle average has been performed. Thus

e ~1
&iWOzPs & L +g i & W3

3 2 1
d Pi PidP, jiiiipijitiipi Vi . L 3 Vi jaiiapij4ii4pi t) i, ( ).

0

(2.14)

(2.i5)

It is often convenient to use the interaction picture to calculate the collision operators. "We define an
interaction picture U', (tz, ti) thus,

t2

( g )g))I=)T 8 1 ))vg( )d) ))
t

(2.16)

where P (t}=UO(t)V, UO(-t), Uio(t) =exp[Lot], La =La +La(1)+S, and T is the time-ordering operator.
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The collision operator may then be written in the form

(i~EM ( )= I J e' '( 1)"& "4
&3&4

vgvgw3&4Q 0
pg Q

x ((j&p&j&p&LN~Tr&)V((t)U&(t, 0)Vq(0)] Lj&pzj4p4)).
p4 Qi

(2.17)

Here, n =z —i((1,2 LS
L

1,2)) —(d». We know that
other states of the atom (and of the perturbers)
will be mixed into the states we have labeled dur-
ing a collision. Ef these other states are well sep-
arated in energy from those with which we are
principally concerned, we can use an adiabatic ap-
proximation for their coupling into j, and j,. We
can then construct a V,«along the lines we dis-
cussed in paper I. We would then know that

L

j,)
and

L
j,) form a complete set with respect to the

interaction. If we cannot use an adiabatic approx-
imation, then we have to labe] all the other states
explicitly. This is the case if the states, to which
our original state is coupled, are near degenerate
with the initial states, e.g. , in hydrogen. Since
we do not want to limit our treatment to either
case, we shall use the following procedure. We
shall use the full interaction and include the labels
of other excited states in the problem (j,', etc.).
At any point, however, we can replace V~ and U&

by Vyf f and Uyf f p and add the first-order term
Trf [V ffp, ], which does not vanish. When we make
these replacements, we can drop the extra labels
for the states outside the j, and j, subspace.

Let us now consider the corrections to the col-
lision operator that we derived in the first paper.

l

We emphasize that these corrections become im-
portant as soon as me go outside the impact ap-
proximation. In the nondegenerate case we saw
how the correlation terms took into account the
effect of the interatomic potential on the distribu-
tion of perturbers. (Hence the proper Boitzmann
factors in the absorption profile, paper I.) When
degeneracy is present, however, we also have to
take into account the fact that absorption of a pho-
ton by the atom occurs when the absorber-per-
turber pair have some definite orientation. This
orientation is, moreover, linked to the energy
difference the collision takes up. Thus if we are
concerned with the final m, state the atom is left
in, after absorbing a photon, absorption events
during a collision, linked to a definite orientation
of the radiator-perturber pair, are important.
Our corrections to the collision operator include
precisely this physics in the equation of
motion.

We start with the first-order correction to the
collision operator, i.e., the third term in Eq.
(2.2}. Consider the coupling of ((j,j+Q L(Nt))) to
((j,j+Q Le(t))). In the steady state, where
((j,jpQ Lo(t})) oscillates like e "I', this may be
written in the following form:

(
lim dt' j,j+&Q& Tr&LV&U(f —t')

L

j~m, j,m,))((jsmsj4m, [L (t' —t")
L

j~m, j m~))
~ m3m4ysp4

L

e eee
t'

&( (((! ! m') )("t()"( f )/)(, ))( (~,(),)).
i -1j,'j,K&Q& Tr& Vi +L +~ L

j,m, j,m,))~ p ~ ~Sag S)4 q+Lg+

(()' '(' ')('(0))&' &.m.))(()'m'), ~'( . - q)'i()i)))'J. )(~()I)).

(2.18)

The extra j,"s label excited states that are coupled into
( j,) by V~. In Appendix A we show how the angular

average may be performed to yield the following result for (2 ~ 18):

gy ~K K(e*)gj,lldll j )(2K&+1}' (2K~+ I}' (-1) ' +"s'(K&K~;e&et, esg, ~~},
-Qg -Qg -eJ

(2.19}

where
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8'(Kf,K2, efem, efg, (d)I, ) =N~g( 1)-'e' e'"e'"e'"e' 5

x 1 K R li
1 2

1 2 2 4 1
Pe Pe Qs& ~Pe Pg Q4~ ~I e Pg Qs~ ~Q3 Q4 Q5~

(2.20)

X 3 1 1 ~ 2 2 1 ~ 3 3» 4 4»d Pg, 2, 3 dP J, jel eP1 jet eP1 1 L g jeI eP2 jei eP3
q~ 0

~ g +Li +

X
I I

~
»

~
~

~
~ I

i
~ I I

e
I

~
~

«
4

x S 3 ~ 1 1
+L +S+. Vi jepep4jgI"gp4 ppp4

q + 1+ +Z~&

(t =-~) .
The summation extends over p.,', pe', p, e', p,,', p, ', p,', Q» Q4, Q., j,', and j,'. If we take the one
interacting level (OII.} approximation, where one level (we chose the lower} does not interact with per-
turbers, we obtain the following result for (2.18}:

(8 )"(qe) (2K +1)' '(2K +1)' ' ' (-1)' f' e'ee'(K e e e ~ )' '
a ~ ~ 5 .4 z

-Qi -Q2 +~- -jg je je
(2.21}

Here

r .5 ~ 4 r ~ 2 .1je je je je ~2 ~~5+F5e'(Keeeeee )=N ii f d'p, , fdpp, I (-i)' ' '"' '
~Pe Pe Q& ~Pe Pe

X 1 1 2 2
V

i 3 3 .4 4jel"eP1 jeP eP1 Vi +L +g jeI"eP2 jei eP3
g +Li +

~ 3 3 1 ~ ~ 5 5 1
je~ep2 jg~gp3 + ~ +L +g Vi jet ep3 jgP gp3 ~pspsg+ Z(ft)~ + 1+

(t = —~) (2.22)

where the summation is over the indices p, „p.„p,e', p,„p„p,„Q, j,', and j,'.
Similar results for the other corrections to the collision operator are given (up to second order in the

driving-field strength) in Appendix A. These corrections may also be expressed directly in terms of in-
teraction picture operators, e.g. ,

j' j,' K j ' j' K'
e'(K;e, ee;ed, ) Nf d'P. . . dP=,P,'I

5 4 2 1
ice Pe Q~ ~~e Ve

( I}feefed"eee2, 5, 5 1

2
0

"(&jeffepfjeffepflI'I( f+ g} f( f+ f f}ljeffepfjeffep3»

~eg'(& 1'Prt'2)'ri &

0

(&j ff, pf jeffep, l0f( „0)vf'(o)
l
jeffep, jeffep, » tf;-

the summationbeing over fff, j,', j,', ff,', ffm, p,,', ff,', and ff,'. Here&„=2, /(2j, +1). If wefurther assume
that we can use classical path methods to evaluate this operator, we can reduce it to the following:

(2.23)
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t.~5 ~4 K ~ v~2

t' (K,e te» eg, tdt, ) =Ne g
~Pe Pe Q~ ~Pe

z~e
( 1)ee ee te te

Pe
i

40

e "~' «2 e""' "'"'""' '[&&j'ueieP'. ~1'i(rt+ r2) Ui(ri+r2 ~i)
~
j.'I .'jew'))

0 0

"«j'V'i u,'( t(»o)&t&0)[ jeuejeue))], ( 24a)

where the quantity in square brackets has been averaged over velocity and distance of approach (not over
angles},

t-''(K, ete2;eg, ddt, )=N, ~
5 4 2

~Pe Pe Q~ ~Pe

~ f vw
)„I „1„2„2

i
Pe

~0 Ig)

x e " '&dr~ e" * ~'" ei j'e'j e'
, 0'(v~0) jp, je),),, , ,

n 0

(x .3 3 - i d -r .5 5 ~

Jel elevate d U1( t rt) jeitejeite
Ti

In Eqs. (2.24a) and (2.24b) the summationisover Q, j„j,', it,', p,,', )2,', p,,', and it,'. Usinganadiabatic ap-
proximation for the coupling into other excited states implies that we can write

K
1.'(K,ee;eg, tet~) =-y„i[ttt~ -&«+(iy„/2)]N ' ' ' ' (-1)"'"'

P't2Q 4 5 2 1
~Pe Pe Q~ ~Pe Pe

(2.24b}

«&

e-rN~2dT eif~L, ~eg'(I&N/2}&i
2

0 0

(&JePe
~

11( 2t 1)ett ~1( 2)ett
~
jette)

"&jePe~ 1(r2&0)ett~ jei e)

&je~e ~[U-t(ri t 0)ett I] ~&eWe)& jepei Jei e))

K K
=-y&i[ddt -hatt«+(iy&/2)] N g (-1)"e"e

g'S, Q 4 5 2 1ice -Pe Qi ice -ge Qi

e~N~2dy gI ~I, ~eg+(I xN/2)) i gye i
0 0

-[&u -td„+i(y„/2)] '~ &eM'(td )(y„-')
fefg

(2.25}

[Note that making an adiabatic approximation in-
volves ignoring the density matrix elements
((j,j,KQ ~tt(t})}where j, and j, are distinct from

j']
There are various other forms in which we may

express 8'(K, ee, eg, &uz), but the essential physics
is the following. Absorption in the far wings oc-
curs when the energy of an incoming photon
matches the energy separation between the quasi-
molecular states of the colliding atom-perturber
system. If we use the Born-Oppenheimer approx-

I

imation then we can associate a given interatomic
separation and orientation with a specific energy
separation between upper and lower states. The
intensity of transitions is then determined by the
Franck-Condon principle which embodies the fact
that, during an electronic transition the transla-
tional motion of the nuclei of the quasimolecule is
unchanged. Thus when an absorption event occurs
in the far wings of a line, it is the interatomic po-
tential that first takes up the energy defect (with
respect to the free-atom's frequency). If the upper
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state of the transition is nondegenerate the subse-
quent evolution —the completion of the collision-
is unimportant (Sec. IV, paper I). When the atom
is degenerate the subsequent evolution mixes the
molecular state back into atomic m~ states and
affects the atomic multipole that is formed by the
overall absorption process. This process is not
taken into account in the normal absorption pro-
files. Now that we have expressions for the cor-
relation operators we can discuss their effect for
a specific example.

III. STEADY-STATE RESPONSE (IN OIL
APPROXIMATION)

To demonstrate the effect the correlation terms
have on the density matrix, we shall, in this sec-
tion, calculate the response of a two-level atom
to a weak driving field. We shall consider the
OIL collision operators only since the generaliza-
tion is quite straightforward. The equations for
the steady-state components of the density matrix
may be written in the following manner.

lim«KQj( j2 l(r(t))) =(r
g~ eo

EQ
&e&e

g f (e',)~& j« II d IIj,)
J&(&M«(0}+ 8E P(]'«'
~e~e 2j +1

r ";;G(t. tt(-1) ' "' ' ' [1+8'(K;ee;e(, , )])o*.
'~'

+ Sgg j,ll d II j,), ', G(], ([(I+ ("(K;ee;ge, ~~)](-I)'~ '«(r, ',:~', (3.1)

EQ I/i)f
rerr i((g —(d~) —,'('~«M ((d~) .+(I' /2 j + 1)

(j,ll dllj«)e(;80] r", G~ '(].(r, 'r '(-1) ' '' ' '+,.
& G~~, (-1) ' '[1+ ("(K',eg, ee, co~)]) (r,. ',.

' .
(3.2)

Now we take the following initial condition and in the weak-field approximation assume it is not changed
appreciably:

}(r2 5(K =0)6(Q =0) (3.3)

i8 i' 1 1 K
& j,ll d IIj, &j,li d IIj, *(2K + I)'"Q (e,)*(e-, ) (-I)" 'r"

(2e q' q -Q. a)e )e )g &

1 N,

«( )
2I'„(2j +1)

Here N, is the ground-state population of the atoms. This initial condition supposes that the ground state
is unpolarized, which is certainly valid in the absence of external magnetic fields. It is well known that
if we illuminate the atoms with polarized light, we will create orientation and alignment of the ground
state. For the purposes of this paper we shall assume that this optical pumping does not affect the ground
state appreciably. If we were considering a single-photon scattering event this would certainly be valid.
If we consider the steady state in a constant driving field, then we have to require that some relaxation
mechanism disorients the ground state after each absorption and reemission cycle. In either case, we
would obtain the scattering amplitude for unpolarized atoms. There is, of course, no intrinsic difficulty
in calculating the scattering from an arbitrary steady state, and we have chosen the unpolarized state
since it is the most important in applications. So to order ~8, ~, we obtain the following upper-state
multipoles:

x2 Re
—,'. ((',. M((dr~ ) + ((r(](Or }+,

x[1+ ("(K,ee, eg, or~)] (3.4)
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I g, l' l(j, ll dll j,}l' p D~(pi'e&}

(».+1)&

x2 Re
~j&~c M'([uL, ) + i((u~ —(ui) + . . '

)

[1+8'(K,ee, eg, (ui)] . (3.6)

Here

Dq(e i'eg}= i(j, ll dll j,&
i'(-1)"'»' I q(p g'e )

ije je jci
(3.6)

Pq(gpss, ) =Q (-1)' ( il -q, (I iKQ)(e', )(e',)~. (3.V)
OC

2j

I(k2, e2) =I[) D~(t 262)ej
e0iO e e

(3 6)

Using this result one can calculate total scattered
intensities.

The total intensity of light scattered in the direc-
tion of the wave vector Q with polarization q~ is

I

Here I~ is a constant.
This is not quite sufficient since we want to dis-

cuss the total intensity of the redistributed radia-
tion. This can be done by simple subtraction if we
know the total intensity of the light that is scat-
tered soithout its frequency being changed. To know
this we should, in principle, have to calculate the
full correlation function. This will be done in the
following paper. For the purposes of continuity of
our present argument, however, we note that scat-
tering with no frequency change occurs when there
is no perturber present. This means that the en-
ergy-conserving component does not depend on the
collisions. This implies that we can take the re-
sult of Ref. 9 for this component and subtract it
from the total intensity to obtain the integrated in-
tensity of the redistributed component. If we do
this we obtain the following result:

2fe 2i80i N
Iled[()~b Io ~ Duq(e @~2) gg (2. 1)D q(e ized}E. jg+

x 2 Re
1 1 [1+8'(k, ee, eg, (ur, )]

i~~((M (0)+, , -(/~NM ((ui)+i((u» -(uz)+
e e 2j, + 1

,'~ip M'((ui )+i ((u„- (ui) +eg 2j, + 1

Let us use the following notation:

&e&e
'~"M»(0)= -y»,

ii~iy M'((ui) = ih,'((ui)-—y,'((ui),

(3.9)

(3.10a)

(3.10b)

2X'~

(2j,+ 1)

Then we can write the redistributed intensity in the form

(3.10c)

Rj 2

web 0 I +Q 2 2 V 2 +1 ++1 (d ~4) 2+ y 2 +yl + 2 0 1 1

x» ([y»+ 2y,'(E(ui)]1+ Re[8'(K, ee, eg, (uz, )]+ yN

+[a+ +a', ( )[2ha[e'(K, ee, e((, )])-1). (3.11)
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'Thus we have
+e

I &'I
I„e„„,=I, Q (-1}Do(e;e, )w ', D o(Z;c,), .

)

„ 24.(»~) f(t ~i)
y'+y„y'(t~, )

' (3.12)

Q(d~ = (d Cd~ . (3.16)

This is our principal result and the subsequent
discussion will explain the significance of our gen-
eralized absorption profile.

To demonstrate the importance of the correlation
terms we consider this expression in the antistatic
wing of the line profile where bur~ &-I/r, &0. In

where we have introduced the generalized abso+-
tion profile f b, (he~ }, defined by

f b, (&+I ) =f(«ul )[1+Re 8'(K, ee, eg, &u, )]

+ n(o u&~ )1m[&'(K, ee, eg, (o~ )] . (3.13)

Here, f(Erode ) and n(b, &u~) are the unified theory
response functions that have no correlationterms
in them:

1 y'(bur~ )f 5 v [+ + gl(+ ) + ]2+yl(» )2

(3.14}

et c( r) (3 16)
w [&v +a'(~ )-~ ]'+y'(n, & )' '

y'(», ) =ky„+ y,'(&~, ),

this limit y'(h&o~)- 0. If it were not for the cor-
relation term this would imPly that the redistribu-
ted intensity from the K& 0 terms would go nega-
tive. In the antistatic wing the correlation term
may be evaluated quite straightforwardly. The
main contribution to the collision integral comes
in a semiclassical treatment from the points of
stationary phase where the energy defect is made

up to directly by the potential. It is precisely this
stationary-phase contribution that goes to zero in
the antistatic wing. There is still, however, the
contribution from the ~ixing of m~ states at large
internuclear separation (of atom and perturber)
where the states are nearly degenerate. This
contribution can be quite accurately determined
by an expansion in I la+~. In like fashion, we can
similarly use an expansion in 1jn~~ to evaluate
the correlation operator when points of stationary
phase are unimportant. We find that (see Appen-
dix B)

h&u~ 2 1m[&'(K, ee, eg, ~~)]-y»

(in the antistatic wing}. This implies that the
scattered intensity is always positive as we would

hope and expect. The fact that we need to include
correlation terms to satisfy this most of basic re-
quirements indicates how important they are.

We should note that if we are only interested in
calculating the angle-averaged scattering, it is
only the E= 0 multipole that contributes. ' Let us
consider the ~' operator for K= 0:

8'(K=O, ee, eg, a NIb m d'P, , fdP, P',
~0

x
~1~2 S 4 5)

0' ~ 0' 5 1Ie ~e Ie Ie
( I)s~s

~e I e & ~e ~e

X Zel", P12el",P1

JeP ep22gP gP3

1
~ ] 3~ ~

1 ~ + L +S ~e~ep2~e~P3
1

+1
V

~ 5 ~

1 JePeP32gP p3 Py3~
1

(t =-~)
= lim d3p1, 2 dp, p, 1 4 '2' 1) ~'~' '~'~ep' ~' ™L S8~0 i"~4&' ~ ~e+ &+L, +S

e ee

X j,'P,,P2j,P,P, ~+i-~ +L +~
", g,P,P,g,P,P, P;

L 1

(t =-~) . (3.17)

Now we know that if we can ignore inelastic coupling to other levels,

lim d p, j,p,,'p, j,p, ',p, p, . 0 =-0,

where ~0)) is an arbitrary Liouville vector (of the two-particle space); this is a consequence of unitarity,
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(3.18)

Here

if one ignores bound states (see Hef. 1), thus 6'(K=O, ee, eg, &uz} vanishes. We can see why this
should be so as follows. We stated above that the correlation terms allow us to account properly
for the specific mz state an atom is left in when absorption occurs during a strong collision. If we only
want to calculate the angle-averaged fluorescence, the final m~ state the atom is left in, after such an
event, is irrelevant (hence the summation over the final mz states p', —p', ). If we want just the sum over
final m~ states, the mixing of those states after the absorption event, correlated with a given atom-per-
turber orientation, is likewise irrelevant. We expect, therefore, that 8'(K=O, ee, eg, &uJ should vanish
as it does.

If we want to study the angular distribution and polarization of the scattered light, we have to calculate
the correlation operators. This is, in general, a rather complex task. From Egs. (2.23) and (3.11) we
know that the redistributed intensity in the quasi-static wing may be written thus

} IS, I' N, D ( }
[I' (4' ) —y ]

g' (2j,+I) ' ' (y +y„)(4&os)''

fP ~

I'r(4M ) =-y (4(o )~N ~e ~e
L 8 L P ~ 2 3 4Qsfs enl4e ~ &etuvee Pe

e e Q& Pe P2 Q~

x28e e "N'~dv' e' "~ "e~'"& ' ~d72 1
a Q 0

(3.19)

Note that we have converted to a U,'« for calculat-
ing I'r(4&uz) when an adiabatic approximation can
be used. We see that in the quasistatic wing the
term that depends on y', (4&hz) is cancelled out by
part of the correlation terms, leaving only the
correlated events that are represented by I'r(4+z).
This justifies our earlier statement that the cor-
related events dominate absorption in the far
wings. A model calculation of I'r(4urz} for a J=1
to 0 transition where only the upper (J=1) level
interacts with perturbers, via a van der Waals
potential, has been performed. It indicates that
these correlation terms are rather important for
far-wing scattering. Furthermore, it shows that
light scattered in the far wings is not completely
depolarized, contrary to the conclusions of Behm-
enberg and Schuller. ' This might be expected on
the basis of the calculations of Berman and Lamb, "
who showed that an angle-averaged collision does
not completely destroy the orientation of an atomic
dipole. Thus we should expect some memory of
the orientation of a dipole, after au absorption
event, to affect the scattered intensity as long as
collisional and radiative relaxation rates are com-
parable, otherwise subsequent strong collisions
will destroy the orientation before the atom has a
chance to radiate xs

IV. CONCLUSION

In this paper we have tried to show how degen-
eracy affects the discussion of correlations be-

I

tween radiative and collision events. To be spe-
cific, we have seen that the propagation in the ex-
cited state, after an absorption event in the mid-
dle of a strong collision, affects the polarization of
the fluorescent light. This polarization can, there-
fore, be used to study this correlated event and
should be sensitive to the anisotropy of the long-
range part of the interatomic potential; this mixes
the m~ states of the scatterer as the quasimolecule
Qies apart. There is, therefore, extra informa-
tion contained in the generalized absorption pro-
file we introduced above [see specifically Eq.
(3.12}], and we would emphasize that it is not pos-
sible to obtain it from the absorption or emission
profiles alone. In conclusion, we have shown that
there is a great deal more to be studied and
learned in redistribution experiments" than can be
obtained from those on simple absorption or emis-
sion if one studies the angular distributions and
polarization of the scattered light.
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APPENDIX A: CORRECTIONS TO THE COLLISION OPERATOR

In this appendix we shall cast the corrections to the collision operator into irreducible form. So that our
results may be more generally useful, we shall derive them assuming there may be more than one upper
level. We start with the RHS of Eq. (2.18), a first-order correction to the collision operator, that couples
the off-diagonal ground-excited matrix elements into those of the upper state alone:

-1
»m g N~ j'j~+, i»&, Tr, V, - - Iy3msj, m, ))

4
& 1 1 1 ~+I +S e e e e

tÃe» 7$~ »

"«iw!i::l»'&o& lj! !ipse,'»« iw'j, ,'&, „. ,~,pp) j j'&»,))&.

Consider just the tetradic element,

T=lim d p... ~',pl~', P, K1@1 j~ pl j m pl ~ m p, j~',p, V, ~ ~ j~,'p,

x ((j'm'p, j',m,'p,
I
L (0)

I
j~',p,j,m,'p, ))

J~mep2)&W&p3 . - - Vl )~ p4)~+4 ) m p4)&%2&p4 ) p4) p4K2Q2 (A1)

which for convenience we write in the following form:

P2 3 ~ePl~epl 1@1 ~&ePl~&ePl ~e~ePl~emePl 1 ~e~eP2~e~ 3

x ((j.'m,'p, g',m',p, I
Ls(0) Ig,'m', p, g~,'p, ))

x ((j'm p, j m,'p, Icm Ijp»mj»m»~p»&&&&j~'p»jm'rp»Ij'p»»j p»+ 0 && . (A2)

Here

1
C =V (A3)

1
C2= -V-

&+i(d~+I., +S '-

The angular average (denoted by ()}is achieved, thus

&r& =~+ Jdn p &&i &7 i p, &:,&&&i' r'. i* :P&&&&i'~'i.i.:uv. , ~c, li:qadi:q$g&

(A4)

"« imam:pm j~:p» I
L '(0)

Ijim'p. i p 'F.&&

d p2 3 )~p4fp2)gpgp3 2 )~A+4)g pg p4 )~P7~P4)gM~P4 )4tp4)gp4K2Q2

~1 .3 .3 .5
x D", (Q)*D"~ 2(Q)D" (Q)D»»(Q)*D '~,(Q)*D, ,(Q)D ', ,(Q)D'~~ (Q)*,

erne
(AS)

where the summation is over all p, 's, m's, j~~, j», and j,'. Here, D& (Q) is a matrix element of the rota-
tion operator that rotates a system through the Euler angles specified by Q; (n, P, r) (Ref. 13, p. 20).

Using standard techniques this may be reduced to the following form:
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(g =g (2K, + 1)(2K, +1)(2K, + 1)h 35(e )*(j ll~llj, )

X d'P2 3 je~eP1je~ePl C1 je4eP2je~eP3 je~eP2j ~gP3 C2 jekeP4jg~gP

2 ~ 5 Kje ~e 1 (2K + 1)1/3 je jg 3 (2K + I)1/3

.m, -m, Q, ,2 1 m, -m -Q,5 2

K3

1 2.-m, m, Q, .
~ 1

2 1Q3i
5 2
e ™g

je K3 je K' j,' j K'
5 2 1

~ Pe -P g Q4~

K K K .KKK, j', j,
~ Q3 Q4 @5. .Q3 Q4 C. .m: ™g

1 1 2 1 .1
X (-]) g ee g g+ 5 Qs Qg~r1~/

Ks
' je jg K i r j j4 ]~

-Q5. 4 1 1 1 4,Pe —Pg Q5i i g ™e
(A6)

where the summation extends over the m's, p's, K3 K4p K5, Q's, q, j,', and je.

(T) =g fee(z )*(j lldll j4)(2K, +1)' '(2K3+1)'

X d p2 3 je~ep1j P p1 C1 je4ep2 jeP'P j & p2 jgpgp C2 je&ep4jg&gp

I

—Pe P Qe3 ~ ~ i 4 -i g Q4i i We -Pg -Q5. ~ @1 -@3 -'t ' ~3 @4 @5

x ( ]}r Il Ik 5 Q Q+J 4/e/1 5
1 e g g 5 1 g e e

'K K 1'
=+be(&e),(j lldll j', )(2K, +1)' '(2K, +1)' ' ' * (-1) 1 Q1'/g8'(K, K3;e,e„egg)~1' 4,

'.Q1 -Q2 +q. '

(A 7}

the summation being over the p, 's, q, j,', and j,'. Here,

e ~ 1 . 5 1 1 2
6'(K K;e e, eg, &oJ31"4= (-I)'ee/e "4 "g "g +

1

je 1 je jg K j j 1 K K2

ue Q3 Ve' -V'g Q4 u.' -V,' -Q5 Q3 Q4 Q5

x d'p j 'p'p j P p C j'u j'u'P j'W'p j p'p C j'p'pj p'p

(A8)

the summation being over the p's, Q's, j,', and j~. So the correction to the collision operator that couples

eQ'1(j',jg) to o+&(j',j,'} is

d p1 dp4P&g g 8 p 6 e g je 2K1 + 1 2K2+ 1
a

1'
1 2 (-1)r1 Q1'gl'(K, K»e,e» e,g, cog~1'4. (A 9)

Before we discuss the other tetradic elements of the correction to the collision operator, we shall consid-
er the form (A9} takes when the lower level of the atom does not interact with perturbers (OIL approxima-

tion). In that case, l1,' = p,
' and we can use the identity

K3' 'g, g 1 ' 'K, K3 1 '
( 1)Q ( )/ .„,/4, / 'g, ge K, K, K3~ ~~ ~~ ~ ~~

~~ ~ ~

Q4i ice —gg -Q5i iQ3 Q4 Q5i Pe Q3~ jg je je

(Ref. 13, p. 142}. Then we find (A9) reduces to
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Q(b )*(c*)(2K +1)"'(2K +1)"'
Q, -Q. +e

eep

where

x (-1)' oi'pp"p g 8'(K, ; e,e2, e,g, (d}i) . ' = 8'(k;e,e„e,g, (d}i)«j,'j,'K Q, iLs(0) ij,'j K~Q, &&,

Se Se &e&e

P( dec,e„e, ,d} Nf=d',P, ,fdP, P,'
EQ . 4 n

12 34 5.34 ~e ~e
~e~e~e&e~e&e&e

~'. -~'e Q

x «j', p,'p, j,u ,p, IC, ii'.~,'p, j,~,'p, &&p;;„(f= --) . (Al0)

So we see that, in the OIL approximation, or rather no interaction in the lower-level approximation, the

correction to the collision operator may be written in a particularly simple form.
We can obtain other tetradic elements in exactly the same manner as above; for the coupling of

«K'Qij j, is» to «IPQ j',j, i
o» in the steady state we get

—g& b,&jJ[di[j &(2K 1+)"'(2K' 1+)"'( 1) -rode'd g
a

8'(K'IP; e,e„ge, (di), (A11)

where

1
(lpd;ed, e„'e, ted}=}ee}'m fd p, fdp('p, }g,j ,p'pj p p', p', , , ', -', , - j ppj p p',))', , ', ', ,

8 ~+ f+ 1+
1

1 '4 4 y 2 5 5
gI"tp2jepep3 ~ ZN +L +S 1 jgI"rp4jepep4

L

j j, IP j j 1 K' IP 1 K' IP 1

—Pe Pe Q3 Pg -Pe Q4 Q5 Q1 -Q2 q Q3 Q4 Q5

the summation being over the p, 's, Q's, j,', and j4. In the OIL approximation, this further reduces to

~ 8'(K, e e,g e, zz)c b (j iidii j )(2K+1)' (2K'+1)' (-1) 'r o "'pd'pe}1+ - 1++ 3+ 5 K K 11 K 1 K

cilele

(A13)

where

K ~' j5 K
8'(K, e,e„ge, (d~) =Np g e e ( 1)(ee (ee

, Pe —Pe 0 i ice —Pe
1

X dp, p', d'p» j,p, ',p,j,p',p1 V1 - j',p, ,j p' 3

~ ~

1

1

the summation being over the Q, p's, j,', and j,'. For the coupling of «K'Q'j', j,'io» to ((K'Q'j', j, io» we

get

g-(2K+1)' (2K'+1)' 8 e,&j~i[diij )(-1) d d

a

K' K 1 8'(KIP; eg, e,e„(di) ..Q' -Q' e.
(A15)
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Here

8'(K9P;e, g, e,e» v~) =N~ g
0'ff O' Q3 ~

je
5 2 3-u, Q4. '.-u, u, 0,. -Q3 Q4 Q5.

1
x d' dp p lim '» ' 1 Vj 1 3 4 4 JgggPgjgggPy g +I +g+f+ Jgl gPmjgl gPs

~Q

1
2 2 3 3 vr '4 4 5 5

I~P+g J,Pp~ I g &g I,PNP4I~P, v4
1

(A16)

the summation being over the p, 's, Q's, j,', j,', and j,. In the OIL approximation the coupling coefficient re-
duces to the form

~ 0] 03I jC jg

gl ~

Q-(2K+1)' (2K'+1}' 8 e (j,lldll j )(-l)~e~ g e 8'(K', e,g, e,e~, (o~}
a Ql q2

(A17}

Here

1 '3
&'(K, eg, e,e„td ) =N g (-1}+"e+"e+~~+&e

Q i P~ -Pff

jl

d'l' . &pA i 'Icp,i Ivp, .~, .- g i.'p.'p i.w,'9,))&+L1+ +&+I e ~ C C 1

x j p, p2j p, p, -
~ V1 j,p 3j,p 3 py ~

t=-~, A18
1

where the summation is over the p, 's, Q, j,', and j,'. For the coupling of ((K'Q'j, j,~o)) into ((K'Q'j, j~~o))
we get

1~
QS.s,((j,llBII j,)(-1}"-" &'(K'K', eg, gg, ~, ),

a O' W' e
(A19)

where

K1 ' ' K 1 Z'Z
e'(K'K eg gg)=N g( 1)" '"+-"

pfy PC @14 ~ 0'p Pg Q2 ~ 4k g ~C @3 &Ql 2 @3

x d'p, 3 dp4p4l~m je~epl jcbcpl V1 . je~e 2jc~c 3C C f $(d&+11+S

I +& j PP I g" j& PiCj4
1

(A20)

where the summation is over the p, 's, Q's, and j,. If the lower level does not interact with perturbers
this term vanishes.

The only second-order correction of interest is the coupling of the ground to the excited-state manifold,
i e. , ((K Q'j~ j~

~

e)) to ((K'Q'j,'j,'~ &r)). This may be reduced in the steady state to the following form:
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p(2K+ 1) (2K'+ 1)' (2K2+ 1)( 1-) '( 1-)"e'"(t'"g'"g
~

$3~'(C) (Ce) (j ((d)[j,)(j,[[Z)[j }(-1)~gee"

j,' j,' K j,' j, j''j,' j, &' j, j,
1 2 4 1 5 3 4 5

~e ~e @3ed & ~e ~g @4~ +e ~g @5& +r Pf 96~

iK j. K ' 1 K' K 'K 1 K 1 K' Kx 1 1 1 1

@3 @4 @1 @5 @6 ~14 @ ~ @2 ~ ~ ~2~

p, , ~p~ lim j,'~,'~,j,p

x
+ ~(d + L, + ~ j ~~p4 j+~+~5

L 1

~
~ 3» ~ 2» rr . 4» ~ 5»

jt~&I 4 j&~II 5 g+ L + S 1 jF~SP6jr~f P6
1

(A21)

where the summation is over the Q s, g p, s j3, j„and j,'. This term vanishes in the OIL approximation.

APPENDIX B: ANTISTATIC BEHAVIOR OF t-' (K,ee,eg,~z)

We should like to investigate the form of ("(K,ee, eg, ~z, )
have an attractive interatomic potential for

e'(K, ee, eg, te ) =Ne)im fd'p, , fdppg(-, i'),"
s~ 0+ 1.-&e

K ~'j,

u,' QJ.u,'
K'i

-~,' QJ

in the antistatic limit, that is, supposing we

~ 1 ~ P vr & 3 ' 4je ~e~1je ~e~l 1 g + g+ L je ~e~2 je ~e~3

5-
hei eP2~ti tP3 ~ + g+ I + ~ 3 ~el eP3~g~tP3 P5333 (f ) e

where the summation is over the p. 's, Q, and j,'. In the antistatic wing we suppose we can use an expan-
sion 1/'4~L for the first part of this collision operator, since there is no stationary phase contribution.
'Thus,

K T'' ' Ke'(i(, ee eg, )t=eefNd'p fdp p' E(-))"' "'m

Qi ~P~ -P~

je~e~l je~e~1 ~1~+ + I je~e~2 je~e~3

~ ] 3» ~ 5»
Je i eP22gl gP3 ~ + 3 3~ i /2') (g 1 hei eP3Jgl gP3 Pf)pg (f = )

1

(B2)

Q~ w~ -g~ Q»

where the summation is over the p's, Q, and j,'. Here, (de= (1/$)(p2/2m), and
~

a(d~ ~& 1/v, implies that

f»q [& [&; - &; 3(y„/2)
f

-p so that we can write

8'(K, ee, eg, )=N fd'p, , fdp, p,'
efI 0 2Q 3Q ~ J

e e'e e e

i.e.p, i.ps, p, - - i.'I!p.i.l!p.))

x I - 1je iieP2, g je i(PP3
L
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Evidently then,

2Ema'(x, ee, eg, & )A~ =N, fd'0, , , fdic, p , 'Z
1 2 S 4 5 ~lle$leff elf eQeQge

~e~e 2 g ~e~e 3

&e&e 1&e&epl 1 ~+ g+ L

~V
je l ePz )f je&ePz

~ 4+ ~ I
e pe 32epep2 p-.

3

(t= -~)

p p
"e"e"cue" eQ

~ ~e ~e @J 9'e 4e

KK
I( l) 5 lqz

Q.
1 ~ 4 S»

~e~epl~e~epl 1~ g j 1 ~e~eP3~e~e p3 P~~

(t=- ). (B4)

Thus d+~2Ime (K, e'e, eg, (u~)-y in the antistatic limit, since

y+ = lim d3p dp p2
e 0 JL1JL+3+4%5Q, ~l 2

@ ~4

p 2WP12Wpl Vl g I V12Wp33&p3 p3y

(B5)
In the above, we have assumed that e' and e are degenerate. We can arrange this by following the proce-
dure we discussed in the text. If, as in the case of Stark broadening of hydrogen, the states mixed by V,
are degenerate, we have no trouble. If they are not, we replace V, by Vff throughout our analysis. V'ff
is defined explicitly by

Veff 0:.~ [Vff 6] (B6)

and

lj, w,'&)&j, w,'I V, lj,'g$&&j,'g,'I V, Ij,p,'&&j,g,'I
eff

~l, ~2 rs &dee z
e e

(Bv)

where &u„.=[E(j,) -E(j,.)]IS. Here j,. labels the states that are coupled (adiabatically) into the j, mani-
fold. We note there is no problem with the first-order contribution in Vn to ~&&~&~Mz(z), since it vanishes.
Explicitly, this first-order contribution may be written in the form

K~&";~'(z)= Z (-l)":": ' ' ' ' &,&&i ~'i ~'l»,'[Vsfi, ( ")]l~.~.'g, u.-&&

K j~ j~ K Np

Qe ~
fusee fter QeQ .-v,' v.' Qi;v.' v.' 0

x{&j,p,'lTr,'[Vfrt&~( )]lj.u'&6(&' &') &j u'ITrl[V'sf', (- )llj, u,'&6(u.', e.'))

l (&i.v. l»,'[V. 0,(-")]lj,t,& - &j,~,l,'[Vst&, (-")]lj,v, &)
8

—= 0. (B8)



COLLISIONAL REDISTRIBUTION OF RADIATION. II. THE. . . 2043

K. Burnett, J. Cooper, R. J. Ballagh, and E. W. Smith,

paper I, Phys. Rev. A 22, 2005 (1980).
A. Omont, Prog. Quantum Electron. 5, 69 (1977).
M. Ducloy, Phys. Rev. A 8, 1844 (1973).
A. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton Univ. Press, Princeton, N4. , 1960).

~A. Omont, E. W. Smith, and J. Cooper, Astrophys. J.
175, 183 (1972).

H. R. Griem, Spectral Line Broadening by I'lasmas
(Academic, New York, 1974).

P. Roman, Introduction to Quantum Field Theory (%'iley-

Interscience, New York, 1968).
R. J. Ballagh and J. Cooper, Astrophys. J. 213, 479

(1977), Appendix B.
J. Cooper, Astrophys. J. 228, 339 (1979), Eq. (73).
W. Behmenburg and F. Schuller, Z. Naturforsch.
32A(6), 558 (1977).
P. R. Berman and W. E. Lamb, Jr., Phys. Rev. 187,
221 (1969).
M. G. Raymer, J. L. Carlsten, and G. Pichler, J. Phys.
B 12, L119 (1979).
D. M. Brink and G. R. Satchler, Angular Momentum

(Oxford Univ. Press, London, 1968).
A. J. Barnard, J. Cooper, and E. W. Smith, J. Quant.

Spectrosc. Radiat. Transfer 14, 1025 (1974).


