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Collisional redistribution of radiation. I.The density matrix
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As a first step in deriving accurate, calculable expressions for collisional redistribution of radiation, valid outside

the impact regime, we present a method for calculating an accurate binary-collision density operator for an atom in

the presence of a driving field and perturbers. We use projectionwperator techniques to establish 6rst the precise
validity of the Markoff approximation for radiative relaxation. Using the same techniques, we show how the
collisional-relaxation problem may be analyzed in a practical mailer outside the Markoff approximation. The effect
of correlations between rnriintive and collisional events is included in a consistent way, and the physical implications

of these correlation effects are demonstrated for a simple example, the two-level atom with nondegenerate levels.

I. INTRODUCTION p =—p(radiator) x p(perturbers) .

This is the first of a series of three papers
that aim to discuss the subject of redistribution
of radiation in a general setting; we shall not re-
strict our treatment to the familiar "impact" re-
gion of collisionally broadened line spectra, nor
limit our treatment to detunings from line center
less than kT/S [where 0 is the Boltsmann's con-
stant and T the translational temperature of the
bath of perturbers affecting the active atom (ra-
diator, absorber)]. The only major approxima-
tion is the binary-collision approximation (BCA),
a well-understood approximation that is valid un-
der a wide range of practical circumstances. The
effects of degeneracy on the problem are quite
distinct and have been studied in detail; these will
be presented in the papers that follow.

Qur analysis uses the techniques of quantum-
statistical mechanics and does not rely on any
phenomenological arguments. We believe our
treatment unifies some diverse theoretical treat-
ments and supplies a rather complete framework
for the discussion of the redistribution problem.
The only other discussion of redistribution of ra-
diation outside the impact approximation that also
deals with the effects of degeneracy is that by
Cooper. ' He uses the formalism of Fiutak and
Van Kranendonk' to produce "generalized emission
and absorption profiles. " We produce the essential
physics of Cooper's arguments, but give a more
explicit treatxnent that should prove better able to
handle practical cases.

Qur treatment involves the discussion of equa-
tions of motion for the density matrix projected
onto relevant subspaces. This is a common pro-
cedure' and is usually linked with an assumption
(often unwarranted) about the initial state of the
density matrix lying within this subspace. For
example, the subspace could be that in which the
density matx ix may be written in factorized form:

Qur discussion is a critique of when such asser-
tions are valid and an extension of the theory to
cases when it is not, where we are really dealing
with the classic problem of the breakdown of the
"separation of time scales" in kinetic theory. '
In our case this means that we deal with events
(absorption and emission) occurring during, and
thus correlated with, the microscopic events
(e.g. , collisions) that cause the relaxation of the
system. Formally, this implies that we cannot
concern ourselves solely with an "important" fac-
torized subspace, but need to consider the full
density matrix. The projection operator onto a
subspace may still be a very useful tool, but its
use does not imply any physical assumption about
the system.

This paper is split into th" following sections:
I. Introduction. II. Radiative damping and
interatomic potentials; where we discuss the ef-
fect the radiation field has on the evolution of
atomic states. III. Collisional damping; where
we reduce the many-body problem of the interac-
tion of radiation with an atom, in a bath of per-
turbers, to a two-body collisional problem (in the
presence of radiation). IV. An example —the two
level atom: Here we apply the general formalism
to a concrete example and discuss the physical na-
ture of "correlated events" more fully.

In paper II we shall address, in detail, the con-
sequences of degeneracy for the correlated events;
and hence for the steady-state multipoles of an
atom in the presence of a driving field. We shall
also discuss how the effect of these correlated
events may be observed experimentally.

In paper IG the full spectrum of the scattered
light, with its dependence on frequency and polar-
ization, of both the incoming and outgoing light, is
derived. This provides an example of how one may
derive a spectrum from an equation of motion for
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I

the dipole autocorrelation function, when the quan-
tum-regression theorem is invalid. '

The theoretical work presented here was moti-
vated in great part by the pioneering experiments
of Carlsten, Szoke, and Raymer. ' We hope our
work will stimulate further experiments and aid
in their exploitation and interpretation.

H. RADIATIVE DAMPING AND INTERATOMIC
POTENTIALS

+ V™
0 (2.1)

Here L~ and L" are the Liouville operators for
the free-matter and free-radiation fields, respec-
tively, L™Rrepresents the interaction between
radiation and matter, and VM represents the inter-
action between atoms (and perturbers) from purely
Coulombic potentials, defined thus

In this section we shall consider the effect the
free-radiation field has on the evolution of the
density operator of the system we are studying.
This is a dilute gas of "active" atoms (absorbers
and/or radiators) mixed homogeneously with a
gas of perturbers; the distinction between radia-
tor and perturber breaks down in the case of reso-
nance broadening and for this and sundry other
reasons we shall not treat the case of resonance
broadening explicitly. It is supposed that atom-
perturber collisions are far more frequent than
atom-atom collisions; this makes the problem a
linear one as far as relaxation of the radiator is
concerned. Both atom and perturber are, of
course, imbedded in the free-radiation field. The
free-radiation field has two effects on the atom-
perturber system: (i) It shifts and damps the
atomic levels and (ii) it modifies the interatomic
potential from that provided by purely Coulombic
interactions. '

In our treatment we will use the Coulomb gauge
throughout. We single out one of the radiation
modes and suppose that it carries real photons
that are incident upon, and are scattered by, the
gas. We shall show under what circumstances
these incident photons do not change the effect of
the virtual photons on the gas [i.e. , (i) and (ii)].
Although this may seem somewhat straightfor-
ward, we shall establish the conditions with some
care, since it will show the intimate relation of
these effects to the collisional-relaxation problem.

The self-energies and the interatomic potentials
are obtained in the following manner. The total
Liouville space of the system may be written as
a direct product of the radiation and matter (atom
+perturbers) subspaces. We split the total Liou-
ville operator (see Appendix A) for the gas in the
presence of the radiation field into four parts

I.""0-=—. [V„„,0], (2.2a)

2

) I e~ii~ 'X(r~)+
~

X(r~)'(~ . (2.2b)

Here t} is an arbitrary operator, A(r) is the quan-
tized transverse-relation vector potential (divX
= 0),' and P& is the momentum operator for the jth
charged particle. Equation (2.2b) is the result of
a transformation, on the full relativistic interac-
tion Hamiltonian, and the X(r)2 term comes from
the elimination of negative energy states. ' We
shall not be concerned with the effects it gives
rise to (diamagnetism, Thomson scattering) in
this paper.

The external driving field will be treated as a
prescribed time dependent classical field E'(r, t),
and its coupling to the active atoms, supposed to
be predominantly through dipoles, may be written
in the form

L(f)0=—.~ [V (f), 0], (2.3a)

V'(t)=-gE'(r. , f) Z . (2.2b)
m

Here I is the dipole moment of the mth atom,
whose center of mass has position vector r . The
transformation from the form of (2.2b) to (2.8b) is
discussed in detail elsewhere. " Although we shall
be primarily concerned with allowed electric-di-
pole transitions, we do not want to make the elec-
tric-dipole approximation on (2.2b); we shall see
below that the full form of ()'„„has consequences
for the time scale of spontaneous radiation coup-
lings, but not for the coupling with the real driving
field. Thus the equation of motion for the density
operator p(t) of the full system is

&,p(f) = K+L'(f)]P(f) (2.4)

In establishing the effects (i) and (ii) named above,
we shall need the following projection operator in
Liouville space (see Appendix A):

R =P~D( = ) ~MoDza[ ] ~

where the trace excludes the driving-field mode.
The operators we have to deal with, e.g. , t), in
general, operate on the combined radiation and

matter Hilbert space and cannot be written in a
factorized (uncorrelated) form. P„O, however, is
by inspection a factorized operator. We emphasize
that our choice of projection operator does not
limit the physics we discuss, since we shall not
be making any unwarranted assumptions about the
correlated part of the density operator Q„p, where

QR
-=1 -PR

We can decompose the equation of motion for p
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Pena/ 0 (2.7a)

which holds since pa„n(t = -~) is diagonal, and
L" linear, in the radiation annihilation and crea-
tion operators,

PRV"QR=PRL*(t}QR=PRLoQR= 0

since V, L (t), and L contain no free-radiation
operators, and thus commute with I'„,

P~R 0 (2.7c)

We can obtain the formal solution of (2.6b) in
terms of the propagator 9„(t„t,), defined by the
equation of motion

6,29R(4, t, )= Q R[L+ I,'(t, )]9R(t2,4) (2.8}

and the initial condition

9„(t„t,) =8. (2.9)

Using the time-ordering operator T (Ref. 11), we

can write the solution for 9„(t„t,) in the following
form:

into two parts thus:

sj'~(t) =Pa[La+ L (t}+V"]P„p(t)+P„L "Q~(t),
(2.6a)

sA Rp(t) =QR[Lo+ L (t)+ Lo"+ V"+ L""]Qap(t)

+QRL "Pap(t). (2.6b}

We have used the following results:

We should like to obtain a closed equation for
P~(t), since we would then have a closed equation
for the atomic evolution averaged over the free-
radiation modes. Equation (2.14), however, still
contains a Qap(t, ). This term is frequently re-
ferred to as the "destruction" term (Ref. 12}, be-
cause it represents the destruction of correlations
(between the radiation and matter}, represented by

Jap(t, ). This term can be neglected ashen deter-
mining the steady-state density operator as toe

shal/ shou helot.
We need to be able to calculate Qap(t, } in order

to discuss the destruction term, and to do this we

suppose we have the following situation: At the
time t =t, (when we start off the equation of mo-
tion), Qap(to) is the result of the evolution from
the distant past. At some time in the distant past,
we can safely assume that the portions of radia-
tion and matter we are concerned with at time t,
were uncorrelated. We can, therefore, put

Qap(t= -~)=0, and at time t=t„

t

Q~(t, ) = 9„(t„t')Q„L P„p(t') dt' . (2.15)
w +

This is sometimes termed a "natural initial condi-
tion" (Ref. 13), and substituting it (2.15) into
(2.14), we obtain a closed equation for P„p(t). We
see that the crucial quantify we need to study is
the kernel

9„(t,t,)=Texp Qa [L+L (t')]dt' . (2.10)
tg

5g„(t„t,) =P„L""9„(t„t,)Q„L""P„, (2.16)

G„(tm, t, ) =—exp[QRL(t~ - t,)] . (2.12)

We can write the formal solution of (2.6b) in the
form

Q,p(t)=9 (t, t.)QW(t. )

t
+ 9R(t, t')QRL Pap(t') dt' .

tp

Substituting (2.11) into (2.6a), we obtain

spahi}(t) =Pa[Lao+ V"+ La(t)]pap(t)

(2.13)

t
+PRL 9R(t, t')QRL Pap(t')dt'

tp

+PRL QR9R(t, to)Jap(to) . (2.14)

Equivalent to this definition is the following inte-
gral equation:

9 (t, t, ) = G (t, t, )

+ GR t~ t RL t QRt
tj

(2.11}
where

i.e. , the part of (2.16}that is zeroth order in the
driving field and the interatomic potential V". As
a first step in this study, we shall consider
M„(t„t,), given by (replacing 9„by Ga)

Ma(t„t, )=P„L "G„(tm,t,)Q„L "P„. (2.17)

Now it is well known that in the interaction be-
tween radiation and matter, theories that retain
the coupling to second order can be used to des-
cribe spontaneous processes (e.g. , virtual emis-
sion and reabsorption of photons). We shall,
therefore, be content with the following approxi-
mation to M„(t2 ty):

There are two distinct classes of tetradic ele-
ments of I„;the first, the single-atom elements,
produce radiative self-energies which are in gen-

M„(t„t,)= =P„L""exp[QR(LRO+ L,")(t,—t,)]Q„L""P„.
(2.18)
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eral complex, the real part of which represents
damping of the single-atom vectc rs (Liouville) by
spontaneous emission; the second type of tetradic
element represents the interaction between atoms
from the exchange of virtual photons (and these
give rise to modifications of the usual dipole-in-
duced-dipole term in the van der Waals interac-
tion at large internuclear separations). Fourth
order and higher terms also only affect the long-
range part of the potential. To emphasize that
there are two parts of Ma(r), [Ma(r) =—Ma(t„t, ),
with r =t, —t, ] we write

M„(r)=S„(v')+Va(r) . (2.19)

Here S„(r) is the single-atom self-action opera-
tor and Va(r) is the two-atom interaction opera-
tor.

To proceed further, we need to consider the ex-
plicit form of V"" from which L"" is obtained,
l.e. y

(2.20)

Here a; „and I„- „are the annihilation and creation
operators, respectively, and e-„„is the polariza-
tion vector of the mode (k, X). In order to calcu-
late the matrix element of the operator p e'~ ", it
is convenient to factor explicitly the single-atom
states into a product of the internal state and the
center-of-mass translational state, i.e.,

(2.21)

For free-particles this is, of course, unneces-
sary. 'The latin letter a labels the complete state,
while the Greek letter & labels the internal state,
and p, labelh the translational (momentum state)
corresponding to

~

a). Thus,

+yp~ -e e' '
pyp~ =5 p -k-p~ e -e ~e'"'f p

Here rf is the position of the jth electron with respect to the center of mass. We have not yet distinguish-
ed between atoms and perturbers in the labeling of matter states. After we have eliminated the variables
of the free-radiation field, however, we shall suppose the perturbers are structureless, and then the
dipole moments in Eq. (2.3), will refer only to the active atoms. From Appendix A, we know that

L""~n,m)) = g (P, m)) —. (P
~

V "(n) —~n, q)) —. (m( V""~q), (2.22)

where, in this case

(2.23)

X/2

+[f- 'i (—k)ii(p, -p„+ii)a ], f,„(k)=( -g e~e' 'ii
i)

f

We have not made the conventional approximation (e'~'&= 1) in the evaluation of the atomic matrix ele-
ment, since we wish to point out the importance of the e' ' factor in establishing the time scale of the
matter-radiation interaction. To do this we shall consider an example —a diagonal tetradic element of
Sa(v), i.e., ((ab~S„(r))ab)):

((ab
~
S„(r)(

ab)) = Tr~n(ga~(t = — ) ((ab
~

Lna exp[pa(L", + L,")r]Q„L""~ab))]

=7 I", ~y) I'—.,"I &It;,, '..(i)I'~mli(;+ .O'BKii. -ii.+&)
0~

+
~
Z; „'f„~(k)

~

'
exp[f (~,„-&u;)r]5(p~ —p„-k)}, (2.24)

where we have assumed that, at time t= -~, none
of the free-modes are occupied. This is an ex-
tremely complex object, and we shall not attempt
to discuss it in detail. One crucial feature, how-
ever, will be appreciated if we consider the be-
havior of the "generalized" oscillator strengths
f,„(k) (Ref. 14). From the definition (2.23), which

involves an integral over atomic wave functions,
it can be seen that f (k) will differ little from its
value at k = 0 until ka, & 1, i.e., &oa,jca 1 (where
a, is the order of a Bohr radius). ((ab(Sn(r)

~

ab))
is, therefore, the Fourier-Laplace transform of
a function (of frequency) cut off at to -c/ao, and the
usual transform argument implies that
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((ab ~Sa(r)
~

ab)) must decay on a time scale r„,
where ra-a, /c, i.e. , the time it takes light to
cross the atom. This is the quantum-mechanical
analog of the argument Lorentz used to obtain the
classical self-energy of the electron (Ref. 15); it
is the justification for the Markoff treatment of
the atom-radiation problem and is closely linked

to arguments that have been given elsewhere. "
We thus conclude that the atom has a "memory"
that is very short -10 "sec.

Our argument is easily extended to the inter-
atomic part of Ma(r), i.e. , V„(r). In discussing
Sa(v ) we were considering the emission and reab-
sorption of photons by a single atom, whose char-
acteristic distance a0 determined the scale of var-
iation of the f(k) 's, and hence of S"(r). V "(r) rep-
resents the exchange of a photon between two
atoms. The relevant scale for V„(r}is, therefore,
the internuclear separation and the time scale or
"memory time" is thus -size of quasimolecule/
speed of light. The importance of this fact has
been discussed for the resonance interaction by
Milonni and Knight. " A characteristic inter-
nuclear separation for collision broadening is
-10-100L, so we can say the interatomic poten-
tial has a memory -10 "sec.

We now have a qualitative idea of how A7„(r) be-
haves as a function of v. We argue, using Eq.
(2.11), that Sjl„(r) will only be modified from Ma(r)
by a term Wr„(G is the on-resonance Rabi fre
quency for the external field driving a typical
atomic transition Q= (a

~

E' 'Z~ b}/8') for times
much longer than 7'R, as it is only if the driving
field causes appreciable changes in the state of
the atom on a time scale -v'„ that the average
damping can be altered. This modification of the
damping operator may become important if we

probe the time dependence on a scale comparable
to or less thaq w„. This is the case if the driving
field is detuned from an atomic resonance by an
amount comparable to or greater than the inverse
of r„. In a similar manner, the average damping
of atomic states by spontaneous emission will af-
fect the microscopic processes that cause that
damping to order y„v„, where y„ is the natural
damping rate. This quantity is, of course, quite
negligible (y„r„-10"). Since the atoms are mov-
ing with respect to each other, we also need to
consider how far they move compared to a typical
interatomic separation d in a time v„. Thus,
another condition we suppose is satisfied is

Ur„/d«1.
Here U is a mean relative velocity of an atom-per-
turber pair and d is a mean separation. In a
typical case Ur„/d 10~, so that -the condition is
well satisfied. With these considerations in mind

we can rewrite Eq. (2.13}thus,

s,P,t}(t) =P„[Los+V"+ Lz(t)]P„ti (t)
t

+ PaL " Ga(t, t')QRL P„t}(t')dt'
t0

+ PaL Ga(t, to)Qa

xJt G@(to, t')QaLnaPajb(t')dt' .
~IS

(a.a5)

The time-independent Liouville operator

PaLn"G„(T', 0)QaL""e o 'P„dr
0

(2.27)

is the sum of the self-action tetradic S and the

radiation contribution to the interatomic potential

Vs. Using the notation Tr„„n[p(t)]=p„(t), the

equation of motion becomes

B,p„(t)= [L",+ V+S+ L (t)]p„(t) .

Here

$'= Tr„~(V")+V

and

S=Tr„[S"].

(2.28)

(2.29}

(2.30)

This is the usual Markoff-master equation used
in matter-radiation problems, and its explicit
form for practical cases has been given else-
where" (the tetradic elements of S for some sim-
ple examples are given in Appendix B). We see
that the effect of the radiation field is to give the
familiar spontaneous emission widths and shifts
(which should be renormalized} to the atomic
states and, in addition, to change the interaction
between the atoms and perturbers. Specifically,
V is now the interatomic potential Liouville oper-

We note thg, t we could put the last two terms to-
gether and obtain an equation valid on the inter-
val [t, -~]. We keep them separate, however,
as coe shall count to consider problems cohere coe

have an initial condition at t = tp (Se.e paper 111

for' the most important example of such a prob-
lem —the equation of motion for the cox'relation
function. ) Since ott„(t, t,) decays as a function of
t- t, on a time scale ~„, we see that we can ig-
nore the last term in Eq. (2.25) for times longer
than w„. For the same reason, we can put
Pat)(t') =P„exp[-L,"(t—t')]t}(t) and extend the up-
per limit on the integral to t = ~ in the second
term of Eq. (2.25). So if we only consider time
scales much greater than ~„, Eq. (2.25) becomes

s t Payat) =PR[LO+ L'(t}+V"]Pat}(t)

+ P„L GR r, 0 RI e o dry~ t
0

(2.26)
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ator that includes the effects of retardation. Ne-
glecting the retardation, this is the usual Coulomb

gauge interaction V" between two atoms. We must
require, for self-consistency, that

l
Pl'„(atom

perturber}«1. Thus (2.32) is valid if Gra«1,
IVl a 1 a"dlSI a 1(bylVl etc. , weimply
a typical value of a tetradic element of V) ~

We shall not pursue the analysis of these ef-
fects, as they are of no practical importance in

the case of radiative damping. We shall, however,
be concerned with precisely these effects for the
collisional-relaxation problem and will be dis-
cussing them in detail. We also left out V" from
the matter Hamiltonian in our approximation to

G„(t„t,) above. We now see that if the atoms

change their translational states on a time scale
TR that we need to consider its effect on the spon-
taneous processes. We thus need to require that
V r„«1—this condition is easily satisfied for
practical cases.

P!
i'.(t) =s "'p.(t) . (3.3}

so that Eq. (2.31) becomes

3~p'(t) =[L"+~(t)+S+L'(t)1p'(t)
with

(3.4)

-IV'(t)=e ' Ve' (3.5)

The two orthogonal projections of Eq. (3.4) are

3gP~p's(t) =PJLO+S+L (t}]PP~(t)

+PP(t)Q.p'(t),

Q '(t) =QUAL"+~(t)+S+L'(t)]Q.P'(t)

+Q.V'(t}P'.p'(t),

(3.8)

(3.7)

where we have used P,V'(t)P, =0 (i.e., the average
collisional interaction is assumed to be zero) and

HI. COLLISIONAL DAMPING

A. General formalism
[PciLol =0=[Pe~S]=0=[Pc.L (t)] ~ (3.8)

We shall now discuss the effect of the interaction
between radiator and perturber using precisely the
same techniques as we did in the previous section.
The crucial difference we find is, because the
time scale of a typical collision ~, may be greater
than a macroscopic time of interest, we can no

longer ignore the modification to the damping te-
tradic due to the driving field. This means that
we need to retain additional terms in the equation
of motion. We can ignore initial correlations (at
a typical time t&) for the purposes of finding
steady-state single-time averages. However,
we stress that when we calculate the spectrum
of scattered light —directly related to the dipole
autocorrelation function, a two-time average-
we shall need to retain separate initial correlation
terms in the equation of motion.

As before, we define a projection operator P„
such that

P,O=- p„„(t=- )Tr„„(6), (3.1)

and it is useful to explicitly separate Lo" as

(3.2)

where L~ is the Liouville operator for the free-
atoms, and L, the Liouville operator for the
free-perturbers. The derivation of the equation
of motion proceeds in the same general manner
as before, but since we shall now be concerned
with evaluating the driving-field correction terms,
it is convenient at the outset to transform to an
interaction picture defined by

g, (tg, ti) =G, (tg, ti)

t2
+ J dt'G!(tm, t')L (t')g,'(t', t,),

t)
(3.10)

we can formally solve Eq. (3.7) to give

Q ps(t) = g,'(t, t )oQp s(t )0

t
+ dt g, (t, t')Q, V (t)P,ps(t)

tp

=g, (t, -~)Q,ps(-~)
(3.1la)

t
+ dt g, (t, t')Q, V (t')P~„(t'} (3.11b)

If p~ relates only to the perturbers which interact
with the atoms after the initial time to, the cor-
relation between the atoms and those perturbers
which interact at t=-~ [Q,ps(-~)] can be taken
as zero. This is because perturbers that interact
at t =- &vill have moved assay from the atom
by time to. This is usually the case, but it will

where Eq. (3.8) follows, because none of the three
Liouville operators involved acts on the pertur-
bers. Defining propagators

rt~
G', (t2, t, )=TexpQ, [Lo+S+P(s}]ds (3.9)

(here T is the time-ordering operator, see Ref.
11) and
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The memory kernel has the form

SR (t2 tf ) =P,V (tq)&&,(t2, t( }Q,V (t( )P, , (3.13)

or to zero order in the laser field

31,(t„t,}= ttf,(t„t,)

P,V (t2—)G, (t2 &
t I )Q&,V (tt )P, . (3.14)

This is more difficult to discuss than the radiation
memory kernel since we cannot, in general, treat
the atomic collision problem by perturbation
theory. However, under the binary-collision ap-
proximation (discussed in detail later), which

implies that two or more simultaneous strong
collisions rarely occur, the general behavior can
be inferred. Physically, it is clear that V'(tm)

and V'(t, } can only be correlated if they both re-
fer to the same collision, so the memory kernel
is nonzero only if tz -t& & w, where v, is the dura-
tion time of a collision. More rigorously (as we

will show below} the Laplace transform of M,
(t~ —t, ) can be expressed directly in terms of the

off-shell T operator of formal scattering
theory. "' It is known that the tetradic elements '

of T(E) vary appreciably from the on-shell ele-
ments only for a charge of E such that nE -K/r,
(for an example, see the semiclassical calcula-
tions in Ref. 21). Thus the usual transform argu-
ments allow us to conclude that M,(7) has a value

comparable to M, (0) only for times r & r, .
The typical duration of a collision 7, is 10 '

sec (strong collision duration for a van der Waals
broadening collision), and so by detuning the

driving field more than -10~2/2v Hz from reson-
ance (Le., making the macroscopic time scale less
than 7,), we begin to examine the time dependence

of the individual collision. This means that we

cannot ignore the temporal behavior of P,p„(t )
in the integral in Eq. (3.12) (i.e. , we cannot make

the Markoff approximation). We, therefore, have

to retain all the terms in the equation of motion.
One simplification, however, is that we can be

be invalid if the perturbers are bound to the atoms
(in which case the average interaction between
atom and perturber is greater than the thermal
energy and they remain together for all time)
but then the concept of a collision time will also
be invalid. This assumption then is really very
weak for practical situations. Substituting Eq.
(3.11) into (3.6) gives

3FcpR(t) =P,[L0 +~+L'(t)]P.pB(t)
t

+P,V (t) dt '8, (t, t')Q, V (t')P,p„(t').
a

(3.12)

content with the expansion of g,(r) in the driving
field L (t). We have to consider to what order in

L we should take this expansion and to do this
we must consider the physical significance of the

different terms in the expansion. We shall show

below that the zeroth-order term in the expansion
will give just the usual "unified" theory of colli-
sional broadening 22 (This point will be made
clearer below when we reduce this first term to
a more familiar collision operator. ) The first-
order term in the expansion represents the pro-
cess where an off-diagonal density matrix (that
corresponds to, say, a dipole transition) is coup-
led to a population or a Zeeman coherence (or
vice versa) "during a collision. " By during a
collision-, we mean during the time that the per-
turber is in the region where the density matrix,
for a given atom-perturber pair, is not well ap-
proximated by a factorized form. This term is
of order A~, or less. This is easily seen to be
so, since the interaction [i.e., matrix elements
of L (t)] is of order 0 and the maximum change it
can produce in a time ~, is of order M, . So the

parameter for the expansion of the collisional
propagator, in terms of the driving field, i.e. ,
Qv„ is in most cases very small. This expan-
sion is actually a function of frequency and be-
comes, as we shall see below -0/n&u, when d&o

» 7,. We must bear in mind that these terms in

the collision operator that depend on the driving

field are off-diagonal in the atomic subspace.
Furthermore, 0/s&u is also the expansion par-
ameter for the coupling of the pure atomic states
in the presence of the driving field. Now we know

that this can become large (as n& -y„) in many

situations of practical interest. This means that

a perturbation expansion cannot necessarily be
used for the free-evolution [part of Eq. (3.12)].
During a collision, however, the coupling is
bounded by 07', and can still remain small. In

the wings b,(d» ~, the validity criteria for the

two expa'nsions are the same and we have to con-
sider them on the same footing. For the case of
pure radiative relaxation, we can never get to
b,~-10' Hz and thus never need to consider the

corrections to the relaxation operator compared
to the normal coupling of the atomic states.

Some of the second-order corrections to the

collision operator also contribute new off-diagonal
matrix elements in the atomic subspace, and they

have to be retained. If we are considering, say,
a two-level atom with nondegenerate levels then

the second-order terms exhaust the qualitatively
different types of corrections to the collision
operators. For degenerate levels the higher-
order terms can contribute to higher-order multi-
pole moments of the system. If we are studying



2012 BURNETT, COOPER, BALLAGH, AND SMITH

scattering or absorption by an allowed transition
we can still argue that these higher-order terms
(higher than second order in L ) are unimportant.
This is easily shown once one observes that the
probability of an extra photon being absorbed, '

during a collision, is -
~A ~mrm times the probabil-

ity for any given number of photons (say one)
being absorbed during a collision. A more care-
ful estimate of the second-order correction to the
collisional damping operator y'(n&o) (Ref. 1)shows
that it is of order y'(n&) ~Q

~

r2 near line center
I/r and &y'(n~}/n~] III

I
r, in the wings

I

~

&~ (» I/r.
We note that even though the expansion of 9,

(t2, t, ) is truncated, the effect of spontaneous
emission on the evolution of an individual colli-
sion has been consistently included by the reten-
tion of the self-action operator S in the definition
of the propagator G,. In taking matrix elements
of Eq. (3.15), coupling between density matrix
components is retained only to leading order in
Qr, . In Eq. (3.13), carrying out the expansion of
8,(f, f') to second order, gives the following equa-
tion:

8&P,ps(t)=P OLD +S+L (t}]P,ps(t)+P, v (t) jl dt G, (t, t )Q V (t )P~J&(t )
t

+P,v~(f) ) dt) J dt'G~(t&t))L (t))G, (t(&t')Q, V (t')P,Ps(&')

t rt t
+P,V (t) J df) dtm dt'G,'(f, f)}L (t, )G(t(&f2}L (fq)G, (tg&f')Q, v (f 0', p„(t') &

(3.15)

where we have used P~s(t)=P, p„(t). This equa-
tion, (3.15), limits our treatment to situations
where Qr, «1. The reader may then wonder why
we are concerned with these terms of order
~gr, ~' at all. This is because it is these correl-
ated terms, associated with transitions during the
collision, that dominate the wings of the line
(where the absorption spectrum is proportional
to 0 /n~ ). This will be apparent when we treat a
practical case. In the strong-field case (when
Ar, c 1) the above perturbation expansion for the
collision propagator will be inappropriate in the
same way that perturbation theory is inappropriate
for the free-evolution. Then, instead of expanding
in powers of L (t}, a more convenient (but in many
ways more complicated) procedure would be to use
states ("dressed" states) in Eq. (3.4) et se&f.
which are eigenstates of L~& +L~(t), and compute
in an interaction representation in terms of these
states. This procedure, however, does not allow
for interpretation in terms of simple modifications
of collision operators in the absence of collisions.

We shall now reduce the equation of motion to
a more useful form using the binary-collision
approximation. In the context of this approxima-
tion, we shall be able to use the equation of motion
to calculate absorption spectra from an atom in
the presence of a driving field. In succeeding
papers we shall use the density operators we cal-
culate here-in the determination of scattered spec-
tra. No extra restrictions are necessary, e.g.,
we do not have to limit ourselves to [«o

~

«kT/ff
as the effects of the interatomic potential on the
distribution of perturbers has been consistently

I
I

included (such correlations are built up in the in-
terval [f, -~]).

~ Q, v, (f)Q,v,(f')Q, . P, , (3.16)

in the BCA. The approximation assumes that
strong collisions are separated in time; weak
collisions that may be dealt with by a second-
order perturbation expansion may overlap since
their effects are additive. The BCA implies that
(because of the chronological ordering) a V~(t)
cannot appear again in any product after a V, (t)

B. The binary-collision approximation

The binary-collision approximation (BCA},
which implies that strong collisions between atom
and perturber are well separated in time, is a
central assumption of most line broadening theor-
ies and we shall use it here.

For simplicity, we will take the case of a single
isolated atom immersed in a bath of N perturbers
[so that Tr~(ps) is the reduced density matrix of
this one atom], although generalization to the case
of n atoms is trivial. The operator V(t), which
appears, for example, in Eqs. (3.13) and (3.15},
may be written as a sum of two parts. One is
a sum g, v~(t), where V, (f) is the interaction be-
tween the radiator and the jth perturber. The
other is the sum Q» V,~(f) where V,~(f) is the
interaction between perturber i and j. Suppose
we were to write any one of the time-ordered
expansions explicitly. We would obtain sets of
products of the following form:
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appears. [This is the same reason that V(((t)'s
do not appear in (3.16).] If we write Q, = 1 P-,

then we can write

Q,v, (t)Q,v, (t) . P,

=P ~ ~ ~ Q V (t)V (t) ~ P

-P, Q,V((t)P,V((t} ' 'P, .
(3.1V)

It would, of course, be inconsistent to suppose
that the interaction between perturbers was strong
on the average and try at the same time to make
a binary collision (atom + perturber) approxima-
tion. We suppose, therefore, that p„„(-~)may
be written as a product of single perturber-
density operators; this is the same as saying the
perturbers are statistically independent. Then
we can write

where

age are nonzero. So we have the result that we
can write the averages in (3.15) N x (single-par-
ticle averages). At the same time we can drop the

projection operator in the single-particle aver-
ager, since this only affects 3 terms higher order
in N.

We remarked above that weak collisions may
overlap without affecting this single-particle
average result. To see this consider a term in
the expansion of the collision operator to second
order in V. It will contain terms of the form

Q P,V,(t)V, (t)P, . . (3.22)

pcv((t)vi(t) —= pcv((t)pcv((t) i
' (3.23)

again assuming the particles are statistically
independent, we have the result that, to second-
order weak collisions are additive, i.e.,

Now if we assume that the average of any given
potential is zero, then P,V, (t) = 0. This —is certainly
true in most practical cases. Thus, since

P',()-=t)'(- )Tr„„.„.,[ ] .
Stkt 08

(3.18) QP, V, (t)v, (t)=N. P, .QV,.(t)v,.(t') . (3.24}

Then

'Q, V((t)V((t) .P,

Q v;(t) rr p, v (t)

=p, ' 'Q, v;(t}rr p, p, v (t)p, .
8

(3.19}

Here o labels all the perturbers that are included
in the product to the right of II~ P, , and P labels
all the perturbers that are included in the
product to the left of@ P;.

Qfe have used the following properties of P, :

P PB Po PB 2 Pe

Here N is the number of perturbers. Weak colli-
sions may, however, produce complications in
the following manner. The correlation terms
introduced by the driving field are of order (07,)
and for short-range potentials, where a well-
defined Weisskopf radius (and hence collision time)
exists, it is easy to show that (07,)' can be small
in a wide range of practical situations. If, how-

ever, weak collisions due to a long-range poten-
tial dominate the problem (as in the case of elec-
tron broadening of Lyman o), r, can become
quite large, so that the magnitude of Ow, should
be carefully examined.

If we introduce V((t), G('(tz, t, ), and P,' as the
representative single-perturber Liouville oper-
ators, then we obtain the binary-collision-approx-
imation equation of motion, by making the follow-
ing substitutions in (3.15):

(3.20} v'(t}-v('(t),

We can, therefore, conclude that if the perturbers
are statistically independent,

P, ' ' 'Q, v((t)V((t) ' ' 'P~=P, Q,V((t)P, V((t) ' ' 'P,

(3.21}

and the average (3.16) must vanish if t((j. This
implies that only product averages where the
particle label stays the same throughout the aver-

G'(t2 t()- ((t2 t()

(3.25)
+ !2

= Te p dt V((tl t((td, ", )(t~ —(,)),
«tg

1P -P, ,

and multiplying each collision term by N. Note
that the binary-collision propagator becomes the
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&r(t) = Tr„,i[pa(t)] . (3.26)

The equation of motion has the form

normal Liouville time-development operator when
we drop the projection operator Q,' (as we know

we mayi').
It is now a straightforward matter to write this

resultant equation as an equation of motion for the
reduced density matrix 8 (t), defined by

8,&r(f) =[L& +S+L (t}]o(f)
t

+N Tri[ Vi (t)Ui (t, t ') Vi (t )pi(- ~)]o(t }dt
a

+K, (3.27)

where K represents corrections to the col-
lision operator. Now the second term in this
equation gives the usual unified theory2 of col-
lisional relaxation. Let us consider the collision
operator that occurs in this term, i.e.,

Tri[Vi(f)Ui(t, t')Vi (t'}pi(-~)] =Tri[ViUi(t, t')Vipi(- )] =Tri[Vi exp[(L& +La + Vi+8)(t-t')] Vipi(-~)}

(3.28}

dz M (z)8 ' dz, T=f-f' .
C

(3.29)

Bere c denotes the usual Fourier-Laplace inver-
sion contour

M,(z) =
4p

e ' Tri[Vi exp[a(LO +L&~+ Vi+S)]

x Vipi(- )j

i=Tri Vi. LA gi g
- Vipi(-~} Imz&0,

Imz & 0 . (3.30)'

This may be approximated, in the case where
the effects of spontaneous emission during a col-
lision may be neglected, by the simpler operator

Tri Vi +LA+Lp+V Vipi(-")

Fano' has shown how this operator may be re-
duced to T-matrix element form. The other
terms in the equation of motion may be reduced
in a similar manner. In some cases (for weak
collisions) the effects of spontaneous emission
during collisions may become important, i.e.,
y„7, ~ 1, and S must then be retained in the defin-
itionof the collision operator. Retention of S in the
definition also ensures convergence of the integrals
in the time-dependent formalism since it is equival-
ent to making z complex M,(z) can.be evaluated
for complex z by analytic continuation from its
form on the real axis, determined via the T-
matrix element form. We shall not continue with
our purely formal reduction, but resort to an
example so as to make clear the nature of the
correlation terms.

IV. AN EXAMPLE —THE TWO-LEVEL ATOM

In this section, we shall derive an expression
for the steady-state response of a two-level atom
to a driving field, in the presence of collisions,
and show that the correlation terms arise from
the modification of the free-perturber-density
matrix due to the presence of the active atom.

Up to now, we have glossed over the question of
how the translational motion of the ~udiator affects
its response to the external driving field. In the
absence of collisions this effect, the Doppler
effect, is uncorrelated with the natural response
and the two responses may be convolved. In the
presence of collisions the two effects cannot be
rigorously separated, since velocity classes can
be coupled (if the radiator interacts with the per-
turbers when in both states of the transition).
Even if this is not the case, the collision operator
for a given class may depend on the velocity of
that class. We shall suppose that we do not need
to consider such effects (for a full discussion see
Refs. 24, 25, and 26). Our equation of motion
should thus be regarded as one for a single velocity
class (or a set of such classes). The novel fea-
tures of our equations of motion are only important
in the far wings, outside the impact region, and
for most cases far outside the Doppler core. Since
it is only within the Doppler core that velocity
correlations may be important, we can ignore
them without affecting the main thrust of our
arguments. A typical Liouville vector for the
radiator-plus-single-perturber subspace will be
written thus

)ipfp'» .
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.Here i and j can be either 1 or 0, where 0 labels
the stable ground state, and 1 denotes the upper
level to which it is connected by an allowed elec-
tric-dipole transition. The p and p"s label the
momenta of the perturber (which is supposed to
be structureless) in the center-of-mass frame
for the radiator-perturber pair. Any projection
of the density matrix may be written in the form

((ipijp'
~
p„})=Tr[i jp')(jp

i pa] . (4 1)

We wish to study the steady-state response of the
atom to an external field and this cannot depend
on the initial correlations (between the radiator

b I

and perturber) but only on those that exist in the
steady state. When we study the scattered spec-
trum (paper IIO, produced by the system, we shall
construct an equation of motion for the dipole
autocorrelation function. In this equation we
shall find inhomogeneous terms that are the an-
alog of the destruction in the equation of motion
for the density matrix; even for the steady-state
spectrum these terms are essential and cannot
be eliminated or combined with other terms.

We now turn to the explicit form of the equa-
tion of motion for the two-level case, and write
it thus (we have used the rotating-wave approxi-
mation), ' p

n Q+ ~fp) t
03&&&&(t) = -yoi&(t) ——.e c op&(t}+ . e ' «p(t) + 6 (t, r)if iie|f(&)d&2i 2i

n& in)' i~'(t rhea, |oo|o(r}dr+
I J

~'(t r)i|,os&os(7)dr +
I

e (t, r)„ooeoo(7)dr,2i) ~p 2i ) p ) 7

0
0~o|o«) = —2-i~o «o(t) -2,. e [o (t) -«i(t)]+ J) 6 (t, r) o. oo o(~)d7

0

n (0& I' n''I
J 8 (t r)go g g(7 g( |}dr+ri 2. i i 8 (t t ) 7pippo'pp(r)dt+ 4 i

~ (t )jo ~ picot(r}d
Z 0 ]I, 2$) p 4)

(4.2a)

a'I* pt
(t)t=rn(n-n& +t 'n (rnnn(t)+ p( t ' [ (r)nnnt(trn)Inn+ -) (trnl tg ~ rnnnnn(, tint'

] 2$ ) 0

(4.2b)

(gn(n)p r t

I 2
~ 6 ~ Qi, ii&fi ~ d~ ~ ~ ~ 7 pi, pp&pp ~ ~+ ( t )os. io (o( )dI)2f p Z 0

(4.2c)

(Jpp(t) = +y«p(t} +
( 2. e eg(t) —2. e «o(t) + J( Cpp ppG (t, T)(T)d7'
E2Z 21 0

(n*& (n&+
I I J 6'(t, r)oo. io«o(r}dr -I —, I

6 (t r}oo,~op|(r)dr + 6 (inr)oo, |iei|(r}d~ .(2i 0 0

(4.2d)

Here, we assumed the driving field E (t) =Re(Zpe '"i p), where p is its polarization vector. The Rabi
frequency is 0 =Eo/K (1

~

d ~0} & with d the atomic dipole operator and y is the radiative-relaxation rate.
The quantities &P, 8', and 6 arise from our expansion of the collision operator [see Eq. (3.15)] and
are given explicitly by

e, &;&(t,r)= h1Tr„„(p„„(— eight V,-exp[(L, +S)(t —7)]V,
~

pj})}

=1V dp ip jp, V exp L+S t-w V ip jp, p ~
t=— (4.3a)

6,'» (t, r}= d'i), »,N dt'((ip, yp,
~
V, exp[(L, +S)(t -t')]~ ip, jp,))

((ip, jp, I L*(t') I lp, mp, })
T ip, jp, I L 0) I lp,mp,

x((lp, mp, eixp[(L, +S)(t' —r)]V,
~
lp, mp4))p& & (t =- ~), (4.3b)
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t t'
d'a ((,r)=fd d '. ..,...(( d(' d( ((ip"d(i, (d, exp((E, +SN(-(')((ip, j$&)

f

«ip.jp..~ L (t').}Ip*jpd)«-' -'~L (0}~,
-*.-))&&lp.ip. ~exp[(L, +&)(t'-t"))~ip.jp.))&pglp3 pg)p3

B && « lpdmp51 exp[(L +S)(t"-r))V~I lp, mp ))p - (t= -~)
&lp~ jp, ~L (0) t lp, mpyI 1 1 6 6 y6y6

(4.3c)

plus the term with transitions in order ij im lm. Here L, = L, + L,(I) +V„where L,(1) is the Liouville
operator for a single yerturber.

In obtaining Eqs. (4.3}, we have assumed that the collision operators

V,G,(r) V„V,Gd(r), G,(r)V,

are diagonal. in the atom tetr@dies. This means we assume that inelastic collision rates are negligible
and, additionally, that radiation during a collision (i.e. , which occurs via the operator S and would mix
atom tetradics) does not couple tetradics appreciably. The tetradic elements of the driving-field opera-
tor, namely, «ip, jp, ~L (t)~lp, mp, )) are nonzero if (i=i and jism) or (ill and j=m), but are diagonal in
perturber tetrsdics. Furthermore, they always appear normalized by an Ls(0} element, since we have
chosen to display explicitly the dependence of each term on the field strength by factoring out the Rabi
freq, uencies.

In the steady state the off-diagonal elements of a, oyp and cr„oscillate at the driving-field frequency,
while g„and e~ are constant. To anticipate this we cast the equations in terms of the new variables

o'„(t)= e' "~'o „(t), o,', (t) = e "~'o„(t), o', ,(t) = o„(t), o,',(t) = o (t) .
The equations of motion take the following form in the limit t-~ [o,'~(t-~) -=o, ~):

Qg ~ 0'
ys', ,=-—.s,', + . v', , + d'(r, 0)„„drv',, lim(+&. II ((v)„d„e d

&,r,', —(&. e.'((r)„,„e dv,s',,)"'
t

+ 6'(r, 0)„,~dr o,', ,
IAJ

p
(4.4a)

-lim~ —. 6'(t, r)» „e ~ o,', dr -—. 6'(t, r)« ~e ~ o,', dr~

2 ~t

t~ 'o
Q~

(4.4b)

( a+ 0*
2$

Q

+ lim 6*(t,r)» «e dr o'„(Q ) . 2

Ridder

(t+T)

4 t- o
(4.4c)

A Dy' =+2t." 2i '" p
600 00(r, 0)dr o('I

)at2
+Iim~ 2. s', (t, r)~ »e o,', dr ——. 6'(t, r)»e'"r'dro, ', ~+ s~(r 0)

(4.4d)

A simplification arises for the model we are
considering that is special to a case with nonde-
generate levels: All the collision operators that

have a final propagation in either &(1p,lp,
~

or
«Op, Op, (

vanish. (This is discussed in detail in
Appendix C.) Physically this means that once



22 COLLISIONAL REDISTRIBUTION OF RADIATION. I. THE. . . 2017

t

&„00(0lL}=lim 8'(t, v)„ooe dv .
trna O

In Appendix C we show that we may express
t'10 00(01L) in the following form:

8„,„(ld )=Nf d'P. . .

(4 6)

x p, , V, y p,

x{((0p,op, ~[p(kT)- p (kT)]})], (4.6)

where p, (kT) = exp(-Ho/kT). Now this term is an
extra contribution to the o„component of the den-
sity matrix which is proportional to the expecta-
tion value of the dipole moment, produced by the
atom's response to the external field. This term
describes the process where absorption occurs
when the perturber is in the region of the inter-
atomic potential where its motion is appreciably
changed from that of a free-particle, i.e. , when

an emission or absorption event is completed
(during a collision) the subsequent propagation
of the population during the collision is irrelevant
unless, of course, the final state of the atom-per-
turber system is bound (see Appendix C). In the
case of degenerate levels this propagation is im-
portant, since upper- (or lower-} level mI states
will be mixed as the collision is completed (see
papers II and III). Let us now turn to those cor-
relation terms that do not vanish and provide the
qualitatively different effects in the equations of
motion. The first we consider is

((Op, 0p,
~

[p(kT) —po(kT)])) is appreciable, and the
usual unified theories ignore this type of process.
'The kinetic theory of Hussey et al. ,"however,
does include this type of process by using an exact
equilibrium density operator. If we wished to re-
strict ourselves to thermal equilibrium, we could
include the correlated events (in the BCA) &without

resorting to corrections to the collision operator
(due to the driving field). To do this, we would

need to change our projection operator to one that
projects onto a thermal equilibrium subspace, '
rather than the separable subspace we have used
so far. We show, in Appendix B, that the extra
term that comes from a correction to the collision
operator is only appreciable when 4(d~ = &p —&~ is
comparable with kT/k. When 4&uL «kT/W, we
show that

e„„(01L) = v, /(kT/&) . (4.7)

This shows us that for 40IL «kT/tt these extra
terms contribute terms to the absorption spectrum
smaller by -[tLOI /(kT/8)] than the ordinary terms.
This confirms the well. -known fact that cor-
related terms in the density matrix may be

ignored for detunings less than a thermal frequen-
cy.

In the far wings of the line these terms have a
profound effect on the spectrum. We shall solve
Eqs. (4.10) and show how, in the far wings, the
new terms may be grouped with the normal uni-
fied theory terms to obtain the proper "one-per-
turber" absorption response" that includes the
thermal distribution of perturbers. We shall write
Eqs. (4.4a) through (4.4d) in the following form:

1 1Q 0*
1=~o).+ - ~&o y2s 2t

~

~ ~ ~L ~10s10( I } 10 2t ( L}10,11 11 2t
~ ( L}10100 00 4 ( I }10 Ol Ol 2t ( 00 11}&

~

~ ~ ~

~ p 1 1 1 1 1 ( } 2 1 1 1I ~01q01( I) 01 21 ( I}01 11 11 2t ~ ( L}0100 00 4 ( I)01110 10 2t ( 00 11)

(4.8)

Here &(di = (do - (dz and

0
(4.9a)

0
(4.9b)

'r

8'(OlL)M „=lim J 8'(t, v),0 „e dv, (4.9c)
t~a O

t
8'(01L,)0, „=lim 8'(t, v')»» e dv, (4.9d)

t-+a p

8'(wL )„«=lim
t~a

&'(OlL }„„=lim
t~a

t

J
&'(t, v)01 ooe

L dv, (4.9f}
0

t

(4.9g)
t

t~» o
(4.9h)

t
8'(01L),0 «=lim

J
&'(t, v)M»e dv, (4.9e)

t~a o
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The general solution to this set of coupled linear
equations may be obtained by standard techniques.
Consider the solution for the upper-state popula-
tion o',„to order ~O~'. We find

(( ~ Al 1ol (+ 61(~ )10
~ 2~

~ 4 10e00 2~&l'y+&» ~0 (& )

(4.10a)

0* 1
01 2$

[ ( &)01~ 00 ]Ly g» go (~ )oi, oX L

(4.10b)

and thus

&'(&u~}„„=-y, (a~~ ) fn, (-n&u~ ) . (4.13)

Now, for n&o comparable to or greater than kT/ff,
the correlation terms have a profound effect on
the spectrum. Far in the wings, we can write

(O(' y+2y, (h&u~) 2
11 4y (~ ~ )2 n~ ( L ~ 10900

0

(4.14)

In Appendix B we show that this may be recast
into the form

t~l'
,+ 2'

) i(E'(p, ) iE'(p, )&
i
'expi—

x d'pp'p, 5(E(p,)

-E(p, ) -gb, ~~) (4.15}

This is, of course, precisely the sort of response
we should expect from the quasimolecular picture
of line broadening, "'"showing that our theory can
describe the complete BCA profile from line cen-
ter to the kT wings. In detail the E/kT effects
come in because the perturbers are allowed to
follow the correct "trajectories. " By writing
p(-~) for the perturbers in product form, we as-
sume they are uniformly distributed at large dis-
tances from the active atom. They then come inand
interact with the atom under the influence of the
interatomic potential. This modifies their dis-
tribution close to the atom and gives us the E/kT
effects.

The upper-state population is, of course, related
to the absorption profile, and the only slight com-

(4 11}
4 &by+a»L, —& (&c)„„y

For 4~& «kT/5, this reduces to the unified theory
expression, i.e. ,

I ~ I' y+ 2y~(6(A)g)

[ I, + )]'+[ ( )]*)'

Here we have split 6'(~~}»„into its real and

imaginary parts, i.e. ,

plication, arising frpm bound states, is discussed
in Appendix C. There, we discuss the fact that
(4.15}is actually the expression one should use for
simple absorption, rather than the one for the
population of the excited atomic state. Again, this
is a consequence of the existence of bound atom-
perturber states that we may couple into after an
absorption process if 4u&~ & kT/g, and the poten-
tial in the excited state is attractive. (Notice,
these excited bound states do not affect the fac-
torization of p for the ground state at t = -~, which
is the only matrix element of p that is important
at low laser intensities. ) The precise considera-
tion of absorption and emission profiles will be
left until later (see succeeding papers) when we
discuss the correlation function in detail.

V. CONCLUSION

Starting from first principles, we have shown
how an equation of motion for the density matrix
of an atomic system, in the presence of radiation
and collisions, may be derived. We avoided any
serious assumptions about the form of the density
matrix (i.e. , whether it may be written in fac-
torized form} and hence about the time scale of
relevant interactions. We could then discuss the
implications of the relevant time scales for the
structure of the exact equations and show when
the usual Markoff-master equations were valid
and, more importantly, when they were not.

We found that the Markoff approximation was
exact (for all practical purposes} in the radiative
self-energy problem, but could break down (when
interatomic distances are large} for the radiation
part of the interatomic potential. For collisional
damping our analysis was more fruitful; we were
able to show how the "correlation" terms in the
density matrix become important (for nondegen-
erate systems) when the driving field is detuned
an amount comparable with a thermal frequency,
i.e. , &~z, & kT/g In the limi. t &~&» 1/r, we
were able to show that the correlation terms pro-
duce the precise quasistatic profile with a Boltz-
mann distribution for the perturbers.

We had to use an expansion of the collision op-
erator in powers of the driving field that limits
our discussion to field strengths such that

~

Or,
~

'
«1. Our consistent treatment of spontaneous
emission and collisions also enabled us to see
precisely where the self-energy operator affects
the collisions and, therefore, to conclude yw,
must be small for our operators to reduce to stan-
dard collision operators. In the succeeding pa-
pers we shall show how the correlation terms af-
fect the response of a degenerate system. In this
regard, we shall. show that factorization of the
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density matrix, at an initial time t, (ignoring "in-
itial correlations" ), although (as stated in Sec.
IIIA) valid for calculating quantities related to
one-time averages such as intensities (paper II),
is not correct in the calculation of two-time av-
erages; this implies the quantum-fluctuation-re-
gression theorem is invalid (paper III). The effects
discussed in these papers are rather more inter-
esting and subtle than in the nondegenerate case
and have consequences for the angular and polar-
ization properties of light scattered by an atomic
system. We hope that this work will lead to a
better framework for the interpretation and ex-
ploitation of redistribution experiments.
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APPENDIX A: LIOUVILLE SPACE

Operators on a given Hilbert space (H space)
may be regarded as vectors in an associated Liou-
ville space (L space). Operators (sometimes
called super operators) on the vectors of this
Liouville- space transform Hilbert-space opera-
tors into other Hilbert-space operators. The
most important example of such a super operator
is the Liouville operator L (all super operators
will be denoted by a tilde "-"),defined via the
Hamiltonian H:

1L0= . (H, 0], ——

where 0 is an arbitrary H-space operator. We
note that 0 may be written in the form

0 = Q.
(

a& (a
[
0

(
b& (b

(

—= g )
a, b&) (a

[
0

(
b& .

a, b a, b

(A2)

Thus the set
~

a, b)) forms a basis for L space.
We see then that an L-space operator is a four
index or tetradic object, e.g. ,

(A3)L =— L~,.„cd ab
ab, cd

Here ((ab
I

is the dual vector of
~

ab&) defined via
the inner product

((ab
~

cd&) = Tr—[
~

b& (a
( ~

c& (d
~

]

=(d[b&(arc&=5„5...
so that the (tetradic) matrix element

L~,„=((cd~—L
~

ah)) = —. ((c ~H[a&5~, -(b(H~d&5„)
I

(A4)

1
XS

= -(Hc boa Hib c) . (A5)

With the above definition of L we can see that the
equation of motion for the density matrix may be
written thus,

s p(t) =Lp(t)

and the formal solution

P(t) = exp(Lt)P(0)

(A6)

(A7)

may be shown by differentiation to be equivalent to

p(t) = exp( iHt/g) p-(0) exp(iHt/I) .

In our discussions above we make a good deal of
use of projection operators in Liouville space.
We note a few of their properties here and give
an example. Suppose R and S are two systems
with combined density matrix p~. Suppose the
density matrix of the system may be written in
the following form at t = -~:

PM(-") = pR(-") m th(-") . (A8)

Then we define a projection operator for P„such
that

(A9)Pa0= pa(

'Then to show that P„ is a projection operator we
must show it satisfies the following relations":

Pa=Pa, Qa=(1-PR) =JR

PR&R=@d'a= 0.
'These are easily shown to be true, e.g. ,

(A10)

Pan(}=PaP+0= pa(-~)Tr„(pa(-~)Tra(0))
= p„(- )Tr„[p"„(- )]Tr„(0)

= pa(- ) Tra(0) =—Pa (A11)

Since pa(-~) is assumed to be normalized to 1,

», ].p(-")]= 1.
Since these relations hold, P„and Q„separate
the complete Liouville space of RS S into two or-
thogonal subspaces. "
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APPENDIX B: EXPLICIT FORMS FOR THE
RADIATION-DAMPING OPERATOR IN

ROTATIONALLY DEGENERATE SYSTEMS

Their names follow from their action on the pho-
ton number states

s„-,„~~,g=(s; „)"'~(n-l)-„,g,
a; „Inf4$=(n„- )+1) ~'I[(la+1)„;„}.

(B2a)

(B2b)

We quantize the free-radiation field in a box of
volume V and take, say, periodic boundary con-
ditions. The limit V-~ is then taken at a later
stage.

The vector potential operator is written thus,

k

(83)

Here I~g is the energy of a photon with wave
vector k, and co is the electric permittivity of
free-space. From this expression for E(r) we
deduce Eq. (2.20). We shall now derive explicit
expressions for the self-energy tetradic S for
some simple systems.

A. Two-level atom

We consider first a two-level atom where the
ground level (angular momentum j ) and excited
level (j,) are connected by a dipole transition. We
define a set of lowering operators for the atomic
transition

R (m, p, ;m p ) =
~
j m p;,j,m,pg, (B4a)

J

which also changes the center-of-mass momentum
from p, to p2 and, of course, there are (2j,
+1)(2j,+1) operators for fixed p, and p, . The
adj oint operators

We use standard notation for the free-radiation
field (see, e.g. , Ref. 6). The radiation field can
be expanded in terms of photon number states
~n; Q which is a state with n photons of wave vec-
tor k and polarization vector 7; „(&=1,2). The
photon creation and annihilation operators (6& „
and a„- „}are defined by their commutation rela-
tions, respectively,

[a; „,a,, „]=5»,5;„-, [af „Bf. „]=[a& „a&. „.] =—0.
(al}

R'(m, p, ;m, p, ) = ~j, m, p, ;f,m,p,)) (B4b)

g; „(m,p„mgp, ) =+i(fi(u, /2e, V)"'
x ff f 6(pz-p2- gk) ~ f& &

(B6)

and f~, &
(k)=(v~ -Z~er~~v}. We now want to

evaluate the operator, or tobe precise, the sin-
gle-atom part of

Tr„„D L""Q„exp Q„L",+ Lo T Q„L
0

xe o'P„dr. (B7)

Now it is well known that calculations of radiative
damping produce divergent energy shifts. Further-
more, it has been shown (Hefs. 31 and 16) that the
form of the divergence obtained is different de-
pending on whether the rotating-wave approxi-
mation HWA is made on the interaction [cor-
responding to dropping terms in Eq. (B5) such as
R(m, p, ; m,p, )a; „which do not conserve energy]
or whether it is made later in the calculations,
on the equations of motion. For most purposes
it is sufficient to ignore explicit consideration of

. the shifts and to assume that their "renormalized"
values are included in the original atomic en-
ergies. With this procedure, only the real part
of S is of interest and since this is not sensitive
to the order in which the RWA is taken it is con-
venient to make the RWA directly on Eq. (B5), i.e.,
we use

V„R = Q [gt „(mg„m,p, )R (mj„m,p,)af „
k, )iy m, m, p~, p2

+H.c.].
Hence, in the RWA and Born approximations,

(as)

form a set of raising operators. We make the
electric-dipole approximation in evaluating the
self-action operator for reasons given below. The
dipole-form interaction can be written in the fol-
lowing form:

MR E gkj( apl ~ r P2} ( epll cp2)of 1
ky Xy Pg~ Ii2

+g;,(m, p, ; m,p, )R(m,p, ; m, p, )a; „+H.c. (B5)

Here

So =
J

d7' —, g Qg, ,(m, p„m, p, )g;, ,(m,'p'„m,'p.')
k ~e~e ~g~g ~p2 p2

x e' "&r+"' &' "'&' "& '[R'(m' p~, m'pm)R(m p»m p2)g]+H. c.}, (B9)
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(see Ref. 16, p. 29). The time integral in Eq.
(89) can be recognized as Heitler's f function
(multiplied by f), so the real part gives
v6(&o, + v (p~) —&ugi, ) —&u,). The momentum-
conserving 6 function occurring ing~(m, p„m,p, )
requires p, —p, = Sk, so it is easy to deduce the
usual result that the real photons emitted by a
given velocity class are centered at the Doppler
shifted frequency

)d, =(o„[1+(k p, /mc)].

Here 0 is a unit vector along k and naturally
k p, /mc «1. The sum over radiation modes is
now converted into an integral

(811)

where h&„ is the energy difference between the
upper and lower states. In obtaining Eq. (89) we
have used the following results (see Ref. 16, p. 29):

TrR[pR(t=-~)ai, kap, ) ] =6tt 5kk k

~f

Tr„[pR(t=-~)af „a„-.„.] =0, etc.

(note that the integration should strictly exclude
the laser mode, but this small contribution is
negligible).

We recall from Sec. II that the k dependence
of the exact coupling cuts off the P integral at
k-1/a, . This would be important in countering
the apparent divergence of the imaginary part of
S (i.e., the level shifts), however, the real part
of 8 (i.e., the damping) picks out only those values
k- ar„/c «1/a„and thus it is a good approximation
to use k =0 in the k integral. This is equivalent,
of course, to taking the dipole approximation as
we have already done. The scalar product f &„- „
can be written in terms of spherical components

1

f ~ &„-,„=g (-)'[f(0)])~;,,1 . (813}
a=-1

and then using the Wigner-Eckart theorem" to
write the matrix elements of [f(0)], in terms of
the reduced matrix element (j,[~ f(0)(p, ) and 3-Z
symbols, we find

Z k ~ I fk'dk J dk, (812)

[~3]o
8 2g Se Z IPkPX)&

Pj

"J d)); fd, t0', k(a.,+ Il ) —~N)-kk)-w)

1(i,llf(0)llj, ) I'2 (-}"' ' "'
Ist fftgfft~f)tg aa'

f j 1 j )(j 1 jl[.] [ ]kk -a k)t -a'
m, q m, j(-m,' q' mS)

&& C ~ j,m,',i,m,'&& [j,m,
'j,m.&&6]

+[a~j.m. ;j,m, &&, ~ j,m,';j,m,'&&]]. (814}

Now since the Doppler shift [&o„(k ~ p, /mc)] is
much smaller than the optical transition frequency
~„, the natural damping is essentially the same
for different velocity classes of the atom. In other
words, it is an excellent approximation to make
the replacement

6(dd„+ (op, ) —(u(j5, ) —kk) —&o,)- 5 ((o„—)d, ) .
(815)

The sum over the atom translational states p,
then becomes just the unit operator in translational
space, and we will henceforth not display it ex-
plicitly. The angular variables are now contained
entirely in the polarization components, and the
angular integration is easily evaluated using

«,f~;J,[e;,1; =
3 5„. (816)

Writing the decay rate of single upper state

I (j.llf(0) llj,) J'
3vgc'e, (2j,+ 1)

(817)

(818)

and denoting the two-level damping operator by

A convenient way to take advantage of the
rotational symmetry of the damping operator is
to express it in terms of irreducible tensors (see
Ref. 33) defined by

( j,j.;kq»= Q (-)"-" (j,m,j. m, )kq& ) j,m, ;j,m.».
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y„, we have finally

[Re S]o'= -y„o'

&(2j.+1)"'
[ I j.j,; 00)&a+ al j,j,; 00))]

Z I j,j. I~&&alj, j;le&&l,

(B19)

which is in agreement with the result of Ducloy. ~

B. The three-level atom

We consider here an atom possessing thee
distinct levels, aground level (j,), an excited
level {j,}, and a "final" level (jz). It is assumed
that the j, to j, transition (energy separation
}i(d, ) and the j, to j& transition (energy separation
K(d,~} are dipole allowed. Hence in addition to the
raising and lowering operators defined above, we
also need the set of (2j,+1)(2jr+1) operators

I j,m, ;j~mz&& [and their (2j,+1)(2jz+I) adjoints].
%e have dropped all reference to translational
states of the radiator for the same reasons we
discussed above; they do not affect the self-en-
ergy operator.

When the level ji is lower in energy than j, [case
(a)] the

I j,m, ;jzmi» form a set of raising oper-
ators and, of course, if the energy of the jz level

is greater than j, [case (b)] then they are lowering
operators. The dipole interaction is now given by

Z Z [g~(m, m, )
I j,m, ;j,m, &&aq~

kp }I st~, y skgy sty

+g)-,„(mmmm, )ak lifmi,j md»a|, q

+gf„(mmmm, )
I j m ij, m, »agi

+gfi(m mx) Ij m ijzmz&)a-„i+H. c.],
(B20)

with

gi„{m,m )=+i(S(d)~/2'coV) i f p, i (k=0) ~ g~.ee'gg
In the RWA, E(I. (B20) is modified by dropping
terms 2 and 3 (and their conjugates) for case (a),
and for case (b) by dropping terms 3 and 4 (and
their conjugates).

Beginning with E((I. (B6), we now calculate S
for cases (a) and (b), and for the sake of sim-
plicity we assume that the appropriate RWA is
made on V„„for each case. Of course it is pos-
sible to use the full expression (B19) for V„„, and
to make the KVvA after the commutators of Eq.
(B6) have been evaluated, but again this will only
affect the form of the shifts. The details of the
calculation are as before so it is only necessary
to present results.

Case (a): (&o,~ &0). For this case, we shall
denote the damping operator by y,"& and the result
18

(B21)

(B22)

(,) (~ (j„llf(o) llj.) F (j.llf(o) llj,) (2j.+1) ~
( "(j Ilf(0) Ilj ) "(j llf(0)llj )* '6

~ ~

~~ ~~(j.llf(0) llj )+r (j llf(0) llj-) (2j +1) v' ~.-l;. .I o .1"(j llf(o) IIj ) " (j Ilf(o) IIj )*

where y, (y,z) is the damping operator for the two levels j, and j (j, and j&), and is defined by E(I. (B18}.
Lines 2 and 3 of Eq. (B20) represent the transfer of o'„. coherences to o and a „coherences.meffte mf 'fftg fftg ffty

Case (b): ((d,f (0). Denoting the damping operator for this case by y,',z, we find

(j. Ilf(o) llj.)
& (j, llf(0) llj.) ( (2j.+1) ~"(j Ilf(o) IIj ) "(j llf(0) IIj )*)

(j, llf(0) IIj.) (j.Iif(o) IIj.) &( (2j.+1& m—
I, F:

( II f(p) IIj~) (' Ilf(0) IIj )*)
The second line of (Ml) represents transfer of oz, coherences to o„coherences, while the final line rep-
resents transfer of 0,& coherences to o„coherences.

APPENDIX C: COLLISION OPERATORS

- In this appendix we shall give some formal proofs needed in Sec. IV for the two-level model. Let us
first consider the collision operators diagonal element for the upper-state population, i.e.,

8 (PP) dr Nf d P„, ,„((IP,,(P, P, =. —
d V, 1P,(P,))Pp, p (- )

=N d pg 2 8 dT 1p,1p, Vg T Uy T 0)Vg 0, 1pilp2 p& &
-~) Imz-+0),

0 1
(C 1)
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Now we know that in a more realistic model V,
would mix other levels into ((1p,lp, I

and it would

be convenient to work with an "effective interac-
tion" that eliminates these intermediate states
from the problem. " This can be done if the other
states mixed into 1 by V are sufficiently separated
in energy to make an adiabatic approximation. We
write

((Ip,lp, V, - - V, lp, lp.))
S+L,

—= 0. V,«and U,« =exp[(S+L,"+LP+ V,«)r] then
become operators in the two-level space alone.
In a two-level atom the only state that can be
mixed into the upper state is, of course, the low-
er one. This is not realistic: We could suppose
that other closer lying levels are mixed into the

upper state but that we can ignore their interac-
tion with the external field. Now we know that the
following is true:

lim I ) d'P(('pip V . 0)) =0, (C3)

S+I,,"+L',(1)+V,'„

+((lp, lp, I V.« I».».)& (C2)

where 0 is an arbitrary operator since

v3 ljpjp» =
Ijpjp» —IE(p}j E(p)j».

(C4)
where V,« = V, [1/(s+L, )]V, is independent of fre
quency s when the adiabatic approximation is valid.
E(luation (C2} is true only if the expectation value

of V, in any given state is zero, i.e. , (1pl V, I
lp )

Here we have assumed the scattering states form
a complete set (i.e., we have igriored bound

states). This may be proved as

30(
Q

d)O ( T
ez33v dtljpjp» = lim e~3'Ldt Ijpjp&& = lim (e 3 1) Ij—pjp&) = lim [e' ' ljp&& jp le '"3 ljp&&jpl]

gazoo Q P~ oo gw «oo

(C5)

= Iim [e'""e '"'lj» jp I

e'"'e '"'-
I jp&&jp I] =II,'lj» jp III.'- lj»& jp I

= IE'(p)j&«'(p)j
I

—Ijp&&jp I
.

Here fl,' is the Moiler wave operator (see Ref. 35) where IE'(p)j) is the scattering state associated with

ljp&, I e. ,

'E(p~j)=0,'Ipj&=lpj)+1™Ep ~, . v', Ipj). (CS)

So we see that if we can ignore the effect of spontaneous emission during the collision (y„r,«1}, (C4) im-
plies

;, „(v, p)dv= lim+N jP, jP, V, . - V, 1P,lP,))P, , d'P;, .
Q c~jQ j 1

(C 7)

~PQ

dr C„„(rp0)dT =0. (CS)

By the same token we can put all collision oper-
ators that have a final propagation in

I lp, lp&) or
IOp, ;Op,)) will vanish. As stated in Sec. IV, this
shows that once an absorption or emission has
been completed during a collision, the subsequent
propagation of the excited-state population is ir-
relevant. The subsequent propagation is important
for these correlation terms when the final state of
the atom-perturber system is bound, as far as

This is just the total inelastic rate to the levels
coupled to I11)) by Vl,p. We are supposing, in keep-
ing to our "two-level" model, that this inelastic
rate is negligible and hence that we can put

I

calculation of the P,P part of the density matrix
is concerned; e.g. , then the part of P, lowe want

to calculate is o» (which corresponds to free-final
states). This means that one would have to wait

a natural lifetime for the bound pair to reradiate
and then move apart again before the collision
could be completed. The absorption depends, of
course, on the total excited-state population, which
includes bound states; this means that we need the
sum of P,p and Q, p. Examination of the terms

yQ
and tddp gy Qy

which are nonzero when one in-
cludes bound states, shows the following. The
complete expression for o„(including all correl-
ation terms) does not have any contribution from
bound states since it comes from P, p alone,
whereas the total absorption is given by an expres-
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sion the same as (4.15), which does include the bound states.
We now turn to the evaluation of the correlation term 6', (up ):

t t
6'„~((o~)= lim Jl 8'(t, r)la ~e'"I'dr (C9)

t~m 0

t
= lim dr dsp, N Jl dt'(&1p, Op,

~
V, exp[(L, +S)(t —t')]

~
lp, Op, &&e'"&'

t~ds 0 T

0 (I t' lO 0x P' P' P' ~
&(Op,0p, lexp[(L, +S)(t' —r)]V, ~0p,Op/&p~ I (t =-~)

=}SJ d'P, .(((P,OP, P, . -
O

(P.OP. Ose OP,OP. ~ O
P, OP OP.))PS,S, (1=— )' i(y~+L,+S, ~ c+L,-+S

N d'pl. . ~ 1p.opl yl. - ~ 1psOp3 jim OpsOp. I- Vl OP40p4 pup t

(C10)

We have already noted the result

lim - V, ~OP Opd&& = )Op Opd&& —~E (P ),E (P )))
6-0 ~+Li

and we combine this identity with

Ip(kT)» =e"""=
J
-d'P, ~EO(p.),E'(P.)&&p;,~, (-"),

(C11)

(C12)
d)S

where H, is the full Hamiltonian for the perturber s motion in the presence of the active atom, to obtain

O„, (te )=)S Jl d'p. ..((lp„pp, p,
1

I.+L, -~y
1p Op Op Op AT — AT (C13)

Here

t),(kT) = exp( H, lkT) . -
We can obtain an estimate for 6„~((s)~) in the following fashion. First we estimate t)(P) —ti, (P), where
P=kT, as follows:

P(P) t) (P) dPse (OHpell'HOV e-i)'llo-
0

(Ref. 36). So we have

«OP.Op [p.(P&- p(P&]» =&Op.
I [I.(P) -t)(tl&] IOPP =exp[-PE(p. )] E

-' 'E -' (e'"""'""'-1).
Thus we have the following estimate for e,«,(~~)

O„, {te } =)SJd'P. .., ,((1P,OP, 1', . P, 1P,OP, e P[-PZ(P, )]&~+ &~ —gy

(C15)

(C16)

x (exp[-PE(P, ) —W'(P, )]- lj. (C17)

Now if (1)- &o~ is much less than kT/K then E(p, )-E(p,) will also be much less than kT in the important
region for the integrand. We can then say

O„...( )=" Jld'pe. . .((lppp, Y, , {p,pii))(OP, [p, [pp»&,-(1=--) (C18)

Now if, e.g. , there were no interaction with the perturbers when the atom is in the upper level than we could
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immediately write

(~~}= yg(IT T/}I) . (C19)

In the far wings n(0~» 1/r, it is useful to relate (-'„~((d~) to the (Iuasistatic expression for the absorption
profile. In the text we have the solution, to order AI2, for the upper-state population

IIII'(r+2r. (&(0 ) 2, [~,( g ]11 4y ) ((y 0& )2 s(0
™~ loioo

4 (~u)$2 (g~ )2 I, i;2 PToP1 1 i(0, ,L,,g ~ P2 P2 P22)T2'( })I

2Im t'

(Nfd'o, , )ooo, v, . 1 z )ooo((o,ooo.ufo(»)-o. (»&)» I

IOI' 2Re

((E'(p,)E'(p, ) Ilp, Op, ))«Op, OP, I p, (kT))) [E(p,) —E(pz)]'~I
i((0~ —(d, ) ——,

'
y —i[E(p,) —E(p,)]/h -8' )

)m( zf z o, ,(0o oo, )2'(o )2'(iT )&X(z'(iT )2'(iT )) )
io oo »

E'(P, ) —E (P,) lI

iS j (C20}

I~I' ( . +»N d'P„...«lp, Op, IE'(p.)E0(p.)»«E'(p. )E0(p.)
I
Ip.Op.»«Op, Op.

I
p(»)» I

((oP,oP, I (P(») —P.(») )&)

i((d~ —(d0) ——,' y —i[E'(p, ) —E (p0)]/2ff

If we now suppose that natural damping has a negligible effect on the collision we can let —,y =+0 and then
combine the second two terms to obtain

Thus,

X I}(E(p2)—E(pz} —}2(0&0 —0&~}}.

~ +»N I&E'(P2) IE'(p) I'expl - T' I&(E(p.) -E(p.) -~n~gI A I' r 1 2 ( E(p)l
4y

(C21}

(C;22)

with, of course, the proviso with regard to bound states discussed above.

*Present address: Dept. of Physics, University of
Otago, Dunedin, P. O. 56, New Zealand.

/Staff member, National Bureau of Standards Labora-
tories, Boulder, Colorado.
J. Cooper, Astrophys. J. 228, 339 (1979).
J. Fiutak and J.Van Kranendonk, Can. J. Phys. 40,
1085 (1962).

IP. Resibois and M. DeLeener, Classical Kinetic Theory
of Fluids (Wiley-Interscience, New York, 1977), Chap.
8.

N. N. Bogoliubov, in Studies in Statistical Mechanics,
Vol. I, edited by J.deBoer and G. E. Uhlenbeck (North-
Holland, Amsterdam, 1962). The problem of plasma
turbulence provides a similar scenario.

IC. Cohen-Tannoudji, Frontiers in Laser SPectroscoPy,
Les Houcges Summer School, 1975, Session 27, edited
by R. Balian, S. Haroche, and S. Liberman (North-
Holland, Amsterdam, 1976).

~J. L. Carlsten, A. Szoke, and M. G. Raymer, Phys.
Rev. A 15, 1029 (1977).

~E. A. Power, Adv. Chem. Phys. 11, 167 (1967).
R. Loudon, The Quantum Theory ofLight (Oxford Uni-
versity Press, Oxford, 1973).

~J. J. Sakurai, Advanced Quantum Mechanics (Addison-
Wesley, Reading, Mass. , 1967).
P. W. Atkins and R. G. Wooley, Proc. R. Soc. LOndon
Ser. A 319, 549 (1970).

iiP. Roman, Introduction to Quantum Field Theory
(Wiley, New York, 1968).
R. Balescu, Physica (Utrecht) 38, 98 (1968).

3C. I. George, Physica (Utrecht) 37, 182 (1967).
~4N. F. Mott and H. S. W. Massey, The Theory ofAtomic

Collisions (Oxford University Press, Oxford, 1965).
p. 487.

5E. A. Power, Introductory Quantum Electrodynamics
(Longmans, London, 1964).



2026 BURNETT, COOPER, BALLAGH, AND SMITH

6B. R. Mollow, J. Phys. B 8, L130 (1975).
P. W. Milonni and P. L. Knight, Phys. Rev. A 11, 1090
(1975).
G. S. Agarwal, Quantum Statistical Theories of SPon-
taueous Emission and Their Relation to Other AP-
Proaches (Springer, Berlin, 1974).
U. Pano, Phys. Rev. 131, 259 (1963).
A. Ben-Reuven, Adv. Chem. Phys. 33, 235 (1975).
A. J. Barnard, J. Cooper, and E. W. Smith, J.Quant.
Spectrosc. Radiat. Transfer 14, 1025 (1974).
E. W. Smith, J. Cooper, and L. J.Roszman, J. Quant.
Spectrosc. Radiat. Transfer 13, 1523 (1973).
E. W. Smith, J. Cooper, and C. R. Vidal, Phys. Rev.
185, 140 (1969).
P. R. Berman, Adv. At. Mol. Phys. 13, 57 (1977).
E. W. Smith, J. Cooper, W. R. Chappell, and J. Dillon,
J. Quant. Spectrosc. Radiat. Transfer 11, 1547 (1971).

6J. Ward, J. Cooper, and E. W. Smith, J. Quant.
Spectrosc. Radiat. Transfer 14, 555 (1974).

~T. Hussey, J.W. Duffy, and C. F. Hooper, Phys. Rev.

A 12, 1084 (1975).
28A. Gallagher, in Atomic Physics, edited by G. ZuPutlitz,

E. W. Weber, and A. Winnacher (Plenum, New York,
1975), pp. 559-574.

9J. Szudy and W. E. Baylis, J. Quant. Spectrosc. Radiat.
Transfer 15, 641 (1975).

3 M. Reed and B.Simon, Methods of Modern Mathemati-
cal Physics Vol. 1-Functiona/ Analysis (Academic,
New York, 1972).
J.R. Ackerhalt and J. H. Eberly, Phys. Rev. A 10, 335
(1974).

$2A. R. Edmonds, Angglar Momentum in Quantum Me-
chanics (Princeton University Press, Princeton, N. J.,
1960).

33A. Omont, Prog. Quantum Electron. 5, 69 (1977).
M. Ducloy, Phys. Rev. A 8, 1844 (1973).

35J. R. Taylor, Scattering Theory (Wiley, New York,
1972).

3 W, E. Parry, The Many-Body Problem (Oxford Uni-

versity Press, Oxford, 1973).


