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We calculate the contribution to elastic photon scattering from an atom due to scattering off the bound atomic

electrons (R'ayleigh scattering). We compare predictions resulting from our numerical evaluation of the relativistic

secon&mder S matrix in a ammed central potential mth other theories, particularly the form-factor

approximation. We give a prescription for accurate 0(1/o) evaluation of total-atom Rayleigh amplitudes (summed

over electrons) and present sample tabulations for lead (Z = 82) for energies of experimental interest in the range

from 22.1 to 2750 AU. Based on our prescription ee compare elastic-scattering cross sections using Rayleigh

amplitudes with seled~el experiments and are able to remove the large factorwf-bvo discrepancies previously

reported.

I. INTRODUCTION

Hayleigh scattering, the contribution made by
bound atomic electrons to elastic photon scatter-
ing, dominates the elastic-scattering process for
photon energies less than 2 MeV. Scattering is
important in the energy range above the photo-
effect L edge but less than 10 MeV and is among
the processes (photoeffect, scattering, and pair
production} primarily responsible for attenuating
thin beams of photons in matter. Elastic photon
scattering contributes as much as 10-20% to at-
tenuation for high-S atoms near but below the
photoeffect X edge. ' Interest in Rayleigh scatter-
ing has been motivated by experimental efforts to
investigate other contributions to elastic scatter-
ing, ' 7 including DelbrQek scattering, nuclear res-
onance scattering, and nuclear Thomson scatter-
ing. A number of experimenters'~'6's' have re-
ported large discrepancies in comparisons of mea-
sured differential elastic-scattering cross sections
with those px edieted by previous theories. These
large discrepancies oeeur particularly for photon
energies of 25-100 keV and 1-V MeV.

It was John WQliam Strutt, -the.third Baron Hay-
leigh (1842-1919)vrho, in his 18V1 paper on the
color of the sky, investigated the process with

which his name is associated today. ' Around 1906,
after studying scattering of x rays by electrons,
Thomson proposed the scattering cross section
formula that gives the low-frequency limit for
elastic photon scattering by isolated charged par-
ticles. The form-factor approximation, which was
originally derived classicaQy to correct the Thom-
son formula for scattering by a charge distribution
rather than a point charge, is still used extensively
today to predict Bayleigh-scattering amplitudes in
the x-ray and gamma-ray region. Brown gt al,."

made important progress toward a practical meth-
od in accurately evaluating Bayleigh amplitudes by
developing a numerical partial-wave solution for
the second-order 8-matrix element in a central
potential.

This work presents a comprehensive theoretical
treatment of the Rayleigh contribution to elastic
photon scattering for all atoms for photon energies
in the range from 100 eV to 10 MeV (Ref. 12}and

develops a practical method for the accurate eval-
uation of total-atom Hayleigh amplitudes. The
method is suitable for the production of systematic
tables (Table VII). We are able to remove the

large factor-of-two discrepancies between theory
and experiment in this energy range. %e
have identified the regions where estimates of
Bayleigh amplitudes based on form-factor approx-
imation are accurate, i.e., for light atoms for
photon energies well above K-shell binding and
momentum transfers smaQ compared with mc
(about 20 A '}.

Section II describes the basic atomic model we
use in our description of the Bayleigh-scattering
process, reviews previous theoretical work which
we found useful for predicting the Hayleigh ampli-
tudes, and devotes attention to the commonly used
form-factor approximation. Section III describes
our numerical calculation, which is based on pro-
cedures originally developed by Brown et al. ,"and
subsequently applied by Johnson et al. ' " We then
make extensive comparisons of these numerical
predictions with existing theories. Section IV gives
our prescription for the accurate O(1%) prediction
of the total-atom (summed over electrons) Ray-
leigh amplitudes, presents sample tabulations, and
discusses general features exhibited by the Bay-
leigh amplitudes. Section V compares theoretical
elastic cross sections, using our total-atom Bay-
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leigh amplitudes, with experiment and discusses
the current state of agreement between theory and
expel iment

the matrix element is proportional to

H. ATOMIC MODEI. AND SURVEY OF PREVIOUS
THEORY

A. Atomic model

For our purposes an atom is composed of two
constituents: (1) N relatively light atomic elec-
trons distributed throughout the bulk of the atomic
volume and (2}a heavy nucleus of charge Z con-
taining the bulk of the atom's mass. (For a neu-
tral atom N=Z. ) Through most of the photon en-
ergy range from 100 eV to 10 MeV, the nucleus
(of size 10 "m) appears as a point charge; yet
the energies are sufficiently high so that effects
due to higher-order electron-electron correlation
and consequences of other atomic features (includ-
ing details of outer-electron wave functions) will
be small for the photon-scattering process. In this
energy range scattering is not classical, therefore
the dynamics must be described with quantum me-
chanics. The important atomic features are de-
scribed as independent atomic electrons interact-
ing electrostatically with a single screened central
potential resulting from the charge distribution of
the nucleus and all the atomic electrons. The rel-
atively high photon energfes and our desire to con-
sider heavy atoms require that we include the ef-
fects of relativity.

E1.astic scattering of photons by the atom is
viewed as elastic scattering by the bound atomic
components (electrons and nucleus), which remain
bound. Because the energy of the scattered photon
is the same as that of the incident photon, we can
not distinguish which of these components is re-
sponsiMe for the scattering. Hence, one sums
the scattering amplitudes of the atomic components
and then squares to obtain a scattering cross sec-
tion, i.e., a coherent sum of the amplitudes. By
Hayleigh scattering we mean the contribution made
to elastic scattering by the atomic electrons —an
atomic process.

Elastic scattering by the nucleus includes (1) nu-
clear Thomson scattering (scattering by the charge
of the nucleus), (2) Delbr5ck scattering (a radiative
correction to huelear Thomson scattering and a
nonclassical, nonlinear interaction of the electro-
magnetic fields), and (3) nuclear resonance scat-
terlQg

It is an approximation, not appropriate at very
low energy, to describe the scattering by a com-
pound system as the sum of scatterings off its con-
stituents. Thus Gavri4, , studying the bound sys-
tem of two particles of charge &, and mass m&, in
a nonrelativistie dipole approximation finds that

where p. is the reduced mass,

1 1 1
+

Sly Slm p

and the function P vanishes at high energy and ap-
proaches & at low energy. Thus at high energy,
in this approximation, the cross section becomes

+2 +2
1 + 2

i.e., the sum of scattering off the two free parti-
cles, while at low energy the cross section re-
duces to

i.e., scattering off one (composite) particle of
total mass fs y + sl 2 and total charge 6y + c2 For
the neutral atom this vanisheg. But, if we add the
(high-energy) nuclear Thomson scattering to a
more accurate calculation of Hayleigh scattering,
we fail to get this result. This suggests that at
low energy, whenever the nuclear Thomson con-
tribution estimated in this fashion is comparable
to Bayleigh scattering, the function needs to be
examined more carefully.

Thus, for Hayleigh scattering from 100-eV to
10-MeV photons, w'e can adequately describe the
atom as N noninteracting bound electrons in a rel-
ativistic self-consistent central potential. These
atomic electrons are described by eigenstate solu-
tions of the Dirac equation. The many-body elec-
tron effects are approximated by a local exchange
potential of the Slater type. This description of
electrons includes effects of relativity and spin,
but neglects higher-order quantum electrodynamic
(QED) effects such as vacuum polarization, which
is partly responsible for the Lamb shift of the
bound-electron energy levels.

Errors (neglected effects} in these wave functions
become important for Hayleigh scattering at both
ends of our energy region. Corrections due to the
finite size, finite mass, and compound structure
of the nucleus become more important for the de-
scription of scattering as energy increases, while
the neglected many-body electron-electron corre-
lation effects become important at lower energies.

In our approximation, the properties of the atom
are determined by the atomic potential. In some
situations, the Bayleigh-scattering amplitudes are
sensitive to the choice of atomic potential. To ob-
tain realistic results, we employed the self-con-
sistent Dirac-Hartree-Fock-Slater (DHFS) poten-
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tial. The DHFS potential is appropriate since it is
a relatively accurate local potential, yet includes
many desirable atomic features. " The DHFS po-
tential includes some exchange effects, but, in the
energy and atomic number ranges considered here,
the results are relatively insensitive to the effects
of exchange. If the Hayleigh-scattering amplitudes
are very sensitive to exchange effects, then this
approximate exchange model is not adequate. Ex-
change-dependent effects, which are not adequately
described by the Slater approximation, are most
pronounced for light atoms (i.e., Z=2) and low
photon energies.

ford cross section. ) The Thomson formula, being
the low-energy limit of the Klein-Kshina formula
for Compton scattering from free electrons, ,is val-
id classically and quantum mechanically. " For the
case of linear photon polarizations, the bvo inde-
pendent scattering amplitudes in the form-factor
approximation for Hayleigh scattering of a photon
of energy + through an angle 8 are given by

W~(~, 8}= -f(q},
(2.2)

A)) (((), 8) =-f(q) cos8.

The magnitude of the momentum transfer q is given
in mc by

8. Form-factor approximation q = 2&v sin(8/2), (2.3)

The form-factor approximation for Bayleigh
scattering exhibits many features of the scatter-
ing amplitude and is important for several further
reasons: (1) All present tabulations of elastic-
scattering cross sections' and attenuation coeffi-
cients" use this approximation to estimate the
contribution made by Rayleigh scattering. (2) The
RpproximRtion t1es in with clRssieal ideRS being
first derived to correct the classical Thomson-
scattering formula when the scattering is due to
R charge distribution rather than a free point
charge. ' (3}The form factor was also derived
using nonrelativistic quantum mechanics" followed
by relativistic derivations due to Franz" and to
Bethe." (4) The form-factor approximation is
particularly attractive due to its relative ease of
calculation, requiring simply the evaluation of a
radial integral over the atomic charge density.

The form factor f(q) for a spherically symmetric
charge number density p(r) and a momentum trans-
fer Pfq is defined as

f(q)=—fp(r)r'r 'dr=4r (r) r'dr.

(2.1}

Because are are describing the atom in a single-
electron model, me may decompose the charge
distribubon p(r) and also the form factor f(q) into
a sum of terms corresponding either to individual
electrons or to a particular subshell (all electrons
of fixed principal quantum number n and total ang-
ular momentum (Iuantum number j ) or a particular
shell (all electrons of fixed s). Just as in electron
scattering off bound electrons, "the form factor in
elastic photon scattering corrects the point-charge
scattering formula for scattering from a charge
distribution. Fox elastic photon scattering, the
relevant point-charge formula is the Thomson
cross section, vrhich describes photon scattering
by a free charged particle. (For elastic electron
scattering the appropriate formula is the Huther-

where (() is in units of tsc' (see Ref. 24). The per-
pendicular A~ and parallel A„amplitudes de-
scribe the scattering of photons with polarizations
perpendicular and parallel, respectively, to the
plane of scattering (defined by the directions of the
incident and scattered photons}. In the form-factor
approximation, the differential Hayleigh-scattering
cross section (any other coherent processes being
neglected) for unpolarized photons averaged over
final polarizations may be mritten

' (1 +cos'8) [f (q) )
'.

To guide us in our investigation of the form-fac-
tor approximation, are state the conditions Bethe"
assumed in his relativistic quantum-mechanical
derivation of the form-factor approximation for the
Rayleigh-scattering amplitudes: (1) use of Born
approximation for intermediate states (electron
propagator) thus ignoring binding effects (this is a
low- Z high-energy assumption, requiring energy
large compared with binding), and (2) momentum
transfers small compared to mc.

The range of validity of the form-fa. ctor approxi-
mation for the description of elastic photon scat-
tering by bound electrons is limited. For scatter-
ing by lour-energy photons, effects of binding are
crucial; they are neglected" by the form-faetor-
corrected Thomson formula, because the Thomson
formula describes scattering from free electrons.
At higher energies one might expect that binding
effects vrould become less important and that scat-
tering vrould approach that for free electrons. In
fact, O(Za') corrections remain at all energies
and angles. For a given atomic electron, the
form-factor approximation is not valid for larger
angles (high momentum transfers) or lower ener-
gies (compared with electron binding). With de-
creasing energy the approximation first fails for
inner electrons (of larger binding energy), which,
however, giv.e a dominant contribution at larger
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momentum transfers (larger angles at higher en-
ergies}. In addition, corrections due to relativity
have been neglected, again implying deviations of
the form factor for the inner shells of heavy atoms
or for high photon energies.

Zest c~~= a
= n'I (2.5)

For momentum transfers larger than this inverse
Bohr radius, the magnitude of the form factor be-
comes small. For nodeless subshells (such as the
K shell), the value of the form factor for q&q& de-
creases monotonically. For subshells with nodes
(such as the L, subshell), there is a region of
more rapid variation or oscillation for q&q~ be-
fore reaching the asymptotic region where f'(q)
decreases monotonically. We may, easily deter-
mine the large-q behavior of the form factor for a
given atomic electron subshell. Nonrelativistically,
the radial-charge number density of a given bound-
electron subshell is given by

p(r) =[N, r's(r)]', (2.6)

where N, is the bound-state normalization and l is
the orbital angular-momentum quantum number.
For small radial distances, we may write'

s(r) =1 — + ~ ~ ~,ZQf'
l+1 (2 7)

so that for large q, the single-electron form factor
becomes

fg()(1)ggnZaN2(21+2)!'
(I+1)q"'4 (2.8)

C. Qualitative features predicted by the form-factor
approximation

Although form-factor predictions are often wrong
in quantitative detail, their qualitative features
give considerable insight into the behavior of the
Rayleigh amplitudes.

We may better understand the behavior of the
total-atom form factors, j(q) = g f'(q), by con-
sidering the behavior of its components f'(q}, con-
tributed by each particular electron, subshell, or
shell, as a function of the momentum transfer.
For zero momentum transfer, the integral for a
subshell form factor reduces to an integral over
the corresponding subshell charge density and is
equal to the number of electrons in that subshell.
As the momentum transfer increases, the value of

f '(q) remains approximately constant until mo-
mentum transfers corresponding to the typical
momentum (q~) of electrons in that subshell is
reached. We may estimate this momentum, at
least for inner subshells, using the Bohr radius
of an electron of principal quantum number n

The subshell form factor is found by multiplying
Eq. (2.8) by the number of electrons in the sub-
shell. For large q, f'(q) decreases rapidly with

q (but most slowly for I =0), and is larger for
heavy atoms where Z and N, are larger.

We now predict the relative importance of a
given subshell in the total-atom form factor. For
small momentum transfers, each subshell con-
tributes to the total-atom form factor proportional
to the number of electrons in that subshell. As
the momentum transfer increases, the contribu-
tion of each subshell remains approximately con-
stant (equal to the number of electrons in that sub-
shell) until the typical momentum of electrons in
that shell (estimated by the inverse of the average
size of that subshell) is reached. Beyond that typ-
ical momentum, the contribution to the total-atom
form factor from that particular subshell de-
creases rapidly. As the momentum transfer in-
creases, the contributions to the total-atom form
factor of more and more of the outer electrons be-
come small as the momentum transfer increases
beyond their typical momenta. This process con-
tinues until the K shell's typical momentum (Za)
is exceeded. Beyond this point contributions to the
total-atom form factor due to all subshells are
monotonically decreasing. In this asymptotic re-
gion the s states (1=0}dominate, with the inner
shells yielding the largest contribution (due to the
larger N, }. Thus, for a heavy element such as
lead, the form-factor approximation predicts that
the K shell dominates at large momentum trans-
fers, with the next largest contribution coming
from the L& subshell (contributing about 159o as
much as the K shell for lead). We display partial-
atom form factors and total-atom form factors as
a function of momentum transfer in Fig. 1 for lead
(Z = 82) and aluminum (Z = 13). Note that for small
q, the contribution to f(q) from a given shell is in-
dependent of Z, while the onset of the drop-off
(q }for each shell is Z dependent.

The differential scattering amplitudes Eq. (2.2) .

are simply obtained from the form factor. The
range of momentum transfers possible for a fixed
photon energy co are 0 &q &2(d. Thus for low pho-
ton energies, the form factor predicts little vari-
ation in the differential scattering amplitudes be-
yond the explicit cose dependence. For high photon
energies, the form factor is equal to the number
of electrons in the forward direction but becomes
very small at the backward angles, giving a highly
forward-peaked angular distribution. However,
since f (q) only dips by a factor of four between 90'
and 180 [it drops as q ' with q=2rusin(ej2)], while
1+cos'8 increases by a factor of two, even in the
high-energy limit the cross section equation (2.4}
will not dip by more than a factor of eight across
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FIG. 1. Values of the form factor for aluminum (Z
=13) and lead (Z=82) as a function of momentum trans-
fer in inverse A. The form factors used to produce
these curves are derived from DHFS wave functions.

the backward hemisphere. For small q, the cross
section will go as Z', while for large q (remem-
bering that N,'for the K shell goes as Z') it will go
as Z'. Figure 2 displays the total-atom differential
cross sections derived from the form factors of
Hubbell et a)."for 1-, 10-, and 100-keV photons
for aluminum and lead. We see the behavior of the
form factor as a function of the momentum trans-
fer translated into the differential scattering cross
section as a function of scattering angle 8.

The form-factor approximation also predicts
the importance of electron screening of the nuclear
charge (i.e., sensitivity to the choice of atomic
potential). For small momentum transfers the
form factor reduces to the number of electrons,
which is independent of the potential used and sug-
gests that screening effects are small. For large
momentum transfers, small radial distances are
most important. For small radial distances,
screening corrections to the Coulomb wave func-
tions appear only in their normalizations. " Thus
the form-factor approximation predicts that, for
large q, screening effects in the matrix elements
can be expressed as the squared ratio of screened
to unscreened bound-state wave-function normali-
zations.

102

10

Pb
—10 keV

Al
1 keV

AI—10 keV
Pb

100 keV

D. Some modifications and corrections to form-factor
approximation

A correction to the form-factor approximation
was suggested by Franz' in his original relativis-
tic derivation of the form-factor description of
scattering. Brown and Mayers" compared this
modified form factor due to Franz with their nu-
merical scattering amplitudes and found that it
gave improved results. " This modified form fac-
tor is given for an atomic electron with radial
number density p(r) as

(2.9)

10
60 120 180

& (deg)

FIG. 2. The sum of squared scattering amplitudes
in the form-factor approximation, Eq. (2.4), as a func-
tion of scattering angle. Note the more isotropic lower-
energy scattering and the extremely forward-peaked
higher energy scattering.

where E is the electron binding in mc' energy and
V(r) is the electrostatic potential. The total-atom
modified form factor is found by summing g~(q)
over all electrons. The additional denominator
factor has its origin in the Green's-function prop-
agator of the intermediate states and represents a
binding correction. It will be shown that this mod-
ified form factor tends to remove the (Za)' errors
found at high energies in the ordinary form-factor
approximation.

Levinger" considered small-angle scattering of
gamma rays by bound electrons. He derived the
corrections to the form-factor approximation in
the near-relativistic region by expanding the scat-
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tertng matrix element in powers of (q/mc} while

assuming that the photon energy was large as com-
pared with electron binding. He found that rela-
tivistic effects tended to increase the value from
the form-factor predictions by an amount of the
order of (Zaq/m c)f(q), which is small for small
Z. This prediction —as does that of the form-
factor approximation —neglects the effects of bind-

ing for the electron.
Brown and Woodward29 investigated the impor-

tance of binding of the electron for high-energy
scattering by expanding the QED electron propa-
gator in a Born series. The zeroth-order term
of this series yields the usual form-factor approx-
imation under the additional assumption that q/m c
«1. (The previously mentioned work of Levinger"
considers the remaining parts of this zeroth-order
term for q/mc &1.) Brown and Woodward studied

the higher-order terms of this Born expansion and

found that these terms dominated the scattering for
q/m c»1.

All derivations of the form-factor approximation
have assumed that +»~ and so treat the electron
as a free particle. But in many cases of interest
the photon energy is comparable to the electron
binding energy, especially for medium- and high-Z
atoms where K-shell binding is tens of kilovolts.
The simple form of the Rayleigh-scattering amp-
litudes in the form-factor approximation, given by

Eq. (2.2), may be retained by replacing the form
factor f(q) by a scattering factor I given by

Z =f(q)+(~f')+f(df") (2.10)

E. The highwnergy limit

Special attention has been devoted to the scatter-
ing of very-high-energy photons by bound elec-

The corrections bf' and hf" have been referred to
as the dispersion corrections to the form factor,
anomalous-scattering factors, or anomalous-dis-
persion corrections. The word "anomalous" al-
ludes to the observed rapid variations of the photon

energy around &o = e. Chapter IV of James's dis-
- cusses previous work on this subject. Cromer and

Liberman' performed numerical calculations of
the anomalous-scattering factors using DHFS wave

functions. However, these anomalous-scattering
factors have been derived for the case of forward
scattering only (i.e., 8=0). It has been the prac-
tice to transform these zero-angle corrections to
nonzero values of 8- by multiplying the zero-angle
value of 6f' and df" for each electron by its cor-
responding form factor, which is unity at 8 =q =0.
This procedure of transforming the zero-angle
corrections to other angles has not been justified.

trons. In the forward direction, the form-factor
approximation reduces to scattering off a free
charge. Af low energies, binding effects will
clearly introduce large modifications, but in the
high-energy limit it was historically expected that
scattering by the bound electrons mould approach
the free-particle value in the forward direction.
Goldberger and Lom" considered high-energy-
limit corrections to the scattering in the forward
direction and demonstrated that corrections at
high energy remain finite and increase with atom-
ic number, on the order of (Za)'. These correc-
tions reduce the scattering amplitudes in compari-
son with the form-factor prediction, especially
for heavy atoms. Florescu and Gavrila" extended
these results to finite momentum transfers for the
Coulomb potential in the high-photon-energy limit.
From their work they could rederive the form-
factor approximation in the small-Ze limit under
the usual q/mc«1 assumption.

F. Nonrelativistic Coulomb dipole approximation

Further features of the Rayleigh amplitude at
lom energy, not exhibited in the form-factor ap-
proximation, are displayed in the nonrelativistic
dipole approximation. Exact analytic expressions
were obtained by Gavrila" for the nonrelativistic
dipole approximation in the Coulomb potential for
the K shell, and for L-shell electrons by Cos-
tescu. '4 Only the E-shell results have been tabu-
lated. This work, which neglects screening, is
nonetheless interesting mhen the incident photon

energy is less than, or of the order of, the elec-
tron's binding energy. Since electron binding is
included, it yields useful insights in a region where
the form factor is completely inadequate.

For photon energies below the photoeffect K edge,
the Coulomb K-shell dipole amplitudes of Gavrila
exhibit singularities at energies corresponding to
differences of bound-state energies between the
K shell and the higher shells. The analogous L-
shell amplitudes exhibit similar singularities, in-
cluding one corresponding to a transition down-
ward to the K shell. While the singularities are
unphysical (due to neglecting the finite width of
atomic levels), resonance is expected at those
energies that correspond to bound-bound transi-
tions from an occupied to an unoccupied bound

state. In the single-electron model, transitions
mill be calculated even to filled levels. However,
resonant contributions connecting two occupied
orbitals(as K- L-K and L K Linthis-exa-mple}
cancel identically when the scattering amplitudes
are summed over all populated levels, provided
that a single potential is used for all calculations.
The resulting amplitudes are equivalent to those
obtained by considering transitions only to unoc-
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cupied states. Resonance is expected only when the
photon energy approaches the difference between an
occupied and unoccupied orbital. However, the ex-
istence of unphysical resonances in the single-
particle amplitudes and their cancellation when the
amplitudes are summed over all electrons in the
atom demonstrates that we must be careful in our
choice of single-electron amplitudes for multielec-
tron atoms, especially at low energy. Use of for-
malisms for inner electrons that explicitly include
electron binding (and thus include these resonant
effects) together with formalisms such as the
form-factor approximation (which neglects some
effects of binding) to estimate contributions of the
outer electrons will fail in some cases. We dis-
cuss this further in Sec. IV.

(b)

Absorption
first

(kf kf)

G. Numerical calculations

Since the mid-1950's, attempts have been made
to provide a more accurate evaluation of the Ray-
leigh-scattering amplitudes. These numerical
methods start with the second-order 8 matrix (the
lowest order in the relativistic theory for which
the process is nonvanishing), expand the Green's
function as a sum over all states of the atomic
potential V(r), and expand the photon wave func-
tions in a multipole series (Fig. 3). The radial
Green's function is not directly computed, but the
solution of an inhomogeneous wave equation is
found that is equivalent to the integral over the
Green's function, one of the photon vertices, and
one of the bound states. Brown et al."considered
the K shell of mercury (Z =80) using the Coulomb
potential and calculated the scattering amplitudes
for incident photons of energies 164, 327, 654, and
1308 keV. (The 164-keV calculation initially used
a screened potential, but was later recalculated
using the Coulomb potential; it was found that
screening corrections were unimportant. ) The
1308-keV calculation showed poor agreement with
experiment, but, since the Rayleigh amplitudes
are not the only important elastic amplitudes at
this energy, the source of the discrepancy was
not clear. Cornille and Chapdelaine" used Brown's
procedure to calculate the scattering amplitudes
for the K shell of mercury for a photon energy of
2620 keV.

Johnson and Feiock" extended Brown's proced-
ure, obtaining results with the more realistic
DHFS wave functions. Performing calculations for
the noble gases He, Ne, Ar, Kr, Xe at 1-10 eV,
where the cross sections are dominated by con-
tributions from the outer-shell electrons, they
were able to evaluate the electric and magnetic
susceptibilities of the atom as well as the disper-
sion of these susceptibilities as the frequency in-
creased. They interpreted disagreements with

FIG. 3. Furry diagrams that depict the taro scatter-
ing processes contributing to the second-order S matrix
for photon scattering by electrons. The absorption
first process (a) corresponds to an initial-state electron
g& absorbing the initial-state photon of energy k&. At
some later time the electron leaves the intermediate
state and enters the final state P& by emitting. the final-
state photon of energy k&. In the emission-first pro-
cess (b), the order of initial-state photon absorption
and final-state photon emission are reversed. For Ray-
leigh scattering g; =g& and k& =k&. However, it is not
usually true that k; =E&.

experiment as due to the neglect of correlations.
Lin et al." included higher-order electron-elec-

tron correlation contributions coming from the
fourth-order S matrix. For helium (Z =2) they
found that the use of DHFS wave functions in their
lowest-order calculation introduced contributions
to the fourth-order S matrix that tended to cancel
other fourth-order contributions; i.e., the inclu-
sion of the approximate exchange potential of the
DHFS potential approximately represents the elec-
tron-electron interaction. The importance of the
residual fourth-order correlation effects, which
are expected to be largest for the case of helium,
decreased as the incident photon energy increased.
For total cross sections, these effects of corre-
lations had become less than 10% by 100 eV, less
than 5% by 200 eV, and less than 1% by 400 eV.
Correlation corrections to the angular distributions
were insignificant by about 1 keV. Correlation ef-
fects are expected to be more correctly included
within the DHFS model for the inner shells of
heavier atoms due to the larger number of elec-
trons present, better justifying the statistical
assumptions of the Slater exchange model. In ad-
dition, the importance of correlations is expected
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to decrease as the atomic number increases.
Therefore, correlation effects, neglected by con-
sidering only contributions of the second-order S
matrix with DHFS potentials, are expected to be
small in most cases for the heavier atoms and
higher photon energies.

Johnson and Cheng" used this extension of the
numerical procedure of Brown for the second-
order S matrix in a more systematic study for
relatively heavy atoms (30 &Z &82} for photon en-
ergies 100 through 900 keV. They included con-
tributions of some higher shells and were able to
obtain satisfactory agreement (5-20%) between
theory and experiment in this energy range. They
attributed the remaining 5-20% discrepancies to
contributions made by outer electrons which they
neglected. Due to limitations of the computer
codes used in their work, they did not calculate
the scattering amplitudes for other energies or
lighter atoms. The present work builds upon, and
has benefited from, this sequence of previous nu-
merical calculations.

are not merely a duplication of previous work since
they include discrepancies that we are able to ex-
plain. } Section III C is a careful investigation of
the validity of the form-factor approximation, mod-
ified form-factor approximation, anomalous-dis-
persion corrections to the form factor, and high-
energy-limit formulas. In particular, we attempt
to determine in which regions of parameter space
(Z, v, 8, etc.) these important simpler theories
are valid. Lastly, Sec. HID notes some of the
general features observed in the Rayleigh-scatter-
ing amplitudes (i.e., effects of screening and rel-
ativity, the relative contribution of various atomic
shells and the dependence on photon multipole).

A. Our numerical calculation of inner&hem contributions
to the Rayleigh amplitude

The matrix element we evaluate for Rayleigh
scattering of a photon of energy v by a bound elec-
tron in the state n~m& of energy E„„=1-&„„is-

IH. OUR CALCULATIONS AND THE VALIDITY OF
SIMPLER THEORETICAL APPROACHES

We have written a new code for the numerical
evaluation of the second-order S matrix for the
Raleigh-scattering amplitudes based on the ex-
tension of the formalism of Brown zt a)."and by
Johnson et al. '3 Our review of previous theories
in Sec. II shows that this is the most rigorous for-
malism now avaQable for the practical evaluation
of Rayleigh-scattering amplitudes for multielec-
tron atoms over an extended energy range, even
though it is difficult to program and costly in com-
puter time for heavy atoms with many electrons.
Our ob)ective is to work toward a prescription for
the accurate O(1%) prediction of total-atom Ray-
leigh-scattering amplitudes which relies as much
as possible on the simpler theories. (Section 1V

describes this prescription and presents sample
tabulations of the Rayleigh amplitudes. }

This section is in four parts. Section IIIA brief-
ly discusses our numerical calculation of the inner-
shell Bayleigh amplitudes. We also mention some
of the numerical checks applied in verifying the
accuracy of our codes. Section DI B compares our
predictions with other theoretical work. Section
IIIB further tests our predictions and gives us
greater confidence in the results. (These results

(+KNIT IAIDO)(p lx" IIEKmg)

)E g

where f~ is the generalized sum-integral over all
states P of energy E&.M The operators A (A*)
represent absorption (emission} of a photon of en-
ergy v. We expand these photon operators A, A*
in multipoles and all electron wave functions in
partial waves. Following Johnson et al."we de-
fine positive and negative energy perturbations of
the bound state

E„„-E~+&u

(3.2)

These perturbed orbitals satisfy an inhomogeneous
Dirac equation. The inhomogeneous terms are
proportional to the products of the bound-state
radial wave function and spherical Bessel functions
(from the photon operators). The Rayleigh-scat-
tering amplitudes for scattering of linearly polar-
ized photons from a given filled atomic subshell
may be written as (in units of classical electron
radii)

2J+li
Ag(Q) 8) = Po~(x)—

of= 1 2 )
P' x

X~(ro)+ i ,'[Pg, (x) +Pz+,(x)]+—'2
( I)" X~(&o),

(3.3}
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The associated Legendre polynomials P~ cos8
contain all the angular dependence of the scatter-
ing amplitudes. The functionals X~(u&) contain all
the dependence on energy and are found numeri-
cally by performing radial integrals over the so-
lutions of the perturbed orbitals Eq. (3.2)." The
eigenvalues J,X correspond to the photon's multi-
polarity and parity, respectively.

We analytically summed the scattering ampli-
tudes over all electrons in a fQled atomic subshell
to suppress the more complicated dependence of
the amplitudes on the magnetic quantum number

m&. If it proves important, we can recover the

m& dependence of the scattering amplitudes at a
later date. However, in what follows we will al-
ways ignore this dependence and discuss scattering
by filled atomic subshells only.

We followed closely the formalism of Johnson

et al.,"but in our codes we implemented two im-
portant improvements that remove limitations in
the range for which their codes were valid.
First, we explicitly programmed the negative-
energy continuum solution for the perturbed orbital
(num&-( of (3.2), which occurs for energies &o

greater than 2mc'- e. (At lower energies this
orbital satisfies bound-state boundary conditions. }
Second, we employed a variable-step-size tech-
nique which allows us to cover a wider range of
photon energies and atomic numbers with one code.
Truncation-error estimates automatically adjust
step sizes during quadrature and integrations of
differential equations.

We made explicit calculations for energies above
about 1 keV through about 3 MeV, for various at-
omic numbers Z~92, andK, L,, M, N shells, but

expect that our code is valid for still higher and
lower energies. The code accepts as input several
choices of numerical or analytic central-field at-
omic potentials. We used the self-consistent
Dirac-Hartree-Fock-Slater potentials most ex-
tensively (with the Kohn-Sham exchange model" ),
but also obtained predictions for the Coulomb po-
tential. The intermediate case of Rayleigh scatter-
ing off ions was not investigated, but has been ex-
plicitly allowed for in our code.

We performed many checks on our codes to en-
sure their accuracy. Special functions, such as
the spherical Bessel functions, Legendre poly-
nomials, and Clebsch-Qordan coefficients, were
checked against existing tabulations. " Large-
and small-distance properties of our solutions of
the radial Dirac equation were compared with
known analytic properties (such as phase shifts,
normalizations, amplitudes, etc.) in the case of
the Coulomb potential.

Another partial check of our results for each
subshell by the optical theorem relates the im-

aginary part of the forward-scattering amplitude
to the total cross section. Since we are consider-
ing contributions from the second-order S matrix,
we observe the following relation between the im-
aginary part of our Rayleigh forward amplitude.
and the first-order one-photon absorptive pro-
cesses of photoeffect and pair production. For
photon energy co&a the imaginary part of the for-
ward amplitude is zero. For photon energies
greater than the binding energy of the subshell e
but less than 2mc' —e, the imaginary part of the
forward-scattering amplitude equation (3.3}is
related to the total photoeffect cross section o~(&u)

(measured in units of electron Compton wave-
length squared k'} by

ImAs, ((o, 8=0) =ImA", ~(&o, 8=0) =
4

(r ((o). (3.4)

For photon energies greater than 2mc'- &, the
imaginary part of the forward-scattering ampli-
tude is related to the total photoeffect cross sec-
tion and the total one-photon bound-electron pair-
creation cross section o~(v) (measured in )2) by

ImAa~(a&, 8=0) =imA"„(&o, 8 =0)

[o ((u)-o (a))]. (3.5)

The pair-creation cross section o (a&) noted here
is not the usual atomic pais-production cross sec-
tion, but corresponds to the process where the
electron of the electron-position pair is created in

the bound state of the given subshell. 4' No data
are available on this bound-electron pair-creation
process, although there are some theoretical pre-
dictions for the inverse process of one-photon pair
annihilation with electrons of the K shell. 4~'4'

Since contributions to the imaginary part of the
forward-scattering amplitude corresponding to
o,(ar) come only from the positive-energy pertur-
bations ~nxmz+) of the bound state, and contribu-
tions to c (~) come only from the negative-energy
perturbations (numb-~, it is possible for us to
make separate predictions for o (&o) and o,(e}.

B. Further verification of our Rayieigh amplitudes

Our predictions for the Rayleigh-scattering amp-
litudes are compared with several other available
theoretical calculations. Although these compari-
sons .serve mainly as a further verification of our
numerical predictions, slight differences between
amplitudes force us to discuss effects such as dif-
ferences induced by the different choices in atom-
ic-potential models. We found significant dis-
crepancies in the 1.31-MeV. calculations of Brown
and Mayers" from our predictions at large angles.
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1. Scofield's photoeffect cross sections 2. Johnson end Cheng, 145-SS9keV

The photoeffect results of Scofield can be di-
rectly used as a check of the imaginary parts of
our forward-scattering amplitudes for energies
below the bound-pair-production threshold. Sco-
field's photoeffect cross sections, tabulated for
each subshell, were generated using DHFS wave
functions with the Slater exchange potential. Table
I displays sample comparisons by shell. Agree-
ment is at the 1-2% level for all cases except for
Z =13, where a difference of f% exists for the L
shell and 2-3% for the K shell. These differences
may be attributed to the use of Slater vs Kohn-
Sham exchange potentials. Both models are ex-
pected to account less accurately for exchange ef-
fects for light-Z atoms, and the difference in re-
sults will be larger for small Z. Ron and Tseng '
found that for 5-keV photons on aluminum (Z = 13},
the difference between total photoeffect cross sec-
tions evaluated using the Slater exchange model and

the Kohn-Sham exchange model (—', Slater's model}
is 3.5% for the K shell and f% for the L shell.
This is very similar to the effect we found. For
larger atomic numbers, the differences of photo-
effect cross sections evaluated in these two dif-
ferent models are expect to be (2%.

In further tests of our calculations, we com-
pared amplitudes generated by Johnson and Cheng"
(30 (Z (82, 145 keV (v (889 keV, K through M
shells). Because of computer-code limitations,
these authors did not make predictions for higher
energies (which require continuum positron states)
or lower energies. Since they employed the same
realistic DHFS wave functions as we do, we expect
good agreement in comparisons with our ampli-
tudes. Johnson and Cheng reported the total dif-
ferential Rayleigh-scattering amplitudes (summed
over all shells included in their calculation) but
only considered the lowest shells of the atom (in
many cases only the K shell} which, however,
usually dominate the scattering amplitudes for
larger angles at these energies. For forward di-
rections, where in fact many sheQs contribute,
their results are incomplete for total-atom scat-
tering, but they serve as an excellent check on our
calculations of the same shells.

Table II compares five cases that Johnson and
Cheng considered of the sum of the squared amp-
litudes. These represent extreme cases for the
highest (Pb) and lowest (Zn) atomic numbers as
well as the highest (889 keV) and lowest (145 keV)

TABLE I. Total photoeffect cross sections (in barns) obtained from the imaginary part of
our forward-scattering amplitudes using the optical theorem are compared with the tabula-
tion due to Scofield (Ref. 44). The larger differences for light Z are the result of the differ-
ing exchange potential models. (Scofield uses Slater, and we use Kohn-Sb~~. )

(kev) Shell
Oy~ (barns)

Scofield This work
% relative
difference

13(Al)

47(Ag)-

82(Pb)

8.04

59.5
145-

8.04
59.5

145.

412.
889.
59.5

145.

412.

889

K
L
K
K
L
K
L
K
L
K
K
L
M
K
Ll
L2
L3
L
M
K
L
K
L

2 033.
144.3

4.097
0.2319

30 820
859.7
110.3
66.93
8.109
3.524
0.5609

1 193.
282.0
544.7
58.16
24.04
20.60

102.8
24.09
36.98
6.392
6.511
1.077

1968.
134.8

4.012
0.2246

30 210
852.7
108.7
65.71
7.920
3.501
0.5567

1 182.
278.2
541.2
57.28
23.48
20.12

100.8
23.56
36.83
6.338
6.475
1.066

3.3
7.1
2.1
3.3
2.0
0.8
1.5
1.9
2.4
0.7
0.8
0.9
1.4
0.6
1.5
2.4
2.4
2.0
2.8
0.4
0.9
0.6
1.0
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TABLZ II. The sum of squared scattering amplitudes (in rp/sr) of Johnson and Chug (de-
noted as JC, Ref. 14) are compared with the results of this calculation for the same shells.
The agreement is excellent when the amplitudes are large. The number in parentheses indi-
cates the associated power 10r .

Shells
(keV), included (deg) JC

k&1 A I'+ I &.I'&

This work
% relative
difference

30

30

279

662

145

412

889

K+ L+M

K+L

K+L

0
30
60
90

120
150

0
30
60
90

120
150

0
30
60
90

120
150

0
30
60
90

120
150

0
30
60
90

120
150

3.869
0.805 7
0.052 26
0.006 74
0.002 72
0.001 93
3.831
0.023 30
1.60(m)
1.24(-5)
5.11(-6)
3;45(-6)

750.6
71.05
11.34
4.133
2.974
2.993

90.20
4.000
0.433 5
0.1844
0.146 8
0.1382

88.44
0.431 5
0.240 9
0.005 74
0.003 67
0.002 92

3.870
0.7964
0.05112
0.006 58
0.002 65
0.00188
3.833
0.023 01
1.63(m)
1.34(-5)
5.97(-6)
4.10(-6)

750.9
70.84
11.20
4.048
2.911
2.934

90.28
3.964
0.432 2
0.1837
0.146 1
0.1375

88.55
0.429 5
0.023 90
0.005 67
0.003 64
0.002 89

-0.03
1.2
2.2
2.4
2.6
2.7

-0.05
1.3

-1.9
W.1

-14.
-19.
-0.04
0.30
1.2
2.1
2.2
2.0

-0.10
0.92
0.30
0.02
0.50
0.51

-0.12
0.47
0.79
1.2
1.4
1.0

photon energies. These cases are also examples
in mhichg, K+L, and E+L+M shellsof theatom
were considered. ' We observed generally excellent
agreement (better than 0.1%) in the forward direc-
tion where the amplitudes are large. As mould be
expected, the relative error increases as the scat-
tering angle increases. For forward directions,
the multipole amplitudes (which are independent
of angle) are summed with factors of the same
sign; while at larger angles, they are added with
factors of varying signs. The multipoles are gen-
erally of the same sign, so that the interference in
the sum increases as the scattering angle in-
creases, and a given error in multipole amplitudes
leads to a larger error in the sum at larger angles.
The error remains O(1%) whenever the summed
amplitudes are large.

It should also be mentioned that in their calcu-
lations Johnson and Cheng have used the Slater
exchange potential while, as noted earlier, we

have used the Kohn-Sham (—,
' Slater exchange term).

At these energies, the small differences between
these two potential models are expected to gen-
erate differences at the 1% level, as were seen in
the comparison earlier with Scofield's photoeffect
cross sections.

We believe the good agreement in these five
cases establishes the validity of our calculation
in this energy range. We compare our predictions
in this energy range with experiments in Sec. V.

3. Brown and Nayers, 1.91NeV

Table III compares our results with those of
Brown and Mayers" for 1.31-MeV photons scat-
tered by the K shell of mercury in the Coulomb
potential. We observe good agreement in the for-
ward direction for the real parts and excellent
agreement for the imaginary parts of the scatter-
ing amplitudes. But at intermediate and large
angles large differences are found, especially in
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TABLE III. The amplitudes (in classical election radii &&) for 1.31-keV photons scattered by the E shell of mercury
predicted by Brown and Mayers (denoted as BM, Ref. 11) are compared with our numerical calculation as a function of
scattering angle (in degrees). Note the comparison of the sum of squared amplitudes (in r p/sr) in the last three col-
umns where small discrepancies in the forward direction increase with increasing angle. The amplitudes are complex
and are listed as (Re, Im).

e
(deg) BM

A„(Re, Im)
This work BM

A, (Re, Im)
This work

2(iA„it+ [Aint) % relative
BM This work difference

0
30
60
90

120
150
180

-1.6989, 0.0474
-0.2531, 0.0055

0.0160, 0.0019
0.0295, 0.0015
0.0253, -0.0001
0.0228, -0.0015
0.0206, -0.0023

-1.7365, 0.0475
-0.2607, 0.0057

0.0049, 0.0020
0.0186, 0.0017
0.0151, 0.0001
0.0123,-0.0013
0.0114,-0.0018

-1.6989,0.0474
. -0.3279,0.0211
-0.0426, 0.0121
-0.0171,0.0073
-0.0177,0.0047
-0.0206, 0.0029
-0.0206, 0.0023

-1.7365,0.0475
-0.3330,0.0208
-0.0474, 0.0119
-0.0176,0.0074
-0.0128,0.0042
-0.0177,0.0024
-0.0114,0.0018

2.889
0.086 0
0.001 11
0.000 609
0.000 488
0.000477
0.000430

3.018
0.089 7
0.001 21
0.000 355
0.000 204
0.000 147
0.000 133

M.3
-4.1
-8.3
72

140
220
220

the real parts. To explain these differences we
truncated the places of significance of our photon
multipole amplitudes and compared the resulting
sum of the squared scattering amplitudes. No
gross change in the results occurs until our mul-
tipole amplitudes are truncated to 3 significant
figures (see Table 1V). The magnitude of the rel-
ative errors between 1 and 2 significant figures
has an angular dependence similar to the discrep-
ancies with Brown and Mayers. It is expected that
approximately 1.5 places of significance (3%) are
maintained in the amplitudes of at least the dipole
terms of the Brown and Mayers calculation at 1.31
MeV. ' At large angles, the destructive manner
in which these multipole amplitudes combine to
form the scattering amplitudes accounts for the
observed factor-of -two discrepancy.

We studied this case because the theoretical
elastic cross sections for energies 0.9-1.33 MeV
showed large disagreements based on the ampli-
tudes of Brown and Mayers. In Sec. V our pre-

diction is consistent with experiment, and this
provides additional support for the belief that the
Brown and Mayers calculation is in error at back
angles. Errors of this type do not affect the lower-
energy calculations of Brown gt a&. , since the more
rapid decay of the multipole contributions at lower
energies reduces the severity of the destructive
interference at large angles. In addition, the
fundamental radial integrals have less rapidly
oscillating integrands at lower energies, again
reducing the difficulty of their accurate numerical
evaluation.

4. Nonrehtivistle Coulomb dipole for the K-shell

Further tests of our calculation are possible in
the limiting cases corresponding to the nonrela-
tivistic dipole approximation by Gavrila. " These
are valid for light g and low energies as long as
screening effects are neglected. Table V compares
Gavrila's amplitudes with our numerical dipole
amplitudes obtained using both Coulomb and

TABLE IV. The sum of the squared scattering amplitudes (in ro/sr) for 1.31- MeV pho-
tons scattered by the E shell of mercury are compared as a function of the scattering angle
(in degrees). The amplitudes due to Brown and Mayers (denoted as BM, Ref. 11) are com-
pared with amplitudes obtained from our numerically calculated multipole amplitudes that
have been truncated to 3, 2, and 1 places of significance (denoted as KP3, KP2, and KP1,
respectively). It is between 2 and 1 places of accuracy (3%) that our truncated amplitudes
develop errors (as compared with our untruncated amplitudes) which have an angular distri-
bution similar to the discrepancies of Brown and Mayers.

e
(deg)

—,'&[~„['+i~, i'&

KP3 KP2
% relative difference

BM KP3 KP2 KP1

0
30
60
90

120
150
180

2.889
0.086 0
0.001 11
0.000 61
0.000 49
0.000 48
0.000 43

3.008
0.089 5
0.00122
0.000 35
0.000 21
0.000 14
0.000 13

2.932
0.088 1
0.001'20
0.000'32
0.000 26
0.000 10
0.000 26

3.018
0.081 5
0.002 09
0.000 52
0.000 71
0.000 58
0.00142

-4.2
-4.1
-8.3
69.

145
220
230

-02
-0.2

0.8
-2.8

5.0
-6.7

0.0

-2.9
-1.8
-0.8

-11.
30.

-33.
100

0.0
-9.1
72.
44

255
287
992
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TABLE V. Comparison of K-shell electric dipole Rayleigh-scattering matrix elements I (in ro) for the nonrelativis-
tic Coulomb case (denoted as NRC, due to Gavrila, Ref. 33), the relativistic Coulomb case (denoted as BC, this work),
and the relativistic screened case (denoted as RS, this work).

(keV) (co/Z2 Ry)

M
electric&ipole matrix elements (Re, Im)
NBC RC RS

% relative
difference Ie, Im)

NBC vs RC NBC vs RS

13

47

82

5.41
8.04

22.1
59.5
8.04

59.5
145.0
412.0
889.0
22.1
59.5

145.0
412.0
889.0

2.35
3.50
9.61

25.9
0.268
1.98
4.82

13.7
29.6
0.242
0.650
1.59
4.50
9.72

-2.364, 0.5366
-2.237, 0.2494
-2.055, 0.0315
-2.010, 0.0036

0.180, 0.0000
-2.415, 0.7389
-2.156, 0.1319
-2.031, 0.0147
-2.008, 0.0026

0.144, 0.0000
3.021, 0.0000

-2.453, 1.101
-2.171, 0.1514
-2.054, 0.0367

-2.169, 0.2459
-1.700, 0.0297
-0.834, 0.0031

-2.057, 0.6780
-1.246, 0.0967
-0.343, 0.0069
-0.090, 0.0013

1.254, 0.0000
-1.677, 0.9525
-0.736, 0.0881
-0.23$, 0.0180

-2 277.
-2.136,
-1.668,
-0.797,

0.172,
-2.036,
-1.230 ~

0.337,
0.088,
0.096,
1.452,

-1.666,
-0.729,
-0.230,

0.4731
0.2222
0.0274
0.0028
0.0000
0.6498
0.0936
0.0067
0.0013
0.0000
0.0000
0.9212
0.0862
0.0177

3.2, 1.4
21. , 6.1

140, 16.

17. , 9.0
73. , 36.

490 e 110
2100, 100

140, 0.0
46. , 16.

190, 72.
780. , 100

3.8,
4.7,

23
150

5.0,
19.
75.

500
2200

49.
110
47.

200
790

13.
12.
15.
29.
0.0

14.
41.

120
100

0.0
0.0

20.
76.

110

screened (DHFS) potentials. We have mostly cho-
sen cases where, numerically, the electric-
dipole approximation holds, in the sense that the
magnetic-dipole and electric-quadrupole ampli-
tudes are typically smaller than the el.ectric-
dipole amplitude by an order of magnitude or more
The Rayleigh-scattering amplitudes for scattering
of linearly polarized photons are expressed in
terms of the electric-dipole matrix element I as

Af(&u, 8) =M,
(2.5a)

A",
~
(e, 8}=M cos8.

We note the following features: (1) We find good
agreement for light Z at 5 and 8 keV (this is a
confirmation of our calculation at low energy}
and fair agreement for intermediate Z below 59
keV. (2) The screening effects are of the same
absolute magnitude in the real and imaginary
parts, large for high Z near K-shell binding. Use-
fulness of these nonrelativistic Coulomb dipole
results is restricted to light- and intermediate-Z
elements for photon energies not more than sever-
al times the K-shell binding energy. For photon
energies above 20 keV for aluminum, 'multipole
effects are important. (See discussion of photon
multipoles later in this section. )

C. Validity of the form-factor approximation, modified
form-factor approximation, anomalousMispersion

corrections to the form factor, and the highenergy-limit
formulas

With increased confidence in our numerical
prediction of the Rayleigh-scattering amplitudes,
we establish over what regions of (Z, ~, 8) param-

1. Form-fuctor upproximution

We expect the form-factor approximation for
scattering from a filled atomic subshell to be val-
id for light-Z elements at small momentum trans-
fers q, and energies above and not too near the
photoeffect threshold for that subshell. Figures
4-6 display the results of comparisons of the
percent relative difference (in order to highlight
differences) between the sum of squared ampli-
tudes

Z = —,'(/A" /'+[A [ } (2.5b)

predicted by the form-factor approximation and
those predicted by our numerical calculation
summed over all electrons in the specific shell.
The prediction in the form-factor approximation
(in r', /sr) is

Z =-', (1+cos'8))f(q) [', (2.7)

with f(q) defined by Eq. (2.1). We calculated f (q)
using the single-particle electron number densi-
ties derived from the Dirac-Hartree-Fock-Slater
(DHFS) wave functions used in our numerical cal-
culation of the corresponding Rayleigh amplitudes

A~~~ and A~. The form-factor predictions are not
compared with our numerical amplitudes for pho-
ton energies less than the electron binding energy
of the subshell, since in this low-energy region
the numerical amplitudes often change sign and
bear no resemblance to the form-factor predic-

eter space several important approximations are
valid. We concentrate primarily on the form-
factor approximation and variations or corrections
to it.
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FIG. 4. The 1ower frame plots the percent relative
difference between the sum of squared amplitudes pre-
dicted in form-factor approximation OFF with predic-
tions from our numerical evaluation of the second-or-
der S matrix Z""M as a function of momentum transfer
for the K she11 of aluminum. The upper frame plots the
form factor for the K shell of aluminum f ~

tions. Further, we restrict the comparison to
photon energies above K-shell binding because the
change in character of the exact single-particle
K-shell amplitudes (being dominated by bound-
bound-type transitions for &o& er) affects all the
atomic shells. " Figure 4 displays the form factor
for theK shell of aluminum (Z=13) directly above
the first comparison to remind the reader of the
behavior of the K-shell form factor as a function
of the momentum transfer q, and to emphasize
that the deviation of Z from constant difference is
occurring at a momentum transfer that in general
is different from qt estimated by the inverse
Bohr radius as q~ Zoic/s'. —

Our numerical data in Figs. 4-6 indicate that,
as in the form-factor approximation, the magnitude
of the sum of the square numerical scattering amp-
litudes Z of a given subshell is approximately con-
stant for momentum transfers less than the typical
momentum qe of electrons in that shell. (The con-
stant is energy dependent. ) This is physically
plausible if we argue that the electron must largely
supply this momentum. If the electron can make
such a transition in momentum space and still finds
itself within the bulk of the momentum distribution
of this subshell, then the process should have a
high probability, independent of q for q«qt . When
the momentum transfer has increased beyond the

typical momentum of electrons for this subshell,
it will become increasingly improbable that the
electron may elastically scatter the photon. This
is consistent with the form-factor-approximation
prediction. Note the relative error of the form-
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FIG. 5. The percent relative difference between g
and g~ for the K shell of silver and lead as a function
of momentum transfer.
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factor prediction remains relatively constant even
for q beyond q~ for inner electrons of light-Z at-
oms. This relatively constant relative error ex-
tends until 0.1 or 0.2mc (2-4 A ') for all Z, which
for lightly bound electrons is into the region where
the scattering amplitudes for these shells are de-
creasing rapidly. At momentum transfers greater
than 0.2mc the form-factor approximation fails to
decrease as rapidly as our numerical results.
Thus, as a function of momentum transfer, the
form-factor predictions for a filled shell fail uni-
versally as the magnitude of the momentum trans-
fer approaches mc. This is consistent with
Bethe's" derivation of the form factor where he
assumed that q«mc.

We also note that Figs. 4-6 indicate the conver-
gence of our numerical amplitudes at small q to a
high-energy limit [since f(q) is independent of a&].

The rate of convergence of the scattering ampli-
tudes of a given shell to its high-energy limit is
not strongly dependent on Z when considered as a
function of v/e. Convergence of the amplitudes to
the high-energy limit is achieved within 10% at
5e, 5% at 10m, and 1% at 20m. This high-energy
limit is close to the form-factor prediction for low

Z, but smaller for high Z; the relative difference
is of the order of (Zc/n)'. Bethe's derivation of
the form factor uses the plane waves of the Born
approximation for the intermediate states ~p) of
Eg. (3.1) and thus neglects corrections of order
(Za)'. For large momentum transfers at high en-
ergies, the form-factor approximation gives pre-
dictions that are grossly in error, often by factors
exceeding 2-10. Yet, often the ratios of contribu-
tions are well predicted and the form-factor pre-
diction that s waves (and particularly K-shell amp-
litudes) dominate is confirmed [see Eq. (2.8)]. We
shall exploit these features in developing a pre-
scription for simplified calculation of the total-
atom amplitudes. (See relative contribution of
shells discussion later in this section. )

Use of the form-factor approximation to predict
differential (in scattering angle) elastic-photon-
scattering amplitudes has the following validity as
a function of atomic number, photon energy, and
atomic shell. For photon energy above the K-shell
binding energy e» for light atoms (Z-13}, predic-
tions for the differential K-shell amplitudes for
momentum transfers less than 0.2mc (4 A '}are
accurate to -10% at 5e» (V.5 keV for Al), 5% at
10»» (15 keV for Al), and 1% at 20»» (30 keV for
Al). Large errors appear in the differential scat-
tering cross sections predicted by the form-factor
approximation for larger momentum transfers
(scattering 90-keV photons through 90' corre-
sponds to a momentum transfer of 0.2mc). For
all higher shells, the form factor predicts ex-

o(~) = dQ =, q dq.4x 2l' Nfl

(0 p
(3.8)

Here do/dA is the total-atom cross-section dif-
ferential in angle given, for unpolarized incident
radiation )@hen final polarizations are not mea-
sured, by

A"„+ (3.9)

The symbol g, denotes the sum over all bound

electrons. Since the contribution to this total
cross section from a given electron decreases
rapidly for momentum transfer greater than qt„~
errors made by the form-factor approximation
for this electron for higher momentum transfers
will not strongly affect the total cross section.
The contribution of a given electron to the total-
atom total cross section will be correctly ac-
counted for in the form-factor approximation if
the form factor correctly predicts the differential
amplitudes for the electron for momentum trans-
fers up to qt . This is the case for all shells of
low-Z elements at high energies, and similarly
for high Z except for the K shell (i.e., for»«mc'
snd +»»). We compare our prediction of total-
atom total cross sections with those of form fac-
tor in Sec. IV.

cellent differential amplitudes for photon energies
greater than e» (1.5 keV for Al) and momentum
transfers less than 0.2mc. The smaller error's
in predictions of the form factor for the higher
shells will increase as decreasing photon energy
approaches K-shell binding. Thus, the form fac-
tor will predict total-atom differential scattering
cross sections accurate to at worst O(2/Z) for
energies greater than g~ and forward angles.

For heavy atoms (Z-82), there exists no energy
region for which the K shell is accurately predicted
by the form-factor approximation. The (Zu)'
heavy-atom corrections were neglected. For the

K shell, errors in the differential amplitudes at
high energies are still 15-20% for q&0.2mc and

are bigger at larger momentum transfers. Errors
in the differential L-shell amplitudes are smaller
(5-10%) for photon energies greater than»» for
small momentum transfers, while for the M shell
errors in the differential amplitudes are less than

5% for a»»» and small q. Thus, for total-atom
differential cross sections, errors of the order
5-15% are expected for forward angles and e&»»
(90 keV for Pb) with big errors at larger momen-

tum transfers.
These observations have direct implications for

the total-atom (summed over electrons) total cross
section (integrated over angles) defined as
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2. Modi fied form-fetor approximation

We have noted that in his derivation of the form-
factor approximation, Franz' suggests an im-
provement, resulting in the modified form factor
g'(q). [See Eq. (2.9).] Comparisons of the sum
of squared amplitudes given by Eq. (3.7}with f(q)
replaced by g(q), with our numerical amplitudes
are shown in Figs. V and 8. There is indeed a
considerable improvement over the form-factor ap-
proximation: (1) in extending the range of mo-
mentum transfers for which the form-factor ap-
proximation is valid (0&q&0.5mc for the K shell
independent of Z); and (2) for high Z (the magni-
tude of the error becomes small in the high-energy
limit for small momentum transfers independent
of binding energy}; The range of valid momentum
transfers is sufficient to include major regions of
even the K-shell distribution of heavy atoms.

For theE shell of light atoms, comparisons of
our numerical results with the modified form fac-
tor (Fig. 7) and the ordinary form factor (Fig. 4}
shows little difference for q&0.1mc (2 A '), but
the modified form factor continues to provide good
predictions for momentum transfers up to 0.5mc
(10 A '). At this higher momentum transfer, the
sum of squared K-shell scattering amplitudes
(which heavily dominate the total-atom scattering
amplitudes at this q) is down by more than a factor
of 1000 as compared with its value at q=0. Er-
rors in the K-shell amplitudes of light-Z elements
predicted by the modified form factor are at the
10% level by about 5e», the 5% level by about 10»»,
and the 1% level by about 25m». For the K shell of
medium and heavy atoms, the prediction of the
modified form factor at finite energies is a major
improvement over the ordinary forxn factor, and
this improved agreement also extends to the higher
momentum transfer of 0.5mc. Errors in the K-
shell amplitudes of heavy-Z elements predicted by
the modified form factor are at the 10% level by
about 3s», the 5% level .by about 5e», and the 1%
level by about 10~~. Improved agreement over the.
form factor is also found in predictions of the mod-
ified form factors for higher shells for ru~c~. The
range of valid momentum transfers, although less
than that for the K shell, is sufficient to include the
regions where the contributions to the total-atom
differential amplitudes are large (i.e., q&qtn).

Thus, accurate total-atom differential scattering
amplitudes may be calculated using the modified
form-factor approximation for all shells of all
atoms for forward angles and photon energies
greater than K-shell binding. The errors in the
resulting total-atom differential scattering ampli-
tudes for light-Z atoms will be less than 10% at
about 5»», 5% at about 10»», 1% at about 25»».
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The errors in the resulting total-atom differential
scattering amplitudes for heavy-Z atoms will be
less than 1% at about 3ez because of the larger
number of outer electrons.

X High-energy limit for the K-shell

Florescu and Qavrila have recently derived
analytic expressions for the Rayleigh K-shell
scattering amplitudes in the Coulomb potential in
the limit of high photon energy (&o-~}and finite
momentum transfer, "extending the near 0 =0 re-
sults of Goldberger and Low." Figure 9 com-
pares the sum of squared amplitudes of our nu-
merical calculation Z using Coulomb wave func-
tions, with their high-energy matrix element ZHI.

The deviation of the high-energy-limit amplitude
from our finite-energy numerical calculation re-
mains relatively independent of momentum trans-
fer for momentum transfers small as compared
with 2+wc. This region of constant fractional dif-
ference of the high-energy-limit amplitude from
our numerical results encompasses larger mo-
mentum transfers as photon energy increases.
Figure 9 illustrates the agreement with the high-
energy-limit results extends well beyond the re-
gion where the aluminum K-shell amplitudes are
large. This suggests valid use of the high-energy
limit for prediction of the total (integrated differ-
ential) cross section at sufficiently high photon
energy. Also the differences between Z'+ and Z
are 10-20% for photon energy 5ar, 4-6% for pho-
ton energy 10cr, and less than 1% for photon en-

ergy greater than 20zr (where cz is the K-shell
binding energy). The rate of convergence of our
numerical calculations to the high-energy-limit
amplitude is similar to the rate of convergence of
our numerical results to the predictions of the
modified form factor for the K shell of heavy-Z
elements using DHFS wave functions (Fig. 7}, but
the departures are in the opposite direction. At
high photon energy the effects of screening on the
K-shell scattering amplitudes are found to be
small, and there would seem to be no preference
between the use of the modified form-factor ap-
proximation and the high-energy-limit results for
prediction of the K-shell Hayleigh-scattering amp-
litudes for smaller values of q. [RecaD that at
high photon energy, the Rayleigh amplitude is dom-
inated by the K shell at ordinary angles (8&1').]
However, the validity of the high-energy-limit
amplitude is found to extend to larger values of q
as m increases.

4. Effects ofscreening

It is important to determine how screening of
the nuclear charge by the bound electron affects
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FIG. 9. The percent relative difference between the
sum of squared amplitudes predicted using the high-
energy-limit amplitude g"E with predictions of our num-
erical evaluation of the second-order S matrix Z~ as
a function of momentum transfer for the E' shell of
aluminum and lead.

the Rayleigh-scattering amplitudes for atomic
electrons. This is needed both to understand phys-
ical effects which can result and to understand the
appropriateness of various more approximate cal-
culational schemes.

To anticipate the results, we recall that the
form-factor approximation makes a prediction of
these effects. Because the form factor has some
approximate validity for photon energies greater
than electron binding, qualitatively correct pre-
dictions concerning the effects of screening are
expected for higher photon energies. The form-
factor approximation predicts the following effects
of screening for photon energies greater than elec-
tron binding: (1}For small momentum transfers,
the form factor, Eq. (2.1), reduces to N, the num-
ber of electrons, which is independent of the type
of atomic potential used. Thus, for high energy
and small momentum transfers, no screening ef-
fects are predicted in the form-factor approxima-
tion. (2} For large momentum transfers, the form
factor is Coulomb-like except for bound-state-
normalization corrections, since the charge den-
sities used are Coulomb-like for small distances
except for normalization corrections. " So for high
energy and large momentum transfer, the effect
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of screening in the scattering amplitudes may be
expressed as the squared ratio of screened to un-
screened bound-state normalizations (a constant
independent of momentum transfer). (Since the
form factor is not valid for large momentum trans-
fer, we must examine our numerical data to see
whether this prediction is in fact valid. )

Figure 10 compares the sum of squared ampli-
tudes predicted using Coulomb wave functions with
the same quantity predicted with screened DHFS
wave functions. For photon energies greater than
several times electron binding, there are essenti-
ally no screening effects on the total cross section
(integrated over angle}. For large momentum
transfer, the ratio of squared normalizations pre-
dicts approximately a constant 15% screening ef-
fect for aluminum (we found a 19% effect) and a
8% effect for lead (we found a maximum 4% effect
although the effect did not become momentum in-
dependent by the end of the comparisons}. Thus,
generalizing to other shells, we expect that for
energies several times electron binding, screen-
ing effects are essentially zero for momentum
transfers less than Zan c/n'. These corrections
increase in the neighborhood of Zamc/n' to an
asymptotic value given by the ratios of squared
bound-state normalizations (at least for light Z}.
So the form factor has correctly predicted screen-
ing corrections (at least when large) even when
it does not predict the amplitudes well.

For photon energies in the neighborhood of or
below electron binding, the form-factor approxi-
mation is no longer valid. Screening corrections,
especially to the wave functions of outer bound-
electron orbitals, will be large. Even for the
inner shells, the position of the edge is shifted.
Figure 10 shows that the comparison of our
screened and unscreened numerical calculations
differ strongly for the case of 59.5-keV photons
on lead (K-shell binding energy is 88 keV}. Screen-
ing effects in the Rayleigh amplitudes are impor-
tant for all Z just above threshold because the Re
and Im parts of the amplitudes are comparable.
As was shown earlier, the Im part of the forward-
scattering amplitude is related to photoeffect,
which is sensitive to screening near threshold.

We may also review Table V, in which we com-
pare screened and unscreened dipole matrix ele-
ments for the K shell. We again find that screen-
ing effects are small in the dipole matrix elements
for photon energies much greater than e~. In the
regime where the dipole amplitude is sufficient to
describe the differential amplitudes, screening
effects wi11 be a constant factor independent of
momentum transfer. This constant factor will also
be reflected in the total cross sections (integrated
over angles).
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sum of squared amplitudes predicted using Coulomb wave
functions gc~ with our predictions using DHFS wave
functions ZDz~ as a function of momentum transfer.

5. Relative contribution of shells

Figures 11-13plot the ratio of the sum of
squared amplitudes of a higher shell E~D„,
to that for the Z shell Zg+ r as a function of mo-
mentum transfer q for photon energy greater than
K-shell binding. Instead of showing the two com-
plex amplitudes, we compare the sum of squared
amplitudes to simplify the comparison although
photon polarization information is lost. In the
form-factor approximation, the quantity we dis-
play reduces to the ratio of the squares of the
higher-shell form factor to the K-shell form fac-
tor. This quantity is a universal function of q, in-
dependent of photon energy, for fixed Z in the
form-factor approximation.

For small q these ratios are close to the square
of the relative number of electrons in the shell.
These ratios decrease rapidly in magnitude for
intermediate values of q but level off for very
large q. For large q, the constant value reflects
the contribution of bound electrons with orbital
angular momentum I=0 (s waves). (See previous
discussion of form factors. }

Comparing our numerical amplitudes with the
form factor and modified form factors, we find
that these approximate theories are not valid at
large q even for large photon energy. The mod-
ified form factor itself fails for q &10 A ', while
the form factor fails for even smaller q. In some
intermediate- and large-q situations, the ratios
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of shells will be well estimated as ratios of form
factors or modified form factors even when the
form factor or modified form factor itself is not
valid. As noted earlier, such form-factor or
modified-form-factor ratios are useful at photon
energies several times K binding since there are
q independent errors in these approximate the-
ories closer to threshold. At higher energies both
ratios work well and differ little for low Z. For
high Z, the modified form factor is a distinct im-
provement through small and intermediate q since
it correctly includes corrections in (Za/n)', how-
ever, changes in sign-found in our modified form
factors at large q for large atomic numbers limit
the usefulness of ratios in this region.

We observe from the example of Figs. 11-13that
the ratios of both the form factor and modified
form factor, although qualitatively correct, are
not accurate in the region of rapid variation of our
numerical ratios for intermediate values of q. But,
since the numerical ratios are small in this re-
gion, either the form-factor or modified-form-
factor ratios may be used to estimate the contribu-
tion of higher shells to the total-atom differential
scattering amplitudes. At very large momentum
transfers where the numerical ratios are expected
to be less rapidly changing, we expect the form-
factor ratios to represent more uniformly the nu-
merical ratios. We conclude that using ratios of
form factors to estimate the contribution of the
outer atomic shells provides an estimate for large
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FIG. 11. We plot for several energies the ratio of
the sum of squared amplitudes of the L shell Zzzzs I,
to the K shell ZD~~& & for aluminum, together with
form-factor and modified form-factor predictions
(labeled f2 and g~) as a function of momentum transfer.

6. Importance ofphoton multipole and relativistic effects

In our numerical calculation we truncate the
photon multipole series [see Eq. (3.3)] when the
relative magnitude of the real part of the Jth elec-
tric multipole amplitude (X~) has dropped 5 orders
of magnitude below the real part of the electric di-
pole amplitude (X',). For cases that require less
than 6 photon multipoles, the real part of the elec-
tric dipole amplitude .(X',) is typically an order of
magnitude greater than the real part of the magnet-
ic dipole amplitude (X,) or the real part of the
electric quadrupole amplitude (X,'}. This relativ-
istic dipole scattering region exists for photon en-
ergy &u&10m'I' (in keV). (It would seem possible
that, near "forbidden" dipole resonant transitions
like 1s Ss, high multipole amplitudes could be
more important than the dipole amplitude; but such
cases have not been examined. } For photon energy
w&10&' ', higher-multipole effects become in-
creasingly more important. Figure 14 displays
the number of photon multipole amplitudes we
found necessary to include for sample K-, L,-,
and M-shell calculations for aluminum (Z = 13}
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amplitudes necessary for accurate [error 0(1%)]
differential and total cross sections. We tabulate
representative samples of the amplitudes so ob-
tained and discuss their properties. From the
comparisons of our numerical results with the-
ory in Sec. III, we can accurately predict the dif-
ferential scattering amplitudes for isolated atoms
via our numerical evaluation of the second-order
S matrix within the energy range 100 eV-10 MeV.
This energy range includes energies as low as we
expect our results to be qualitatively valid (be-
cause of increasing importance of electron cor-
relations) and energies high enough to observe
convergence to analytic high-energy results.
Since this calculation requires substantial costly
amounts of computer time —especially at higher
energies for atoms with many electrons —we have
sought methods for total-atom predictions tested
by our numerical results that rely on simpler the-
ories.
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FIG. 13. We plot for several energies the ratio
Zzz~ z/+z&s. & for lead as a function of momentum
transfer, as in Fig. 11.

W. ACCURATE DIFFERENTIAL AND TOTAL
RAYLEIGH CROSS SECTIONS

In this section we discuss our prescription for
obtaining predictions of the Hayleigh-scattering

and lead (Z = 82) for photon energies greater than
K-shell binding. The number of multipoles re-
quired to satisfy our convergence criteria is es-
sentially a universal curve that depends on photon

energy relative to the square root of the electron's
binding energy.

From the comparison of our numerical ampli-
tudes with the nonrelativistic dipole K-shell amp-
litudes of Gavrila, "we estimate the importance
of relativistic effects on the Bayleigh-scattering
electric-dipole amplitude. (See discussion earlier
in this section and Table V.) The relativistic ef-
fects for light atoms (Z =13) for energies above
but near K-shell binding are small. As the photon

energy continues to increase above K-shell bind-
ing, relativistic effects become increasingly more
important for all atomic numbers, but especially
for heavy elements. [Recall that higher-multipole
effects become important at about 20 keV for al-
uminum (Z = 13), and at about 150 keV for lead
(Z =83).] More investigation is required for pho-
ton energies below K-shell binding.
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FIG. 14. The number of photon multipoles J~» re-
quired for convergence of our numerical evaluation of
the second-order S matrix as a function of photon en-
ergy. Note: J~ is relatively independent of atomic
shell or Z when plotted as a function of photon energy
relative to the square root of the corresponding elec-
tron binding energy e.

A. Prescription for accurate total Rayleigh amplitudes

In our comparisons of the predictions of other
theories with our numerically evaluated S-matrix
Rayleigh amplitudes, we found no simple theory.
that proved useful for predicting the inner subshell
amplitudes over a wide range of Z, ~, andq. For the
accurate prediction of inner-electron Bayleigh amp-
litudes at all values of Z, ~, and q in our region
of interest, we must rely on amplitudes based upon
our numerical evaluation of the second-order S
matrix. Inner electrons are the electrons in those
shells whose binding energy is not small compared
with the photon energy or which contribute heavily
to the total-atom differential cross section at large
momentum transfers q.
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Outer electrons are the electrons, in those shells
whose binding energy is small compared with the

photon energy and which contribute lightly to the
total-atom differential cross section at large mo-
mentum transfers q. We. could also, in principle,
obtain accurate Rayleigh amplitudes via our num-

erical evaluation of the S matrix. This would be
prohibitively time consuming for heavy atoms
with many electrons, especially at large &. For
an alternative approach, we review the results of
our comparisons with simpler theories. Possible
candidates for models to estimate the contribution
of outer electrons all rely strongly on some type
of form-factor approximation. .'We have investi-
gated" the use of the form-factor approximation

f(q), the modified form-factor approximation g(q),
ratios of either the form factors or modified form
factors to scale from the numerical inner-electron
amplitudes, photoeffect cross sections and the

optical theorem, and the suggestion of Brown and

Mayers in which g(q) is used to estimate the no-

spin-flip amplitude Assr while'f(q) is used to esti-
mate the spin-flip amplitude As+.

We may specify our prescription for accurate
Rayleigh-scattering amplitudes for photon ener-
gies & above K-sheQ binding. For the inner elec-
trons, we will use amplitudes derived from our
numerical evaluation of the second-order S ma-

trix. For outer electrons, we will estimate their
contribution to the real part of the Rayleigh amp-
litudes using the modified form-factor approxima-

O

tion for q&50 A '. The expression for the contribu-
tion to the real part of the Rayleigh amplitudes in

the modified form-factor approximation is similar
to that in the form-factor approximation, Eq. (2.2),
but one replaces the form factor f '(q), Eq. (2.1)
by the modified form factor g'(f), Eq. (2.9). We

use the forward-angle ratio of outer-electron to
inner-electron imaginary amplitudes predicted by
the optical theorem equation (3.4) and the photo-
effect cross sections of Scofield44 to scale the
inner-electron imaginary amplitudes at all angles.
For q& 50 A ', the contribution of the outer elec-
trons to the real total-atom Rayleigh amplitudes
is estimated using the ratio of the outer-electron
form factor to the K-shell form factor to scale the
real part of the numerical S-matrix amplitude for
the K shell. (At very high energies, one could
substitute the high-energy-limit amplitude of
Florescu and Gavrila32 for our numerical S-ma-
trix amplitude for the K shell. ) For '~Pb, we es-
timate that for ~&889 keV, use of the K-shell S-
matrix amplitudes with remaining electrons being
approximated as above gives Rayleigh amplitudes
accurate to O(2%).

For photon energies below the photoeffect K
edge, progressively more of the outer electrons

must be included via the numerical S matrix as the

photon energy decreases. There are two reasons
for this: (1) the modified form factor becomes a
poorer approximation for a particular bound elec-
tron as the photon energy approaches the photo-

effect threshold for ejection of that electron, and

(2) use of the modified form-factor approximation

to estimate the contributions from outer el.ectrons
neglects transitions to inner-electron orbitals
which are included in the detailed formalism used

in our numerical calculation of the S matrix.
These contributions [coming from the evaluation

of the Furry diagram where the scattered photon

is emitted first, Fig. 3(b)] are needed to cancel

r //////////
/' / 1J' 1f' /' J' J' /' ~ r'

ggc
/ / / / / / / / / / /

C0
0

CL

M

FIG. 15. Regions of photon-energy space where a
direct numerical calculation of the K- and L-shell Ray-
leigh ampHtudes using modified form factors to estim-
ate the contribution of all higher shells would be unsafe.
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A", (&o, 8}=--,' (X', +X,'cos8),
A",

~
(a&, 8) = ——,

' (X', +X', cos8},
(4.1)

where X,' is the magnetic dipole and X,' is the elec-
tric dipole X amplitude. We note the rapid rise
and change of sign of the electric dipole amplitude
as the photon energy passes through theK M K
resonance energy.

B. Sample tabulations for Pb and some general features
exhibited by the total-atom Rayleigh amplitudes

Table VII, Fig. 16, and Fig. 1V present sample
tabulations of total-atom elastic-photon-scattering
amplitudes and cross sections of several photon
energies in the range 10 keV-10 MeV for neutral

complementary transitions included in our nu-
merical calculation of the inner electrons using
the second-order S-matrix formalism. These
resonant transitions become large when the photon
energy approaches the difference between any two
bound energy levels. Thus, use of the modified
form-factor approximation to estimate the con-
tribution from a particular outer electron is re-
stricted to energies greater than several times
electron binding and photon energies not too near
the resonance energies connecting this electron
orbital with an inner-electron orbital which has
been calculated directly using the numerical S-
matrix method. This complication of the prescrip-
tion for energies below the photoeffect K edge is
due to our mixing of two formalisms in an effort
to minimize the computational time. If the entire
atom (24 subshells for lead) is. calculated within

the numerical S-matrix formalism, this compli-
cation does not arise, since the cancellation of
these false resonant transitions occurs automati-
cally when the final sum over all occupied orbitals
of the atom is performed. Real resonant transi-
tions between, for example, the K shell and un-

occupied excited states would, of course, remain.
Assuming that K- and L-shell contributions to the
Rayleigh-scattering amplitudes are calculated us-
ing the S-matrix formalism and higher shells are
estimated using the modified form-factor approxi-
mation, we display in Fig. 15 regions of photon
frequency space where such a calculation is unsafe
for a heavy element such as lead. Figure 15 shows
photon energies for which uncanpeled K- or L-
shell-to-higher-subshell resonant contributions
are large enough to distort the resulting Rayleigh-
scattering amplitudes. Table VI lists values of the
electric and magnetic dipole amplitudes for the
K shell of lead for photon energies below and above
the K I K resonance. The contributions to the
Rayleigh-scattering amplitudes from these multi-
pole amplitudes are

TABLE VI. Values of the electric and magnetic dipole
amplitudes (in classical electron radii) for the K shell
of lead @=82)for energies starting 2 keV below the K

MI —K reso~!~ce and ending 1.5 keV above the K
Mz K reso~e~ce. Resonance is expected for photon

energies in the range 84-86 keV. Note the rapid
rise (and change of sign) of the electric dipole amplitude
as the energy approaches the K M K resonance re-
gion.

(keV)
X

electric
x'

1
magnetic

82.141
82.641
83.141
83.641
85.975
86.475
86.975

-0.2622
0.1345
0.6829
1.634

-1.885
-0.7537
1.280

-0.02419
-0.023 98
-0.023 36
-0.021 17
-0.027 56
-0.026 87
-0.020 28

lead (Z =82). These data are the result of includ-
ing the Rayleigh amplitudes for all 82 atomic elec-
trons and the nuclear Thomson amplitudes. The
nuclear Thomson (NT) amplitudes are given in
units of r, by

A"'= -Z'm/M,

A"~T= A"T cosa,
(4.2)

AiT(Pb) = -0.01780,

A" (Pb}= -0.01V 80 cos8 .

The total-atom Rayleigh amplitudes are evaluated
using the prescription described earlier in this
section. Table VIII shows how the 82 electrons of
neutral lead have been divided between inner and
outer electrons. Table VIII also lists the values
of the photoeffect cross-section ratio used in
estimating the imaginary Rayleigh amplitudes for
outer electrons. As the photon energy decreases,
more and more of the shells of larger principal
quantum numbers are included in the class of
inner electrons. In two cases ((s&= 59.5 and 279
keV), more electrons have been included in the
class of inner electrons (since the more accurate
numerical amplitudes were available) than our
prescription for accuracy O(1%) would require.
In some cases (u& =1120, 1170, and 2750 keV),
fewer electrons have been included than are re-

where m /M is the ratio of electron rest mass to
the atomic mass, and m/M =I/1823A where A is
the atomic weight. Explicitly, for lead the nuclear
Thomson amplitudes may be written as
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quired to maintain O(1%) accuracy. We estimate
that in these cases larger O(2%) errors are pre-
sent due to unavailability at this time of numeri-
cal S-matrix I -shell amplitudes.

We have ignored the contribution to the elastic-
photon-scattering amplitudes and cross sections
made by the nuclear-resonance and Delbrbck-
scattering processes. At higher energies, com-
parisons with experiment require the inclusion of

the nuclear-resonance and Delbruck-scattering
amplitudes.

We also collected data to perform a direct com-
parison with the anomalous scattering factors that
were calculated relativistically by Cromer and

Liberman. ' These anomalous scattering factors
are tabulated for photon energies of 5.41-22.j.
keV for all neutral atoms of Z &99. Predictions
by subshell in the same energy interval may be
obtained using a program and data supplied by
Cromer and Liberman in their Los Alamos Scien-
tific Laboratory report, but a direct comparison
with our predictions by subshell is not immediately
possible, because Cromer and Liberman have
analytically carried out the sum over all electrons
for certain terms in their calculations.

Table IX compares forward-angle amplitudes de-
rived from the anomalous scattering factors cal-
culated by Cromer and Liberman (which utilize
the photoeffect cross sections of Brysk and Zer-
by") with our predictions. Agreement is good in

all cases. It may be noted that we find a phase
difference which yields imaginary forward-angle
Hayleigh-scattering amplitudes which differ in

sign from ours. We suggest that the phase conven-
tion adopted by Papatzacos" be used for all elas-
tic-photon-scattering amplitudes. This phase con-
vention becomes important when independently cal-
culated elastic amplitudes are coherently added to
predict elastic cross sections. This point is aca-
demic in the energy range considered by Cromer
and Liberman since no other elastic amplitudes
contribute significantly here.

Table X compares total-atom total cross sec-
tions, Eq. (3.8}, predicted using our prescription
with predictions of form-factor approximation for
lead (Z =82). These total cross sections include

only the contribution due to Rayleigh scattering
and are not directly comparable with experiment
for the higher photon energies considered in the
comparison. In these heavy elements a region of
validity below the K edge exists. We also note
that the nonrelativistic form-factor cross sections
better approximate our predictions than the corres-
ponding relativistic form-factor values. The dif-
ference from form-factor approximation is largest
for energies just below the photoeffect K edge
(88 keV for Pb) for example 26% at 75 keV. Ray-

10

103

I
' '

I

= 22.1 keV

10~

100
~la

I~ 10-'

10 2

10 3

10-4
0 30 60 90

8 (deg)

59.5 keV= 75.0keV
145 keV

279 keV
— 412 keV

661 keV
889 keV

1120keV 1170keV
2750 keV

T I I I & I

120 150 180

FIG. 16. The total-atom differential elastic-photon-
scattering cross sections of Table VII as a function of
scattering angle.

leigh scattering contributes 10%-20% to the total
attenuation coefficients for photon energies im-
mediately below the K edge of high-Z elements.
Consequently, it would appear that predictions for
attenuation coefficients, tabulated using the form-
factor approximation for Rayleigh scattering,
could be in error by several percent in this energy
range. At other energies, scattering is no longer
a significant process for attenuation. (On the

other hand, these deviations of Rayleigh scatter-
ing off atomic, .-electrons from form-factor behavior
at low energies are crucial in explaining the res-
ponse of the atom to electromagnetic radiation,
as discussed by Johnson and Feiock" in their
calculation of atomic susceptabilities. )

Using our sample tabulations, we may observe
various qualitative features and properties of the

elastic, and in particular the Rayleigh, scattering
amplitudes. We first note that the amplitudes have

the following symmetries which follow directly
from Eqs. (3.3}and (4.2),

A„(&o, e=0') = A, (~, 8=0'),
(4.3)

A ii ((o, 8 = 180') = -Ai (co, 8 = 180') .
These same symmetries are also found in the
form-factor and modified form-factor approxima-
tions.

The qualitative energy, angle, momentum trans-
fer, and Z dependence of the magnitude of the real
parts of the Rayleigh amplitudes are seen to be
form factorlike for energies well above the photo-
effect edges. The magnitude of the real parts of
the forward Rayleigh amplitudes are equal to 82
in the form-factor approximation. The magnitude
of the real parts of our forward-Rayleigh ampli-
tudes are found to be less than 82; this value tends
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TABLE VII. Sample tabulations for lead (Z = 82) of the total-atom (su~~ed over el,ectrons)
elastic-photon-scattering amplitudes at several photon energies in the range 10 keV-10 MeV.
These data are the result of coherently summ&~~ the amplitudes due to Rayleigh (R) scatters
ing and nuclear Thomson (NT) scattering. The effects due to Delbriick scattering and
nuclear-resonance scattering have not been included. The data displayed hyy column from
left to right are the photon energy ~ in keV, the scattering angle e in degrees, the real and
&~eginary parts of the parallels ~~

and perpendicular A~ scattering amplitudes in units of
classical electron radii, the differential unpolarized elastic photon scattering cross section
in barns/sr, and the total unpolarized elastic-photon-scattering cross section 0(ao) (inte-
grated over angles) in barns.

(d e
(keV) (deg) ReA g ReAg

Elastic Amplitudes (R+ NT) in &0

do.

eke cr(co)

(barn/sr) (barns)

133Q

0
10
30
60
90

120
150
180

0
10
30
60
90

120
150
180

-81.0
—0.683
—0.035 5
—0.004 04

0.002 39
0.010 4
0.016 7
0.0191

281.0
—2.02
—0.309
—0.003 20

Q.Q23 0
0.027 8
0.030 9
0.032 2

0.030 6
0.0139
0.003 65
0.001 91
7.59(-5)

-9.34(-4)
-0.00142
-0.001 56

0.062 7
0.047 2
0.006 91
0.002 43
0.002 06

-1.07(M)
-0.001 8V
-0.002 51

-81.0
—0.699
—0.0520
—0.0195
—0.0196
—0.0195
—0.0192
—0.0191

-81.0
—2.07
—0.395
—0.0768
—0.0402
—0.0341
—0.0326
—0.0322

0.030 6
0.0193
0.0110
0.006 44
0.003 62
0.002 29
0.001 72
0.001 56

0.062 7
0.053 6
0.026 8
0.0154
0.009 63
0.005 54
0.003 24
0.002 51

521.
0.037 9
1.63(-4)
1.76(-5)
1.60(-5)
1.96(-5)
2.60(-5)
2.91(-5)

522.
0.332
0.0100
2.44(M)
8.88(-5)
7.80(-5)
8.07(-5)
8.29(-5)

0.114

0.484

117Q 0
10
30
60
90

120
150
180

-81.0
—2.55
—0.405
—0.0180

0.032 2
0.037 6
0.039 8
0.040 7

0.072 6
0.057 7
0.010 8
0.00107
0.001 71
4.04(-5)

-0.001 71
-0.002 39

-81.0
—2.60
—0.506
—0.113
—0.0552
—0.0442
—0.0414
—0.0407

0.072 6
0.064 2
0.034 8
0.0188
0.0114
0.006 30
0.003 35
0.002 39

521.
0.526
0.016 7
5.32(-4)
1.67(M)
1.35(M)
1.31(-4)
1.32 (-4)

0.624

1120 0
10
30
60
90

120
150
180

-81.0
—2.75
—0.438
—0.022 7

0.035 7
0.042 0
0.043 9
0.044 6

0.064 6
0.052 1
0.010 5
2.77(-4)
0.00104

-1.17(-4)
-0.001 51
-0.002 07

-81.0
—2.80
—0.546
—0.129
—O.O624
—0.0490
—0.0455
—0.0446

0.064 6
0.057 7
0.032 2
0.0172
0.0103
0.005 66
0.002 95
0.002 07

521.
0.610
0.0195
6.93(-4)
2.09(-4)
1.67(-4)
1.59(-, 4)
1.59( 4)

0.684

889 0
10
30
60
90

120
150
180

-81.o
—3.67
—0.591
—0.052 2

0.053 7
0.069 3
0.071 3
O.o71 7

0.100
0.084 9
0.023 0

-0.004 86
-0.003 60
M.003 19
M.003 98
-0.004 40

-81.0
—3.74
—0.739
—0.238
—0.113
—0.0825
—0.0738
—0.0717

0.100
0.092 5
0.0582
0.030 5
0.0184
0.010 5
0.005 92
0.004 40

522.
1.09
0.035 7
0.002 40
6.39(-4)
4.66(-4)
4.21(-4)
4.10(-4)

1.08
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TABLE VII. (Coetinue4

Elastic Amplitudes (R+ NT) in ro

gceV) (deg) ReA () IxnA g ReA~ ImAi

do
dv

(barn/sr)
o(cg)

(barns)

662 0
1Q

30
60
90

120
15Q
180

-81.1
—5.03
—0.855
—0.133

0.080 7
0.129
0.140
0.141

0.141
0.125
0.046 4

-0.014 1
-0.0164
-0.012 0
-0.009 98
-0.009 54

-81.1
—5.12
—1.06
—0.454
—0.239
—0.168
—0.14V
—0.141

0.141
0.134
0.095 9
0.052 1
0.0314
0.0191
0.0119
0.009 54

522,
2.05
0.073 8
0.008 99
0.002 58
0.001 80
0.001 54
0.001 59

1.94

412

279

0
10
30
60
90

120
150
180

0
10
30
60
90

120
150
180

-81.1-
-10.1
—2.08

0.312
0.128
0.313
0.377
0.391

-81.2
-14.7
—3.50
—0.625

0.155
0.510
0.681
0.729

0.266
0.248
0.136

-0.0189
-0.062 9
-0.0581
-0.047 7
-0.043 6

0-482
0.459
0.307
0.023 7

-0.127
-0.162
-0.156
-0.150

-81.1
-10.3
—2.48
—0.882
—0.607
—0.469
—0.408
—0.391

-81.2
-15.0
—4.14
—1.56
—0.979
—0.821
—0.750
—0.729

0.266
0.259
0.217
0.142
0.093 1
0.064 6
0.048 8
0.043 6

0.482
0.475
0.429
0.328
0.245
0.190
0.160
0.150

523.
8.29
0.418
0.035 6
0.015 8
0.012 9
0.012 4
0.012 3

524.
17.5
1.18
0.116
0.042 0
0.039 5
0.042 7
0.044 0

4.97

10.6

145 0
10
30
60
90

120
150
18Q

-81.2
-28.5
—8.38
—1.91

0.133
1.04
1.42
1.53

1.40
1.36
1.09
0.416

-0.229
-0.647
-0.848
-0.904

-81.2
-28.9
—9.77
—4.10
—2.71
—1.92
—1.61
—1.53

1.40
1.39
1.35
1.22
1.09
0.989
0.926
0.904

524.
65.6
6.70
0.880
0.341
0.245
0.245
0.250

35.8

75.0 0
10
3Q

60
90

12Q
150
180

-V9.9
-44.8
-14.8
—4.04

0.159
1.67
2.39
2.61

0.878
0.857
0.697
0.285

-0.125
-0.413
-0.569
-0.616

-79.9
-45.5
-1702
—8.42
—4.45
—3.17

2073
—2.61

0.878
0.875
0.853
0.791
0.722
0.664
0.629
0.616

507.
162.
20.5
3.49
0.809
0.535
0.551
0.569

94.2

59.5 0
10
3Q

60
9Q

120
15Q
180

-80.6
-51.5
-19.9
—5.69

0.229
2.77
3.85
4.18

1.31
1.28
1.06
0.475

-0.154
-0.631
-0.907
-0.996

-80.6
-52.3
-23.1
-11.8

7.54
—5.27
—4.41
—4.18

1.31
1.31
1.29
1.21
1.13
1.06
1.01
0.996

516.
214.
37.1
6.92
2.31
1.47
1.43
1.47

150.
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TABLE VII. (Continged)

(keV) (deg) ImA g ReA~ ImAj

Elastic Amplitudes (R+ NT) in &o
do'

des

(barm/ sr)
&(~)

(barns)

22.1 0
10
30
60
90

120
150
180

-81.0
-71.0
M3.3
-16.0

0.192
9.31

14.2
15.8

6.94
6.82
5.90
3.18

-0.276
-3.45
-5.62
-6.38

-81.0
-72.1
-50.1
«32 o3

-23.0
-18.3
-16.3
-15.8

6.94
6.93
6.90
6.79
6.64
6.51
6.41
6.38

525.
410.
177.
53.8
22.7
18.9
21.5
23.0

695.
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FIG. 17. A pseudo-three-dimensional plot of the dif-

ferential elastic-photon-scattering cross sections of
Table VII and Fig. 16. Data at photon energies inter-
mediate to those listed in Table VII are found by log-
arithm-logarithm interpolation. The shaded area
represents a region where there exist 1mown singul-
arities in the Rayleigh amplitudes.

to decrease slightly as photon energy increases. For
photon energies near or below the photoeffect edges,
we understand the qualitative behavior of the real
parts of the single-particle Rayleigh amplitudes
to be like that displayed by Gavrila's nonrelativis-
tic K-shell amplitudes in that singularities in the
single-particle amplitudes occur at all energies
corresponding to differences in bound-electron
energy levels. These resonances are artificial
when both bound levels are filled but are real and
usually narrow on our keV energy scale when one
of the bound levels is unoccupied.

The qualitative energy and Z dependence of the
imaginary parts of the Hayleigh amplitudes are
understood via the photoeffect cross section. As
was stated earlier, for & &2 me~-z» imaginary
parts of the forward-Rayleigh-scattering ampli-
tudes are analytically related to the photoeffect
cross sections. The angular dependence of the
imaginary amplitudes for a given electron is not
qualitatively like that of the form-factor approxi-
mation for that electron. In form-factor approxi-
mation, the ratio of the contribution for two shells
is equal to the ratios of numbers of electrons in
the shells for small q and equal to the ratios of
squared s-wave bound-state normalizations for
large q [see equation (2.8)]. The ratios of the con-
tributions to the imaginary amplitudes for two
shells is found to be approximately constant inde-
pendent of angle at least for the energies where
it may be related to photoeffect. (See the review
of the atomic photoeffect above 10 keV by Pratt,
Ron, and Tseng. ")

An important deviation from the form-factor ap-
proximation is found for the scattering of polar-
ized photons. In the form-factor approximation,
a zero is predicted at 90' for scattering of photons
of linear polarization parallel to the plane of scat-
tering (i.e., there exists a zero in A ~~). Our amp-
litudes strongly violate this prediction at all but
the lowest energies. Instead of A[, going through
zero at 90' as in the form-factor approximation,
we find that Re(Ag) has a sign change usually well
before 90' (as early as 6V') and that lm(A

~, ) has a
sign change well before 90' (as early as 45') for
energies less than the pair-creation threshold at
2m c' —e» and well after 90' (as late as 120') for
higher energies.

The nuclear Thomson amplitudes equation (4.2)
provide a guide with which we can judge when the
Rayleigh amplitudes become small enough to be-
come unimportant. Figure 17 shows a flattening
of our sample differential cross sections for large
8 at the higher energies of 1.33 and 2.54 MeV.
What we are witnessing is the Hayleigh amplitudes
becoming small with respect to the nuclear Thom-
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TABLE VIII. Shown is the division of the 82 electrons of neutral lead used for the tabula-
tion of Table VII. In our prescription, the Rayleigh amplitudes for the inner electrons are
found vip a numerical evaluation of the second-order S matrix. The contribution to the real
Rayleigh amplitudes for the outer electrons are estimated by the modified form-factor
approximation for q &50 A ~ and by scaling S-matrix amplitudes for the K shell by form-
factor ratios for q &50 A. ~. The contribution to the imaginary Rayleigh amplitudes for the
outer electrons use the ratio of photoeffect cross sections to scale the imaginary S-matrix
amplitudes for the inner electrons.

(kev)

Inner Electrons
SheQs Number of

included electrons
Shells

included

Outer Electrons
Number of
electrons outer g imager~ /0'pE

2750
1330
1170
1120

889
662
412
279
145

75.0
59.5
22.1

K
K+L
K
K
K+L
K+L
K+L
K+L+ M
K+L+ M
K+I +M
K+L+ M+N
K+L+ M

2
10

2
2

10
10
10
28
28
28
60
28

L+ M+N+ 0+P
M+N+ 0+P

L+ M+N+ 0+P
L+M+N+ 0+P

M+N+ 0+P
M+N+ 0+P
M+N+ 0+P

N+ 0+P
N+ 0+P
N+ 0+P

0+P
N+ 0+P

80
72
80
80
72
72
72
54
54
54
22
54

0.206
0.042 6
0.213
0.214
0.043 4
0.044 1
0.045 2
0.010 6
0.0111
0.0584
0.009 66
0.0581

son amplitudes which are included in this tabula-
tion. , This occurs for lead at a momentum trans-
fer of q ~80-150 A '. Thus, it is not necessary
for us to dwell on the accuracy of the Rayleigh ampli-
tudes for larger values ofq. From our comparisons
with the high-energy-limit predictions for the & shell,
we expect the K-shell amplitudes tabulated by
Florescu and Gavrila" to predict accurately the
K shell for all momentum transfers of experimen-

tal interest for lead by several MeV. Thus for en-
ergies greater than several MeV, we may predict
accurately the total-atom Hayleigh amplitudes to
0 (2'Q by using K-shell amplitudes based upon the
high-energy predictions of Florescu and Gavrila
and estimating the contribution of higher shells
as described earlier. In this sense we have made
an explicit connection of our results with a high-
energy-limit prescription.

TABLE IX. A comparison of forward scattering amplitudes predicted using our total atom
prescription with those predicted using the anomalous scattering factors published by
Cromer and Liberman (Ref. 30). As noted in equation (4.3) for forward scattering A

(~
=Aj .

fo+ h,f' = -ReAR lmA R

This Cromer and Relative This Cromer and Relative
atom (keV) work Liberman difference (%) work Liberman difference Q)

3Al 5.41 13.320
8.04 13.209

22.1 13.039

@Zn 5.41 29.161
8.04 28.369

22.1 30.323

4~Ag 8.04 47.075

@Sm 8.04 58.307
~ Ta 22.1 72.625

82Pb 22.1 80.966

13.318
13.204
13.032

29.316
28.388
30.260

46.940

56.304

72.063

80.090

0.0
0.0
0.1
0.5
0.1
0.2
0.3
3.4
0.8

~.514
-0.243
-0.031

-1.370
-0.678
-0.932

-4.242

-12.16

-4.403

-6.937

0.522
0.246
0.031

1.373
0.678
0.938

4.282

12.320

4.399

6.930

1.6
1.2
0.0
0.2
0.0
0.6

0.9
1.3
0.1
0.1
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TABLE X. The total cross section 0'(v) for lead (& = 82) computed usiag our prescription for
total-atom Rayleigh amplitudes labeled "This work") is compared with form-factor-approxi-
mation predictions. The form-factor cross-section labeled "DHFS" are evaluated using the
wave functions and potentials used in our prescription. (They agree to three significant fig-
ures with those interpolated from the relativistic 1979 tabulation of Hubbel gt al. , Ref. 27.)
The form-factor cross sections labeled "HUB75" are found by interpolation from the non-
relativistic 1975 tabulation ofHubbell et al. (Ref. 27). Ãe note that the nonrelativistic form-
factor predictions generally more closely approximate our results than the corresponding
relativistic form-factor predictions. These cross sections do not include the amplitudes due
to nuclear Thomson, nuclear-reso»~ce, and Delbriick scattering.

(keV) This work

0'(w) (barns/atom)
Form factor Relative

DHFS difference (%)

Form factor Relative
HUB75 difference (%)

2750
1330
1170
1120
889.
662.
412.
279.
145.

75.0
59.5
22.1

0.128
0.480
0.619
0.678
1.07
1.93
4.94

10.6
35.7
94.0

150.
695 .

0.139
0.585
0.753
0.823
1.29
2.30
5.69

11.7
38.2

118.
171.
708.

8.6
22.
22.
21.
21.
19.
2l..
10.
7.0

26.
14..
1.9

0.123
0.520
0.669
0.729
1.15
2.04
5.07

10.6
34.9

110,
161.
687.

-3.9
8.3
8.1
7.5
7.5
5.7
2.6
0.0
2 %2

17.
7.3

-1.2

Interpolating these results to other Z and ~ for
energies above the photoeffect K edge, we expect
the Rayleigh amplitudes predicted via our prescrip-
tion to be a smooth function of Z, ~. However, one
cannot interpolate these predictions across photo-
effect edges due to the existence of real resonances
in the Rayleigh amplitudes from resonant bound-
bound transitions between the occupied bound sub-
shells to unoccupied bound states. We have pre-
pared the pseudo-three-dimensional plot in Fig.
17 by linearly interpolating the logarithm of the
differential cross section as a function of the log-
arithm of the energy (i.e., logarithm-logarithm
interpolation). The shaded region of this figure
indicates a region for which we have interpolated
our cross sections across the photoeffectK edge.
The interpolation in this region cannot be correct,
and we caution others about this feature. Between
the photoeffect K and I. edges, such an interpola-
tion should be valid well away from the edges.

V. COMPARISON WITH EXPERIMENT

In this section we compare results of our pre-
scription for the prediction of accurate total-atom
Rayleigh-scattering amplitudes with some recent
experiments in the range of photon energies 1 keV-
10 MeV. In reviewing comparisons between ex-
periments and previous theory, we find that large
(factor of two) discrepancies are restricted to pho-
ton energies below 100 keV and above 1 MeV. The

energy region of 100 keV-1 MeV has recently been
considered by Johnson and t heng, "who compared
differential elastic-scattering cross sections pre-
dicted by combining inner-shell Rayleigh ampli-
tudes resulting from their numerical evaluation of the
second-order S matrix and theoretical nuclear Thom-
son amplitudes with experiments of Schumacher et
al.M They found 5%average differences between the-
ory and experiment for heavy atoms (lead, Z =82)
which grew to 20% average differences for light
atoms (zinc, Z =80). They attributed the differ-
ences to the contributions made by outer electrons
which were neglected in their theoretical cross
sections.

Our new calculations remove the remaining large
discrepancies between theory and experiment.
We divided the energy range of interest into three
regions. For photon energies greater than about
2 MeV, the Rayleigh amplitudes are dominant
only for very small scattering angles. For these
high energies, we expect our numerical K-shell
Rayleigh amplitudes to closely approach the high-
energy-limit predictions of Florescu and Gavrila"
even for heavy atoms at all momentum transfers
for which the Rayleigh amplitudes are important.
For the intermediate energy range of 100 keV-2
MeV, the Rayleigh amplitudes dominate the elas-
tic-scattering amplitude for most scattering angles,
and the photon energy is typically large compared
with electron binding energy. In the low-energy
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~sa g ~'ogy~
(

(~~-~')+fy(o i,
4&a ~ (&o,

' —uP)'+ y,'ru' ) '

A" =A" cose,
(5.1)

where the sum is over the number of Lorentzian
curves which are fit to the photonuclear absorp-
tion data (usually j=1 or 2). Here we use the no-
tation: g& is the peak nuclear photoabsorption
cross section of the jth resonance measured in
units of squared electron Compton wavelengths

region below 100 keV, the Rayleigh amplitude is
essentially the sole component of the elastic-
scattering amplitude. Here the photon energy is
comparable or less than electron binding for heavy
atoms.

To compare theory with experiment in the entire
range 100 eV-10 MeV, we must include the amp-
litudes due to the other coherent-scattering pro-
cesses where they are significant. Table XI in-
dicates our expectations for a heavy atom such as
lead, the relative importance of the four coherent
processes that contribute to elastic photon scatter-
ing in this energy range. By making suitable
choices for the variables Z, ar, and 8, one can
perform experiments for which only one of the
processes is predicted to contribute significantly.
Berant et al."have justified the use of the classi-
cal formula equation (4.2) for prediction of the nu-
clear Thomson amplitudes. The usual procedure
of calculating the nuclear-resonance amplitudes
by use of the giant-dipole-resonance (GDR) param-
eters extracted from photonuclear-absorption data
have been justified by other measurements. ""
We may write the nuclear-resonance amplitudes in
the units used for our Rayleigh amplitudes and nu-
clear Thomson amplitudes (the classical electron
radius ro) as

I

)t2~1.49&&10 mb; (d& the energy of the jth reso-
nance measured in units of mc'~511 keV; and y&
the width of the jth resonance measured in units
of wc'~511 keV. The best available DelbrGck
amplitudes are those predicted by Papatzacos and
Mork, "calculated in the lowest nonvanisQing Born
approximation for the point Coulomb potential, and
so most appropriate for light elements at high en-
ergies if screening efforts may be neglected.

A. Hjlhwnergy experiments (2.75-11.4 MeV)

Recent measurements of the elastic-scattering
cross sections for photons of energies 6.84-11.39
MeV incident on lead and uranium scattered
through 1.5' have been reported by Kahane et al.'
Using K-shell high-energy-limit Rayleigh ampli-
tudes due to Florescu and Gavrila, "the relativis-
tic form-factor approximation to estimate the con-
tribution of the electrons in the L and higher shells
to the Rayleigh amplitudes, and Delbruck ampli-
tudes provided by Papatzacos and Mork, Kahane
et a/. found good agreement between theory and

experiment except for the 6.84-MeV measurement.
The nuclear-resonance and nuclear Thomson amp-
litudes are very small here. The Rayleigh ampli-
tudes dominate this lowest-energy experiment, and

it is the L shell which dominates the Rayleigh con-
tribution. For higher energies, where there is no

discrepancy, the K shell is beginning to dominate
the Rayleigh amplitude. For these energies and

angles, the DelbrGck amplitudes never strongly
dominate the scattering. Papatzacos" has argued
that the Coulomb corrections to his DelbrGck amp-
litudes at higher energies will be smaller than at
2.V5 MeV, where they appear to be responsible for
a discrepancy. (See below. ) Section III verified
that high-energy-limit K-shell Rayleigh amplitudes

TABLE XI. The four coherent amplitudes that contribute to elastic scattering for 100 eV
& ~& 10 MeV»~ their expected relative importance for various energy ranges for a heavy
atom such as lead (Z= 82).

Photon
energy Rayleigh A

Nuclear Thomson
ANT

Nuclear
resonance

ANR
Delbruck

AD

10 MeV-
3 MeV

3 MeV-
1 MeV

1 MeV-
100 keV
100 keV-
100 eV

dominates only at
very smaQ e,
becomes unimportant
at large e

dominates at smaller 8,
important at
intermediate e

dominates at most 8

dominates at all 8

important at
intermediate
and large e a

important at
intermediate
and large 8

important at
larger 8

uyrimportajxt

important at
intermediate
and large e

important at
intermediate
and large 8

unim portant

unimportant

important at
intermediate
and large e

important at
intermedi. ate
8

contributes

unimpor tant

Intermediate angles have a range from 10 to 100'.
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are accurate at these energies. In comparisons be-
tween our numerical Hayleigh amplitudes and the
high-energy-limit amplitudes for the K shell, we
found convergence to within 1% by e =3 MeV for
this momentum transfer of V.2 A '. Following our
prescription for accurate total-atom Rayleigh amp-
litudes which we detailed in Sec. IV, we would use
the modified form-factor approximation to estimate
the contribution made by the ~ and higher shells to
Re&~. The L-shell Rayleigh amplitudes predicted in
this manner by the modified form factor are 15%
smaller than those given by the form-factor approxi-
mation for uranium at V.2 A '. This confirms the
explanation of the discrepancy offered by Kahane
et c'I. ; namely, that the form factox overestimates
the contribution of the L and higher shells. Using
our prescription for the total-atom Rayleigh amp-
litudes (i,e., the high-energy-limit K-shell ampli-
tudes plus modified form factor estimates for the
1. and higher shells), and including the Delbrilck
amplitudes of Papatzacos and Mork, we predict
differential scattering cross sections of 481 and
591 mb/sr for scattering 6.84 MeV photons through
1.5' by lead and uranium, respectively. This com-
pares well with the experimental values of 4V1+ 25
and 633+61 mb/sr, respectively.

At 2.V5 MeV, Schumacher et cl."have measured
the differential elastic-scattering cross section
for lead (Z =82) and uranium (Z = 92} and found sub-
stantial disagreement with theory by factors of
nearly two at the intermediate angles 30 -150'.
The theoxetical cross sections they used in the
comparison include: the nuclear Thomson ampli-
tudes equation (4.2), nuclear resonance amplitudes
equation (5.1) using the QDR parameters of Veys-
siere et a$. ,~ Delbruck amplitudes supplied by
Papatzacos and Mork, and Hayleigh amplitudes.
For lead they simply used the mercury (Z =80}
K-shell amplitudes calculated by Cornille and
Chapdelaine" at 2.62 MeV without correcting for
the energy and atomic number. They argue that
these corrections are of the same order as the
contributions made by electrons not in the K shell.
For the uranium comparison they used K-shell
amplitudes supplied by us and used ratios of form
factors to scale the g -shell amplitudes to estimate
the contribution of the I. sheQ. At this energy for
these heavy atoms, all four coherent amplitudes
are of roughly similar orders of magnitude. Hay-
leigh amplitudes calculated via our prescription
detailed in Sec. IV do not substantially alter the
result of their comparison, since it is only at the
forward angles 8 15' that the Hayleigh amplitudes
dominate the elastic cross section. Schumacher
et ag. convincingly argue from angle and atomic-
number dependence that the large differences be-
tween theory and experiment are caused by Cou-

lomb corrections to the DelbrQck amplitudes of
Papatzacos and Mork, which were calculated in
lowest-order Born approximation. At smaller
angles (where the Rayleigh amplitudes dominate
the cross section) and at larger angles (where the
nuclear Thomson amplitudes dominate the cross
section) the agreement between theory and experi-
ment grew.

B. Intermediateenergy experiments (145 keV-1.33 MeV)

For the photon energy of 1.33 MeV, Dixon and
Storey' and other experimenters"" in their com-
parisons of theory and experiment for heavy atoms
report discrepancies approaching a factox of 2 at
large angles. At this energy, the Rayleigh g -shell
amplitude is dominant at most angles. The theo-
retical Rayleigh amplitudes in these comparisons
are all based on the numerical calculation of Brown
and Mayers" for the K shell of mercury (Z =80}at
1.31 MeV. Figure Ia compares these foux experi-
ments with theoretical differential cross sections
which include our Hayleigh amplitudes, DelbrGck
amplitudes of Papatzacos and Mork, "nuclear
Thomson amplitudes equation (4.2), and nuclear-
resonance amplitudes equation (5.1) using the GDR
parameters of Veyssiere et a&. ,"Our Rayleigh
amplitudes are prepared according to the prescrip-
tion of Sec. IV. Our calculation removes the large
discrepancy; we now have good agreement for all
angles. The introduction of artificial 3% errors
in the dipole terms of our E-shell calculation
induced errors in the differential scattering
amplitudes similar to the discrepancy with

I
)

I &

)
I I

Pb
u = 1.33 MeV

)0 6 I I l I I I I I I I I I I l I I I

0 30 60 90 120 150 180
8 fdeg}

FIG. 18. Comparison of theory and several experi-
ments (Refs. 2-4, 59) for lead at 1.33 MeV. Our cal-
culation removes the large factor-of-tvwo discrepancy
with previous theory which occurred at large scat-
tering angles, 8 &90'.
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FIG. 19. Comparison of this theory (solid curves) and

experiment Q,ef. 54) for 8 Pb at the intermediate photon
energies of 1120, 889, and 662 keV. We also display
predictions based on the DHFS form factor (broken
curves) for comparison.
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FIG. 20. Comparison of this theory (solid curves) with
experiment (Ref. 54) for NPb at the intermediate photon
energies of 412, 279, and 145 keV. We also display
predictions based on the DHFS form factor (broken
curves) for comparison.

Brown and Mayers. This suggests that an accuracy
of about 3% is maintained in the evaluation of their
radial matrix elements. Because of destructive in-
terference at large angles, cancellation among the
multipole amplitudes can result in a factor-of-two
error from this seemingly small 3% error. Such
large errors do not affect Brown's other calcula-
tions since these interference effects are less
pronounced at lower energy. We removed the dis-
crepancy between theory and experiment without
modifying the fundamental phase relationships
among the various coherent amplitudes contrary
to a suggestion made by Dixon and Storey.

Figures 19 and 20 compare theory with measure-
ments of the differential cross sections made by
Schumacher gulag.

~' for 1120-, 889-, 662-, 412-,
2V9-, and 145-keV photons scattered by lead
(Z =82). For these comparisons the theoretical
cross sections are taken from those tabulated in
Sec. Dt' and include the Rayleigh and nuclear
Thomson amplitudes only. We note that the Del-
bruck amplitudes not available to us have affected
the differential scattering cross sections at 1.33
MeV by 20'%. As is noted in S'.c. IV, the theoreti-
cal Hayleigh amplitudes tabulated here for 1120
keV approximate the contribution of the I shell,

which introduces errors that increase the result-
ing theoretical cross sections by an amount we
estimate to be O(2%). We find disagreement with
experiment outside twice the reported experimen-
tal error for 30-60 at 1120 keV, 32 ' at 889 keV,
and 45 ' at 662 keV. These discrepancies are not
explained by the expected uncertainties in our
theoretical cross sections. We might expect, as
has been suggested by Muckenheim and Schu-
macher (private communication), that the Del-
bruck amplitudes must still be considered in
this energy range. We have partially verified this
by inserting the low energy limit of the Delbruck
amplitudes~ (valid in the forward direction) which
appears to remove these discrepancies at forward
angles.

C. Lowwnergy experiments (35-75 keV)

At photon energies below 100 keV, in the ab-
sence of better predictions, experimental mea-
surements" have been compared with the form-
factor approximation. We report theoretical pre-
dictions in good agreement with these experiments,
and attribute the previous differences to the break-
down of the form-factor approximation for the E-
shell contribution to the scattering. (See discus-
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FIG. 21. Comparison of this theory (solid curves) with
experiment (Ref. 8) for 59.5 keV photons incident on sev-
eral elements from oZn through NPb. We also display
predictions based on the DHFS form factor (broken
curves) for comparison.

FIG. 22. Comparison of this theory (solid curves) with
experiment (Ref. 9) for photon energies of 36 and 75
keV. We also show predictions based on the DHFS form
factor (broken curves) for comparison.

sion in Secs. III and IV.) Comparisons of our nu-
merical results with the experiment of Schumacher
and Stoffregen for a fixed photon energy of 59.5
keV and atomic numbers 30 through 82 in Fig. 21
shows good agreement at the 5% or better level,
in marked contrast to the form-factor predictions.
The largest discrepancy with the predictions of the
form-factor approximation is found in the experi-
ment for Ta (Z = V3), which is the element whose
K-shell binding energy of 67.4 keV is closest to
59.9 keV. At larger angles for this energy, the K
shell dominates the total-atom form factor. Note
that at smaller angles the agreement between ex-
periment and form-factor predictions is improving
since L and higher shells are becoming more im-

yortant and these higher shells are more accurate-
ly predicted by the form factor at this energy. Our

predictions for these low-energy cases are based
on Rayleigh amplitudes derived from a numerical
calculation of the second-order S matrix for the
K-, L-, and M-shells.

In comparison with a recent experiment by Tir-
sell et a).,' for 35- and 75-keV photons scattered
by tin (Z=50), tantalum (Z=V3}, and gold (Z=V9}
we find generally satisfactory agreement, but note
larger differences especially at 90'. Figure 22 dis-
plays this comparison along with predictions of the
form-factor approximation. Although the agree-
ment between our predictions and this experiment
is less satisfactory than for the 59.5-keV experi-
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ment, our predictions still represent a large im-
provement over those of the form-factor approxi-
mation. Our predictions are again based upon
numerical evaluation of the second-order 8 ma-
trix for K-, I -, and M-shell electrons. Note
that the agreement is substantially better than that
Tirsell et al. found with the anomalous-dispersion
corrections of Cromer and Liberman. We found
earlier that the anomalous scattering factors at
forward angles provided excellent predictions as
compared with amplitudes from our prescription.
Preliminary investigation' of the methods com-
monly used to transform the forward-angle pre-
dictions of the anomalous scattering factor to
other angles have not shown good agreement with
our predictions.
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